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Chapter 1

Boussinesq Models and Applications to Nearshore Wave Propagation, Surf Zone
Processes and Wave-Induced Currents

James T. Kirby

Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA
1. INTRODUCTION

Classical Boussinesq theory provides a set of evolution equations for surface water waves in the
combined limit of weak nonlinearity (characterized by § <« 1) and weak dispersion (¢ <« 1) with
the ratio §/u2 = 0(1). The parameters represent a wave height to water depth ratio, and a water
depth to wavelength ratio, respectively. In an early review of the state of modeling efforts directed at
predicting wave-induced nearshore circulation, Basco (1983, p. 352-353) concluded that

“The Boussinesq theory offers the possibility to eventually raise the fundamental knowledge of
coastal hydrodynamics to a higher level. No time-averaging is involved. Nonlinear wave propa-
gation and resulting wave height variations are automatically produced as part of the calculation
procedure. The unsteady asymmetrical currents and instantaneous water surface variations as so-
lutions to the governing equations are only obtainable with the aid of large, high-speed computers.
Solution techniques and applications are in their infancy. Wave breaking and surf zone simulations
have yet to be implemented.”

At the time of this prediction, Boussinesq models were scarce, difficult and time consuming to
run, and relatively undeveloped for practical physical applications. Very few explicit calculations of
coastal wave propagation, and none of surf zone processes, had been made using models based on
the Boussinesq theory, and the long-term averaging of model results needed to obtain predictions of
mean currents had not been performed. The conclusion that the Boussinesq model approach could
provide an advantage over the more well-established procedure of using a radiation stress field to
drive a slowly varying mean current field (for a recent example see Ozkan-Haller and Kirby, 1999)
was met by occasional skepticism, as evidenced for example by the discussion of Basco’s paper by
Kirby and Dalrymple (1984).

In the years from 1983 to the present, events have firmly indicated that Basco was correct in his
original assessment. Modeling schemes based on Boussinesq equations coupled with innovative ex-
tensions to the theoretical framework have been shown to be accurate and revealing predictors of
a wide range of nearshore hydrodynamic behavior, including wave propagation and shoaling, wave
current interaction, wave breaking and the generation of nearshore circulation, wave-structure inter-
action and a range of additional topics. The availability of faster computers is bringing the modeling
technique into the realm of practical calculations, and model codes have been documented and are,
in some cases (for example, Kirby et al., 1998) freely available to the public.

This chapter provides an overview of several aspects of the recent development of the Boussi-
nesq modeling technique, aimed especially at providing a description or predictive capability in the
nearshore ocean. The review highlights the work of this author and collaborating colleagues at the
University of Delaware over the past decade, and is thus in some sense somewhat narrow in its ori-
entation. Attempts have been made to provide balanced indications of the work of other groups in
the field, but for omissions apologies are offered.



The chapter proceeds by providing an overview of the development of modern fully nonlinear
Boussinesq theory in Section 2, and provides several examples illustrating wave shoaling and propa-
gation properties as well as a test of the generation and advection of a vertical-core vortex structure.
Section 3 turns to practical extensions to the 0(;/,2) theory, which provides the foundation of most
operational Boussinesq models at this time. Extensions to curvilinear coordinates and the inclusion
of wave breaking, bottom friction and subgrid-scale mixing are described and illustrated. Section 4
discusses the problem of nearshore circulation, and describes example calculations addressing the
generation of longshore currents, longshore current instability and formation of shear waves, and
the generation and destabilization of rip currents. Section 5 discusses recent results including ver-
tical shear effects (or the presence of horizontal vorticity). Miscellaneous topics are discussed in
Section 6, including the use of Boussinesq models to assist in the depth inversion problem, and an
application to tsunami propagation and inundation.

