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Numerical Solutions for Transient and Nearlv Periodic
S/aves in Shallorv !\Iater

Abstract 

es T' Kirbl' and christina Rasmussenr

This paper presents a study of several numerical methods for solving tran-
sient (time-dependent) model equations for rvates in shallorv water by means
of the method of lines. The physical models studied include a time dependent
mild-slope equation for narrow-banded linear waves in intermediate rvater depth,
and nonlinear models for weakly dispersive long rvaves in Boussinesq and Green-
Naghdi form. The models treat spatial dependence using second and fourth-order
accurate finite-<iifferences, and time integration is accomplished using a variety
of methods including Euler predictor-couector, fourth-order Runge-Kutta, and
the Bulirsch-Stoer method using a modified midpoint scheme with polynomial
extrapolation and adaptive step size.

Introduction

The problem of surface rvate: rva\:e propagation in slorvll'-varying domains
continues to be of central concern in coastal engineering research. At present,
the study of long, nearly non-dispersive rvaves has led to a number of successful
time-stepping models n'hich evolve an arbitrary save field in space and time. For
dispetsive \r'aves in intermediate rvater depth, no cornesponding models rvhich
handle all frequencies simultaneously exist, except for the case of narrorv fre
quency bands studied here. As a result, most of the previous work in intermediate
depth waves has concentrated on the calculation of timeperiodic wave fields and
has thus neglected direct calculation of efects due to rra\€ grouping and other
types of moiions n'hich deviate from strict periodicity of theiarrier i"aue.

In this study, n'e consider a variety of models governing unsteady rvave propa-
B-ation fror', the poiui of vierv of a in'eequation s.vstem. ri'ith one equation being
the usual depth-in-tegra-ted mass-continuity requirement arid the second being
the first integral of the horizontal momentum balance. This approach is nerv ii
the study of short surface waves in intermediate n'ater depth. In nonlinear long
rvave theory, the approach has antecedents in the work of \\ru and Wu (1982) anil
It{iles and Salmon (1985), rvhich are both important to the present discussion.
\\/e thus abandon the more standard three-equation, primitive-variable approacb
in favor of a trvo-equation form from rvhich r:elocities rvould have to be obtained
by differentiation.
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The Transient Mild Slope Equation

. smith and sprink:.(lTt trst presented a time-depeadent form of the mild_slope equation of Berkhoff 1|SZZ1, liuen by 
--- --r

6, , -vo.(ccryhA+@, -  k2cce)o:  o ( l )
nhere,i(c,y,t),tl:-l'.l",.lly potential at the [nearized free surface, is related tothe velocity potential / by

,  _  cosh f r ( f r+z )_
cosh tA e (2)

and n'here h(z'u\ is- the local. slorvlv-varying-rvater depth. The remainins coef-ficients follow tt:o.n ri"L;;;i;-;il;y; r.,, is ihe crri.r'frequSpcy, c and ?, *"the phase and group velocities. irJ-i'ri 6";;;;;.nu.r. The parameters arerelated b1' the dlspeision relation 
-

,,s, : gktanh(&A) (3)
ttl?t"rg is.gravitational acceleration. If motion is assumed to be strictly periodic,
rvith / = /exp(-iart), the model equation (1) reduces ro the elliptic equation

v h. (ccsv^d) + k2ccr$ _ g (4)
given by Berkhoff (lgz2). RecentlE y'eral-authors (copeland, l9g5; I\tadsenand Larsea, 1987; panchang and Kopriva, lgggi n".:" rfLa that it is conr.enientto solve (2) in a time stepping format. e".n p"i", ;"k* use of an intermediatemodel rvhich can be rvritien i

C^ 0a
ea;*trr. 'Q=0; # -ccrtr^o = o ( c l

rvh9re..Q is a pseudo.flux vector. Eliminating e from (3) and inrokins strictperiodicit-v reco'ers the model (2-). Thp time-dipendent m;de]'j, i"'..ooi."oi"n,form for calculationg, 3nd " 
ou*i"r of;ffi;i;"; fi;:;ili argorithms eiist for itssolution. Horvever...(b)_is not equiia[nt t" (i),-""a!;. not properry mainrainthe distinction betrveen phase and group,").trtl*. itin* can not be used to

;i:::j"'r? 
rveak lv ti me- dep ena"" i'i"u"h"ki; ;"'il r" i u; ;'. J 

" i -I--, 6pins
\\/e are interested h,ere in solvilg problems involving modulated nave trainsrvith correspondins narrolv spectrar 6";d;:'M;;i';;ffii?, (l) is a suitable nroderfor this casi if theientral f'.i;i;;;f][;-o,J;il.H*'# train coincides rvith r.rand the band width is-nor toi tirg..-n tl,;itha;;;; (l) directry, ne obrainan intermediate model in tso-eqi"tion io;;." Ffi,'"lj".rir. qil iicar ;;*gydensitv associated rvith rhe ra.Jlf f.i."ti.i'o;;;"lr;i"." dispracernent 7 as

x = nt a%F^il' * @2 - kzcc) 6z. - r ,  r  g  
-T  * -J - -  

2  (6)
we recognize that ?/ is the Hamiltonian density rvith coordinate 7 and momentay' as the conjugate variables. The evolution equations follorv from

