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Abstract

This paper presents a study of several numerical methods for solving tran-
sient (time-dependent) model equations for waves in shallow water by means
of the method of lines. The physical models studied include a time dependent
mild-slope equation for narrow-banded linear waves in intermediate water depth,
and nonlinear models for weakly dispersive long waves in Boussinesq and Green-
Naghdi form. The models treat spatial dependence using second and fourth-order
accurate finite-differences, and time integration is accomplished using a variety
of methods including Euler predictor-corrector, fourth-order Runge-Kutta, and
the Bulirsch-Stoer method using a modified midpoint scheme with polynomial
extrapolation and adaptive step size.

Introduction

The problem of surface water wave propagation in slowly-varying domains
continues to be of central concern in coastal engineering research. At present,
the study of long, nearly non-dispersive waves has led to a number of successful
time-stepping models which evolve an arbitrary wave field in space and time. For
dispersive waves in intermediate water depth, no corresponding models which
handle all frequencies simultaneously exist, except for the case of narrow fre-
quency bands studied here. As a result, most of the previous work in intermediate
depth waves has concentrated on the calculation of time-periodic wave fields and
has thus neglected direct calculation of effects due to wave grouping and other
types of motions which deviate from strict periodicity of the carrier wave.

In this study, we consider a variety of models governing unsteady wave propa-
gation from the point of view of a two-equation system, with one equation being
the usual depth-integrated mass continuity requirement and the second being
the first integral of the horizontal momentum balance. This approach is new in
the study of short surface waves in intermediate water depth. In nonlinear lon
wave theory, the approach has antecedents in the work of Wu and Wu (1982) ang
Miles and Salmon (1985), which are both important to the present discussion.
We thus abandon the more standard three-equation, primitive-variable approach
in favor of a two-equation form from which velocities would have to be obtained
by differentiation.
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The Transient Mild Slope Equation

Smith and Sprinks (1975) first presented a time-dependent form of the mild-
slope equation of Berkhoff ( 1972), given by

6 = Vi (CCT46) + (w? = KCC,) = 0 (1)

where é(:c, y,t), the velocity potential at the linearized free surface, is related to
the velocity potential ¢ by
coshk(h + z) -

o= —8-——

' cosh kh (2)
and where A(z,y) is the local, slowly-varying water depth. The remaining coef-
ficients follow from linear wave theory; w is the carrier frequency, C and C, are
the phase and group velocities, and ¥ is the wavenumber. The parameters are
related by the dispersion relation

w? = gk tanh(kh) (3)
where g is gravitational acceleration. If motion is assumed to be strictly periodic,
with ¢ = dexp(—iwt), the model equation (1) reduces to the elliptic equation

Vi (CCVid) + K*CC,d = 0 (4)

given by Berkhoff (1972). Recently, several authors (Copeland, 1985; Madsen
and Larsen, 1987; Panchang and Kopriva, 1989) have found that it is convenient
to solve (2) in a time stepping format. Each paper makes use of an intermediate
model which can be written as

Ry
E‘g%+v“'Q=0; %$+CC5,\";..0=0 ()

where Q is a pseudo-flux vector. Eliminating Q from (3) and invoking strict
periodicity recovers the model (2). The time-dependent model is in a convenient
form for calculations, and a number of efficient numerical algorithms exist for jts
solution. However, (5) is not equivalent to gl), and does not properly maintain
the distinction between phase and group velocities. It thus can not be used to
study even weakly time-dependent wave fields despite the use of a time-stepping
procedure.

We are interested here in solving problems involving modulated wave trains
with corresponding narrow spectral bands. Model equation (1) is a suitable model
for this case if the central frequency of the modulated wave train coincides with w
and the band width is not too large. Rather than solving (1) directly, we obtain
an intermediate model in two-equation form. First, we write the lgcal energy
density associated with the velocity potential ¢ and surface displacement 7 as

n?  CC,(Vi¢)? (w? - k2CC,) 8?
H= g5+ . g . - (6)

We recognize that  is the Hamiltonian density with coordinate n and momenta
¢ as the conjugate variables. The evolution equations follow from

{%

= 3 : ;
S, _iv,. (CCVM) + (7 - HCC,) (7)

¢ = —

I3

= —gn (8)
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Elimination of 7 between (7) and (8) recovers the second-order model (1).
We retain the two first order equations instead in order to take advantage of the
large array of methods available for solving first-order ODE?’s.