2. BOUSSINESQ EQUATIONS FOR WAVE PROPAGATION

The onset of recent developments in the field of Boussinesq models was triggered by two events.
The first was the increasing availability of the computer resources needed to run the models. The
second was the development of variants of the theory which could be optimized to obtain better dis-
persion properties at larger ki values, thus allowing the model to treat a larger range of water depths.
Critical steps in this process were provided by Madsen et al. (1991), who established a procedure
for optimizing model performance through rearrangement of dispersive terms, and Nwogu (1993),
who demonstrated the flexibility obtained by using the horizontal velocity at a given elevation in the
water column as a dependent variable. Both procedures have been extensively utilized in the devel-
opment of subsequent theory. The review articles of Kirby (1997) and Madsen and Schiffer (1999)
and the book by Dingemans (1997) provide extensive reviews of these developments up to 1999, and
therefore the material here is concentrated on more recent developments. In addition, the subjects of
wave interaction with permeable structures, surf and swash zone sediment transport, and frequency
domain modeling are covered elsewhere in this book and are thus largely neglected here.

2.1. Hydrodynamic Fundamentals
Almost all Boussinesq-type models are derived from the framework of incompressible, inviscid
flow. (The exception will be the case of waves with horizontal vorticity or vertical shear, considered
in Section 5) To proceed, a scaling which is appropriate to the regime where wavelength exceeds
water depth is chosen.
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where primes denote dimensional variables, and where hg is a depth scale, ag is a wave amplitude
scale, and ky is an inverse horizontal length scale. The dependent variables are surface displacement
n and velocity potential ¢. Velocity components are then given by

u=u,v)=Ve¢ @
for horizontal velocities, where V = (8/9x, 8/3y), and

w = ¢y 3



for vertical velocity, where subscripts x, y, z or ¢ will denote partial derivatives. The resulting scaled
problem is characterized by the dimensionless ratios

= koho; d=ap/ho C))

The parameter p characterizes frequency dispersion, and the limit y — O represents the non-
dispersive limit. The designation weakly dispersive refers to the regime u < 1. The parameter §
characterizes nonlinearity, and the limit § — O represents the linear limit. The designation weakly
nonlinear refers to the regime § < 1. In the present context, we will use the terminology fully non-
linear to indicate that no truncation based on powers of § is employed in obtaining the corresponding
model equations. The resulting set of scaled equations is given by

1
V3¢ + —5¢2x=0, —h<z<dny &)
“
1
Vh-V¢+—2¢z=0, z=-h (6)
U
8 2, 1 0
n+ér+ 5| IVOI"+ — (97 ) =0, z=4dn Q)
2 j
1
771+5V7)'V¢“?¢z=0, z=14n 3

Equation (8) is often replaced by a depth-integrated form of equation (5) which uses equations (6)
and (8) to resolve boundary terms, giving
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The central feature of Boussinesq wave theories is that the solution to equations (5)—(6) is usually
given as a power series in z, after which the surface boundary conditions are employed to obtain
evolution equations. The choice of a reference elevation for the series expansion in z is initially
fairly arbitrary. Following Madsen and Schiffer (1998), an expansion about the still water level of
the form

>0
¢, y,2,0= Y "¢ (x,y,1) (10)
n=0

gives, after substitution in equation (5),
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where ¢(O) and ¢V represent ¢ and ¢, evaluated at z = 0 and are unknown prior to applying
boundary conditions. Agnon et al. (1999) demonstrate that equation (11) recovers the full linear
solution for a slowly varying plane wave over a mild bottom slope.

The standard procedure for developing Boussinesq models follows from using the bottom bound-
ary condition (equation (6)) to eliminate the ¢(1) unknown in favor of ¢(0) (or a suitably defined
replacement), after which the development proceeds using a truncated expansion for ¢. We concen-
trate on this procedure below. More recently, Agnon et al. (1999) and Madsen et al. (2002) have
pursued a path where the identity of horizontal and vertical velocities is maintained through much



of the derivation, adding a dependent variable but increasing flexibility in optimizing results. This
procedure will be discussed in Section 2.4.

2.2. The Weakly Dispersive Problem
The full linear problem taken from equations (5)—(8) describes propagating water waves with a
dispersion relation given by

w? = gktanhkh (12)

or, equivalently,

tanhkh
2 h an

= gh (13)

where @ denotes angular frequency, k denotes magnitude of a wave number vector Kk, and ¢ denotes
phase speed for a monochromatic wave component. In the limit u <1, the ratio in equation (13)
should approach 1, and hence ¢ ~ gh. The resulting waves are nearly non-dispersive, with a leading
order correction of the form

¢ =gh(1+ Okh)?) (14)

Obviously, an approximation of this form can impose severe restrictions when the problem of propa-
gating water waves in a general domain with a range of water depths is considered. In modern terms,
the principal goal of most derivations of Boussinesq models is to obtain an approximation to the ratio
in equation (13) which is fairly robust over a range of values of k#; i.e., extending outside of the limit
uw— 0.