\t = # = -lo^ .(cc,v hfl + ]1,, - k2ccs)A (i)oQ g  g '

6, = AH-6 = -sq (s)
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Elimination of 4 betrveen (7) and (8) recovers the second-order model f l).\\ie retain the t*'o.first order equations l*tera in order to take 
"d;G;ilil;large array of methods available for solving first-order oDE;;:-

Numerical \ ' lethods

A large number of methods have been tested for solr-ing the model equations
(7) and (8). For the examples preseated here, we ha.-e discretized i(r,v) .oa
,tb,y\ on a grid lx;,a.i). Spatial derivatives have been approximated wiih both
second and lourth-order accurate finite differencing: the ielative 

"..ur".1. 
-d

stability 9f ea.cl-r melli9d is u.ndergoing further testingl Afier rpitl"i air.t"tiri tioo,
we are left with a system of equitions

lit.t = t!j)O

6,,,, = tlitll (e)
rvhich can be vien'ed as being a set of coupled ODE's (i-e.. the "method of lines"
approach). Jhe^$-agt form of .f(t) dtpuods on the discretization scheme used.
rhe nrst-order UlJL,l's. argthen inte-grated by any of a number of available meth-
ods; rve ha'e tested the Euler predictor coriector given u1:iv, *J'w"irgszt.
the standard fourth-order Runge-K.utta algorithm"wii[ filed'.t"p sj., 

"rj 
tit

Bulirsh-Stoer extrapolation meihod togeth6r rvith adaptive step-ii*?ot.ol. ."pr.esented in Press et al (.1989). The nirmerical methois nill b! al..urrJ -o..
fully in an expanded version oi the present report.

An Example: \[/avemaking

The problem of generating-rvaves in a long flume starting from a rest stateserves as a fundamental test of the accura.-r' jf th. model i;r6;;;iiij tr"n-
sient motion. sre consider a one.dimensional domain 3 > 0, with 6" ,p".ifi"d 

"tI T 0: correspondi.ng.to a prescribed wavemaker motion. Th. eo;"il-ir't"l*
to be lnltlally mottonless. At time t = 0, the wavemaker is started, and waves
propag.ate dorvn the Jength of the cb-annel. Figure I illustrates i".o .r."r: onervhere the rvater is.relativel-v deep and.the grouf velocitl-is about l,"titt" pn*"
velocity, and. tLe. otber shallorv, rvhere the gioup and pbase r=fo.;tio *. 

"-oiro*l-ma.teiv egu?I. These results u'ere obtained-usilg secoirJ-ord"t tp"-il"r a'ilrJlJ".i"s
Tj]l: ?"ler predictor-corrector scheme. In FTgur.-e. ra. the_t"";;bft;h'* ailf;
ratio is about l:40, and.waves are nondispersive-. This result is cleafiv inaicalea
h{ t\" corrunon speed of the rvave crests ind the leading ;;;;i fi;''"..n"-ir"io.'l'he 

leadin8.9{Se of the rvare train changes sbape sligbtl-v die to tli" fioit" 
"ou-racy of the differencing and resulting nuherical dispersion. Figure lb shows theeffect of difference betlveen group aid-pha"e u"lo.ity io aeej";;t.il wl"oe theamplitude of an arrivilq.rva*ltrain builis up slorvly ind *.h"ie iu"uo airllfp"",

continuously at the leailing edge of the wavi train.-

Ilodels for long Waves

The basic rnodelling s.cheme developed for the set of equations above provides
a framework for any.*qafl equations that can be written'io tl" ior,o ii-.'sll ututime derivatives on'the left and space 6;i";;;';il;ilt."ut i,i"l'ul3h ,ui,fact to establish modelling scbemes for several additi,oni. frobi.-*,1;;l;Gprincipally the two-equation Boussinesq and Green-Naghdi'*"aar-icr*, *a
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Figure 1: Transient linear wavemaker condition; sballorv (a) and deep (b) rvater.
Dashed lines indicate leading edge of u-ave train (group velocity)i *iid lioo
indicate crest trajeclory (phase velocity).

Naghdi, 1976) developed by tr{iles and salmon (198s). A two-equation system in
the Boussinesq approximation has been studied previously b_v \\/u and Wrl f f dSZt.
Here, hos'ever, an alternate choice of e-quations'leads to'an'expli.;t svrterii 

"iLi,.finite differencing, and *e further include rariable depth 
"ff';l;. 

1L;-6;r_
Naghdi form of the governing equation is given by

4t = -vr . (([ + 7)v1 Ol - vi

*vr . [(i,t +,il2v?6+ (r + r)v^n .v^o) v^n]

r00 200 0
x (m)

100 200
x (m)

(|ru * ?)'vi; +f,tn* a)2vrr. o^;)

(10)

ancl

o, = -] tv  ̂ i l '+j t to * , t)viA+ vrh .e^6), - g,t  ( l l )
A reduction of order 

_mdf ,9y retaining unknorvns to second--order nonlinearity
in nondispersive terms and linear order-in dispersive terms Iri;ldr ;h"-g";;r;*q
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form. Various examples of the use of these models will be sho*'n in the conference
presentation.
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