Numerical Methods

A large number of methods have been tested for solving the model equations

(7) and (8). For the examples presented here, we have discretized #(z,y) and
n(z,y) on a grid {z;,y;}. Spatial derivatives have been approximated with both
second and fourth-order accurate finite differencing: the relative accuracy and
stability of each method is undergoing further testing. After spatial discretization,
we are left with a system of equations

Nije = f,-(f)(t)
i = () (9)

which can be viewed as being a set of coupled ODE’s (i.e., the “method of lines”

approach). The exact form of f(!) depends on the discretization scheme used.
The first-order ODE’s are then integrated by any of a number of available meth-
ods; we have tested the Euler predictor corrector given by Wu and Wu (1982),
the standard fourth-order Runge-Kutta algorithm with fixed step size, and the
Bulirsh-Stoer extrapolation method together with adaptive step-size control, as
presented in Press et al (1989). The numerical methods will be discussed more
fully in an expanded version of the present report.

An Example: Wavemaking

The problem of generating waves in a long flume starting from a rest state
serves as a fundamental test of the accuracy of the model in representing tran-

sient motion. We consider a one-dimensional domain z > 0, with ¢, specified at
z = 0, corresponding to a prescribed wavemaker motion. The domain is taken
to be initially motionless. At time t = 0, the wavemaker is started, and waves
propagate down the length of the channel. Figure 1 illustrates two cases: ope
where the water is relatively deep and the group velocity is about half the phase
velocity, and the other shallow, where the group and phase velocities are approxi-
mately equal. These results were obtained using second-order spatial differencing
and the Euler predictor-corrector scheme. In Figure 1a, the wavelength to depth
ratio is about 1:40, and waves are nondispersive. This result is clearly indicated
by the common speed of the wave crests and the leadin edge of the wave train.
The leading edge of the wave train changes shape slightfy due to the finite accu-
racy of the differencing and resulting numerical dispersion. F igure 1b shows the
effect of difference between group and phase velocity in deep water, where the
amplitude of an arriving wave train builds up slowly and where waves dissappear
continuously at the leading edge of the wave train.

Models for Long Waves

The basic modelling scheme developed for the set of equations above provides
a framework for any model equations that can be written in the form (7-8), with
time derivatives on the left and space derivatives on the right. We have used this
fact to establish modelling schemes for several additional problems, includin
principally the two-equation Boussinesq and Green-Naghdi models (Green ans

3 KIRBY



et i B A

a
/

5 AN mAN 4 :v‘ \ M‘//
g i
AN ——
L
5.vAv{?v:‘v,§vﬂv};v’ﬁv:z:v‘v‘ ’WW'
iy i
Ay i
.W‘V, 'l’l“ i,
AR R
iy -
A il
i )
iw m
VA a 7]
111111414111111‘[';11114
0 100 200 O 100 2(00)

x (m) x (m

Figure 1: Transient linear wavemaker condition; shallow (a) and deep (b) water.
Dashed lines indicate leading edge of wave train (group velocity); solid lines
indicate crest trajectory (phase velocity).

Naghdi, 1976) developed by Miles and Salmon (1985). A two-equation system in
the Boussinesq approximation has been studied previously by Wu and Wu (1982).
Here, however, an alternate choice of equations leads to an explicit system after
finite differencing, and we further include variable depth effects. The Green-
Naghdi form of the governing equation is given by

no= Vi (b4 0)Vsd) = V2 (F(h 40PV 4 (k4 1PV vid)
+V, - [(%(h +1)’Vid+ (h+1)Vih- V,.&) th] (10)
and 1 . .
¢ = =5(Vad)’ + S ((h + n)Vid + Vah- Vid) - gn (11)

A reduction of order made by retaining unknowns to second-order nonlinearity
in nondispersive terms and linear order in dispersive terms yields the Boussinesq
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form. Various examples of the use of these models will be shown in the conference
presentation.
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