Following Nwogu (1993), we define a reference elevation zy located within the water column,
and re-express the series expansion for ¢ in terms of the value at z,. Using the bottom boundary
condition (equation (6)) and truncating the resulting series after O(MZ) gives

1
P, 9,2,0) = o (X, 3, 1) + 11> (20 — 2)V - (hVeba) — §u2<z2 — )V + 0t (15)

Substituting equation (15) in linearized versions of equations (7) and (9) (with § = 0) and using
Po ~ expi(kx — wt) gives the dispersion relation

1- 1/3)(kh)?
% = gkzh _(9‘_+_/)(_) (16)
1 — akh)?
where
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The choice of « fixes the resulting dispersion relation and the corresponding value of zo. o0 = —1/3

reproduces the classical Boussinesq theory based on depth-averaged velocity, while the choice o =
—2/5 reproduces the (2, 2) Padé approximant to equation (13). Nwogu further adjusted the second
result by choosing « to minimize a measure of phase speed error over a range of kk values, and
obtained o = —0.39. A comparison of the true linear dispersion relation (equation (13)) and the
approximate form (equation (16)) is shown in Figure 1, and shows that reasonably accurate dispersion
can be obtained for a range of & values up to about 3. The next order of approximation is discussed
in Section 2.4.
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Figure 1. Ratio of model linear phase speed c to exact linear phase speed c4;y given by equation (13). Standard
Boussinesq dispersion with & = —1/3 in equation (16) (dash-dot); optimized O(;,Lz) dispersion based on the
(2,2) Pad¢ approximant with minimization of phase speed errors to obtain ¢ = —0.39 in (16), following Nwogu
(1993) (dotted); O (;/,4) dispersion based on (4,4) Padé approximant in (31) (dash). (From Gobbi et al., 2000).

2.3, Weak vs. Full Nonlinearity in the O (122) Boussinesq Formulation

Subsequent to the initial work on improved linear dispersion, the next topic to receive attention
was the problem of relaxing the restriction of weak nonlinearity in the problem formulation. The
need for this extension is clear when one realizes that the wave height to water depth ratio essentially
is of O(1) in the surf zone and just seaward of it. The most obvious line of approach staying within
the Boussinesq type of formulation is to drop the notion of pursuing an expansion in powers of
8, and instead use the weakly dispersive expression for ¢ or horizontal velocity u in the form of
a power series in u? to evaluate the complete surface boundary condition. We will subsequently
refer to models resulting from this procedure as fully nonlinear models, in the sense that all of the
available information on velocities is used to evaluate the full boundary conditions. Numerous early
examples of this approach appear in the literature and have been reviewed by Dingemans (1997),
Kirby (1997) and Madsen and Schiffer (1999). We restrict our attention here to two examples; those
of Wei et al. (1995) and Liu (1994). Following the procedure of Nwogu (1993), each study derived a
set of model equations for potential flow written initially in terms of ¢ and n given by the volume
conservation equation (9) and the Bernoulli equation (7). Using expression (15) in equations (9) and
(7) gives
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for volume flux (where H = h + 87 is the total water depth), and
8 2 _ 1,2 _sm2yv2
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for the Bernoulli equation. These results were found independently by Liu (1994) and Wei et al.
(1995).

An alternate model in terms of 1 and horizontal velocity u, at the reference level zy, is preferred
for practical use, as it is extendable to include breaking, frictional and mixing effects. Substituting
for V¢ in equation (18) using

Voo =y — u2[VzyV - (hig) + 20 Vza V - ug] + O(uh) (20)

gives

M=H [ua +u? [BZ& - é(hz —hdn + (571)2)] V(V -ug)

+ [za 50— 577)] V. (hua»}] + oY 1)

for volume flux. Taking the horizontal gradient of equation (19) leads to a horizontal momentum
equation which may be written schematically in the form

Uar + 8(ug - V)Ug + Vi + 12 Vy + 847V = 0 () (22)
In deriving their version of the model equation, Wei et al. (1995) erroneously made the substitution
8

EV(ua ‘Uy) = d(uy - Viug (23)
after using equation (20) in the Bernoulli equation. The substitution (equation (23)) implies the in-
corporation of a vorticity term @ X ug, but, as will be shown below, the 0(;/,2) contribution to w is

missed in this substitution, as pointed out by Chen et al. (2000b) and Hsaio et al. (2002). Wei et al.
(1995) obtained the dispersive terms

Vi= %ng(V “Ugr) + 2o V(V - (hug)) = V [%(M)zv “Ugy +37V - (hum):l (24)
1
V2=Vow=V [(Za —n)(ug - VH(V - (hug)) + E(Zg — (M)W - V)(V - lla)]

1
+3V [V (e + 579 - u2)? | (25)

where the W subscript in Vaw denotes the Wei et al. version. In contrast, Liu (1994) (see corrected
versions in Lynett et al., 2002) invoked the substitution

]
7 VV¢a - Vo) = (Ve - V)V (26)



within the original gradient of the Bernoulli equation, and obtained the expression Vq as in equa-
tion (24). After some rearrangement to get a form close to the Wei et al. form V,ywy, which is a pure
gradient, Lin’s V, may be written as

VoL =Vow + Vi @7
where

Var = (U - Vzo) [2a V(V - ug) + V(V - (hug))]
—Vzg Uy - VIV - (hug)) — 2o Vzg (g - VIV - ug) (28)

The physical interpretation of this extra term was discovered by Chen et al. (2000b). After some
manipulation, Vo may be written in the compact form

Vyr = @1 X Uy (29)
where @1 denotes the O(u?) contribution to vertical vorticity, given by

@1 =iz [Za,x [(V - (W) y + 22 (V - Ua) y] = Za,y [(V - (hUe)) x + 20 (V - Ug) x]]
=Vzg X V[V - (hug) + 24V - 1y] (30)

Adding V5, to equation (25) corrects the original model of Wei et al. (1995). We will refer to the
combined set of terms simply as V subsequently. Note that the correction term does not appear
in weakly-nonlinear formulations, where terms of O (8 uz), and hence all of V3, are neglected. The
term also vanishes in water of constant depth, where z,, is constant.

Wei and Kirby (1995) have described a numerical scheme for equations of this type which
has come into fairly wide usage. Time stepping is treated using a fourth-order Adams-Bashforth-
Moulton scheme, while spatial differencing is handled using a mixed-order scheme, employing
fourth-order accurate centered differences for first derivatives and second-order accurate derivatives
for third derivatives. The latter choice is made in order to move leading truncation errors to one or-
der higher than the O(u?) dispersive terms, while maintaining the tridiagonal structure of spatial
derivatives within time-derivative terms. Wei and Kirby (1995) used a non-staggered grid scheme
with uy and 7 defined at the same locations. More recently, Shi et al. (2001a) have used a stag-
gered grid approach which has less apparent sensitivity to treatment of boundary conditions. The
staggered grid scheme has become our preferred approach. Methods for generating waves at inter-
nal sources have been described by Wei et al. (1999) and Chawla and Kirby (2000). Kirby et al.
(1998) document a version of the non-staggered code, known as FUNWAVE, which is available at
http://chinacat.coastal.udel.edu/~kirby/programs/funwave.

Properties of this model for wave propagation problems have been reviewed by Kirby (1997) and
Madsen and Schiffer (1999). The ability of the model to provide an accurate representation of the
evolution and transport of the vertical vorticity component was tested by Hommel et al. (2000), who
compared mode] results to laboratory data for the case of a vertical vortex core shed during the pas-
sage of a solitary wave past a vertical plane wall blocking half the width of a wave flume. These tests
were partially motivated by a previous study by Roddier and Ertekin (1999), who had considered the
diffraction of a solitary wave at the tip of a breakwater using a potential flow model analogous to
the Bernoulli equation formulation (equation (19)). Roddier and Ertekin indicated the formation of
a deep depression at the breakwater tip, which they explained to be a “bathtub vortex”. However, a
consideration of their geometry shows that a vortex core could not be forming at a position attached
to the tip of the wall, since the presence of the wall would interrupt the circulation of fluid around the



Figure 2. Shed vortex formed during passage of solitary wave past a vertical wall. (From Hommel et al., 2000.
Reproduced with permission of ASCE).
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Figure 3. Calculated velocity field corresponding to vortex in Figure 2. (From Hommel et al., 2000. Reproduced
with permission of ASCE).

depression. The depression is simply the manifestation of a singularity in the solution at the break-
water tip, caused by the approach to infinite acceleration as fluid turns the 180° corner. This result
shows conclusively that the truly irrotational models in the form of a Bernoulli equation will not
spontaneously generate a vortex due to flow separation or advect the vortex away from the genera-
tion region. Hommel et al. (2000) considered the somewhat different case of a breakwater oriented
parallel to the crest of the approaching solitary wave. Figure 2 shows a photograph of a vortex core
shed during passage of a solitary wave from the left, with the core rotation in the clockwise direction.
Figure 3 shows the corresponding numerical result, with velocity vectors overlying a colormap of the
vorticity field. In general, agreement between modeled and measured velocity time series were good
for these cases. Results are omitted here, and the reader is referred to Hommel et al. (2000).

2.4. Extensions to Higher Order
The O(12?) model described above has provided a robust framework for predicting wave propaga-

tion in shallow to intermediate water depths, but still exhibits limitations in predicting water particle
kinematics. In particular, predictions of wave-induced horizontal velocity near the sea bed breaks
down for values of y far smaller than implied by the limitations on model dispersion accuracy. For
example, the horizontal velocity predicted by the model of Wei et al. (1995) falls to zero at u = /10
and becomes negative in sign (relative to the surface velocity) in deeper water, as illustrated in Fig-
ure 4. This type of result renders the O(MZ) models useless for prediction of near bed kinematics
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Figure 4. Normalized vertical profile of linear horizontal velocity at four values of y. Exact linear solutions
(solid), O(;Lz) approximate solution (dot), 0(;/,4) approximate solution (dash) (From Gobbi et al., 2000).

(as would be needed in sediment transport calculations) at water depths far smaller than implied by
the accuracy of the dispersion relation, unless an artificial means is employed to estimate near bed
velocities from surface values. As a result, the development of higher-order approximations in the
Boussinesq model has proceeded with the intent both of increasing the range of allowed water depths
and with improving the accuracy of kinematic predictions within the allowed range of depths. Two
avenues of approach are reviewed here.

2.4.1. Model of Gobbi et al. (2000)

One avenue of approach is to retain higher-order terms in the expansion for ¢, and then proceed
in constructing either the two-equation model in 7, ¢* or the three-equation model in 5, u*, where
superscript * indicates a particular choice of reference level or combination of reference levels used
to specify the value of the potential or horizontal velocity. This procedure poses difficulties right
away, as the method proposed by Nwogu (1993) does not provide access to higher-order versions of
the Padé form of the dispersion relation (Dingemans, 1997). For example, at O (u*) in the expansion
for ¢, the desired expansion of the usual dispersion relation is given by

tanhy 14 (1/9)u? + (1/945)u*
B L+ 49l + (1/63)u
The resulting phase speed estimate is shown in Figure 1. Gobbi et al. (2000) approached this prob-

lem by constructing a potential formulated as the weighted average of the potential at two Nwogu-
type reference levels

+0(ul0) GD

¢ =PBda+(1— By (32)
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where ¢, and ¢, are defined as in the previous section and are evaluated at levels z, and z;,. Relation-
ships between these parameters giving the appropriate dispersion relationship are given by (Gobbi et
al., 2000)

1 88 1/2 3 1/271/2
Z“2[5_{567(1—;‘»} +{567/30—;‘3)} } - 42

172
©@= [5 B {567(1 -B } ! o

Values 0.018 < 8 < 0.467 give z,4 and z;, levels lying within the water column and recover the form
(equation (31)). The resulting truncated potential is given by

0 =8+ [(Ah-O) @+ (BK - ) H@) | +u*[(Ah - ) @)

+ (BB =) Fa@ + (Ch* = &%) Fs@) + (Dh* - ¢*) Fo(@®)] (35)
where { = h + z, and where
1
A= (B +20) + (1= Bk +25)] (36)
1 2
B= 5 [Bh+20)+ (1= p(h+2)] @7
1
C= 5 [Bth+2) + (=P +2)’] (38)
1
D= —[B0n+22)* + 1= Bk +2)*] (39)
and
Fi(¢)=GVh-Vé (40)
~ 1 -
F($) = 56V (41)
- - 1 207
F3(@)=Vh-V (Ath : v¢) +5Vh-V (Bh v ¢) (42)

Fa(@é) = %VZ (Ath : Vq"s) + 41V2 (thvzé)

= %Vthh V$~Vh.V (Vh : vé) (43)
Fs(@) = —évzhv% - %Vh v (V%) - évz (Vh . Vq“s) 44
Fe®) =~V (V*9) (45)

where G = (1 + ;1,2|Vh|2)_1. Seeking a model system in terms of a horizontal velocity, Gobbi and
Kirby (1999) introduced the definition

ﬁ(x» Y, t) = ﬁ [V‘P]z:za +(1- .B) [V¢]Z=Zb (46)
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where the relationship between i and ¢ is given by
Vé =ii — u?Vh[(A—1) Fa1 +2(B — A hF)]

— pvn [(A—1)(Fa1 + Fa3) +2(B — A h (Fgp + Fuq)

+3(C=B)h Fys+4(D — C) h3F46] (47)
where
Fy1 (@) = GV - i 48)
() = -;-cv @ 49)
Fay (i) = —|VA? [(A~ 1) Vh-@+ (B~ A)hV - ii] (50
F42(ﬁ)z—%V~{Vh[(A——1)Vh-ﬁ+(B—A)hV-ﬁ]} (5D
Fi3(@) = VAV (ARVA - @) + %Vh Vv (thv : ﬁ) (52)

Faq () = %vz (AhVh @) + %Vz (thv . ﬁ)

—~ %Vthh i~ Vh-V (Vh . d) (53)

F45(ﬁ)z—évzhv-ﬁ-—%v}z-v(v-ﬁ)—éVZ(Vhﬁ) 54
_ 1 _

Fyg(i) = —ﬂv2 (Vv-a) (55)

The volume flux M in equation (9) is then given by
= 2 H 2 H2
M=Hiju+pu Ah——2— (2VhFyy +VFy)+ | Bh -5 VFy
4 H
+ u Ah — ) (2VhFgy + VF41 +2VhFyq + VEg3)

H2
+ (Bh2 = T) (VFa +3VhFys + VFEys)

3 B 4 H
+ | Ch” — e (4VhFy6 + VFss5)+ | DA™ — 5 VFse (56)
where H = h + &7 denotes total water depth. The momentum equation may be written as
8 .2 - -
Ur=—Vy -2V (1 ) + T (n, ) + T (3, ) (57)
where 7

U = i+42 [(A—l)h(2VhF22+VF21)+(B— l)hZVFzz}



12

+ u*[(A=1D)hQVhFy + VFy +2VhFyy + VFy3)
(B~ 1) h% (VF4y +3VhFys + VFyy)

(C— )R> (4VhFy6+ VFs)+ (D — 1) h4VF46] (58)

I'

It

uv [Sanu + (2h577 + 82n2) Fzzz]

+ u*V [0 (Far, + Faag) + (2hn + 8207 (Fazy + Faa)

- (3h2877 308202 + 53;73) Fas,

+ (4036 +6h25%2 1 4ns 4 ) F46,] (59)

I'>

i

— 2%V [ﬁ- [(Ah — H)(VEy +2VhFy) + (Bh2 - Hz) VFZZ]
1 2
+ 3 (F21 +2H Fyp)

— utsv [a-[(Ah — H)(VF41 +2VhFy + Vg3 +2VhFyg)

+ (Bh2 - Hz) (VEg + VEq +3VhEys)

+ (Ch3 - H3) (VEys + 4VhFag) + (Dh4 - H4) VF46]
1 , 2
+ 3 ‘(Ah — H)) (VFy +2VhFy) + (Bh —-H ) VF42[

1
+ 3 [(F214+2HFx) (F41 + 2HFg

+  Faz+2HFu +3HFys + 4H3F46>] } (60)

Note that equation (57) retains the form of the Bernoulli term and thus is only applicable to ir-
rotational motion. Uses of the model by Gobbi and Kirby (1999) were limited to one horizontal
dimension, and thus no vertical vorticity is generated in any existing results.

The extension to O (/,L4) of the vertical structure of ¢ in the Gobbi et al. model provides a dramatic
enhancement of the prediction of velocity components. For example, Figure 4 shows a comparison
of vertical profiles of horizontal velocity for the linear, periodic wave case. The prediction is fairly
robust up to p = 35, with a spurious flow reversal first occurring at 1« = 5.54 at a dimensionless
elevation z = —0.628. Similar results are obtained for vertical velocities. Improvements are also
documented in prediction of second-harmonic amplitudes over the lower order theory. Systematic
improvements in leading order amplitude dispersion were, however, not noted.

Systematic improvements were also noted in solitary wave properties, including wave height,
water particle velocity at crest, and total energy as functions of normalized phase speed. Figure 5
shows plots of a crest speed parameter wg given by

ws =1 — (ue — Fr)2 61)

where uc and Fr are horizontal particle velocity at the crest and wave phase speed both normalized by
~/gh. As the particle velocity varies from zero in linear waves to F, at limiting wave height, w; varies
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Figure 5. w; vs. phase speed for solitary waves. Exact (solid line), Gobbi et al. (dash), Wei et al. (dash-dot),
Shields and Webster (dot). (From Gobbi et al., 2000).
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Figure 6. Sketch of wave flume in Delft experiments. All dimensions in (m). (From Gobbi and Kirby, 1999).

from zero to one. Figure 5 shows exact results due to Tanaka (1986), three levels of a Green-Naghdi
theory due to Shields and Webster (1988), and results of the O(pLz) theory of Wei et al. (1995) and the
owh theory of Gobbi et al. (2000). Results generally indicate that the present theory has accuracy
comparable to level 3 Green-Naghdi theory, which has not been applied in realistic computational
settings to date.

The most striking improvement in a practical sense is seen in a study of waves propagating from
relatively deep water, over the shallow crest of a bar, and back into deep water, as presented originally
in Beji and Battjes (1993). The test geometry and location of wave gauges is shown in Figure 6. Gobbi
and Kirby considered two test cases for periodic wave propagation over the bar crest, using the theory
of Gobbi and Kirby and the 0(;/,2) theory of Wei et al. (1995). Figures 7 and 8 show results for Case
(¢), where waves with an initial y = 1.69 propagate from deeper water, over the shoal, and back into
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deeper water. Figure 7 shows results for the Gobbi and Kirby model, and indicates that the model
is capable of preserving the overall shape of transmitted waves downstream of the bar, which is the
most difficult region to obtain good results in. In contrast, Figure 8 shows results obtained using the
Wei et al. model. In this case, there is clear damage to phase information in the transmitted wave,
despite the fact that shoaling from deeper water to the bar crest was modeled relatively accurately.
The accumulation of phase errors beyond the bar crest in the lower order model could be interpreted
as being due to dispersion errors in the relatively less accurate model. However, this is not an entirely
satisfactory explanation. In order to test this explanation, Gobbi and Kirby constructed a weakly
nonlinear (§ = O(MZ)) model system by truncating the Gobbi-Kirby model to 0(u4, ) ;1,2). Results
from this case show a similar tendency to accumulate phase errors downwave of the shallow bar crest.
Clearly, both full nonlinearity and enhanced dispersion effects play a crucial role in the accuracy of
solutions in this case.

2.4.2. Model of Agnon et al. (1999) and Successors

An alternate approach to extending model derivation to higher order and increased accuracy was
originally proposed by Agnon et al. (1999), with continuing development, for example, in Madsen
et al. (2002). In this approach, the reduction of the problem to a description in terms of a velocity
potential is dropped, and the identity of horizontal velocity u and vertical velocity w is retained
instead. Following Madsen and Schiffer (1998), the irrotational solutions for the velocities may be
written as

e n ZZn 2n 2n—2 Z2n+l 2n+2 2n
L2, 1) = —1 _ V((V="72(V . — V(V 62
u(x, z,1) 5_0( ) (zn)!u ( (V-ug)) + (2n+1)!M (V=" wp) (62)
= n 2t 2n4+2o2 2% 2n+22n
,Z,0) = -1 —_— VAV - — v 63
w(X, 2, 1) nE—O( ) (2n+1)!14 (V-ug)+ (2n)!u wo (63)

where, following equation (11),
up=Ve®:  wy=g®l (64)

are the velocities at z = 0. The two velocities are related through the bottom boundary condition
(equation (6)), giving a relation of the form

Le{wo} + Ls - {ug} + Vi - (Le{ug} + L {wo)) =0 (65)
where

L= s n h2n 2n - n h2n+1 2n+1

c—g(—1> an Ls=n§)<—1> el (66)

A great deal of flexibility is left in choosing a procedure for improving the truncated series appearing
in equation (65) during the development of a finite order theory. In Agnon et al. (1999), the series
form of equation (65) is multiplied by a differential operator of the form

A=1+ayh?V? 4 ash*v* + ... (67)
and coefficients are then chosen to force terms to disappear in the resulting equation up to the required
order. For example, for constant depth and a truncation level N = 4, the resulting equation is

1

4202, 1 404 1303 595
1—=-h“V —h'V hV — -h°V —h°V?) .
( 9 +63 Jwg + ( 5 +945h ) -up (68)
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which is correct to 0(;1,8) and reproduces (4,4) Padé dispersion as in Gobbi et al. Agnon et al.
extend this procedure to include mild-slope terms limited to O(Vh), possibly limiting the accuracy
of the resulting model when applied to abrupt nearshore bathymetry. Once the form of the relation
between ug and wy is obtained, Agnon et al. develop expressions for velocities at the free surface in
terms of the velocities at z = 0, and then employ the evolution equations in terms of V = V@, where
b = ¢(x,z =n,t) as in Dommermuth and Yue (1987) and others. Madsen et al. (2002) further
generalize this procedure by choosing to develop series for the velocities at the arbitrary reference
level zy rather than the still water level z = 0. The additional freedom in the system of equations is
then utilized to improve the vertical profile of horizontal velocity rather than the dispersion relation,
which is already quite accurate.

The line of investigation initiated in these studies holds a great deal of promise. In particular, it
is much more likely that any access to an actual model system for cases of higher accuracy than
that in Gobbi et al. would come from this procedure rather than from direct expansion in terms
of the velocity potential. Additional publications detailing both theoretical aspects and numerical
treatments of the method will be forthcoming.

3. PRACTICAL EXTENSIONS TO THE O (1:2) BOUSSINESQ MODEL

The O (12) model written in terms of a velocity variable provides an easily extensible framework
for the development of a nearshore processes model. In order to achieve this goal, various addi-
tional physical processes are incorporated, often on an ad hoc basis. In this section, we consider the
extension of the model equation (22) to the form

Ugt +8(Ug - V)Ug + Vi + 12Vy 4642V — Ry — Rs + Rp = 0 (u*) (69)

where R}, denotes wave breaking effects, Ry denotes bottom friction, and Rg denotes subgrid-scale
lateral mixing effects.

3.1. Improving Model Dispersion, Shoaling and Nonlinear Properties

As has been shown in a number of studies starting with Madsen et al. (1991), improvements in
Boussinesq model performance can be introduced by employing rearrangements that alter the defin-
itions of M, V1 and V; terms in the model equations, or by redefining the reference configuration of
the dependent variables, leading to the same sort of rearrangement. The effectiveness of any modifi-
cation can be established by examining linear properties such as shoaling and dispersion, along with
nonlinear properties such as the amplitudes of harmonics or the magnitude of amplitude dispersion
in Stokes wave solutions. We consider two cases in particular.

In order to provide a degree of freedom for use in optimizing nonlinear model properties, Kennedy
et al. (2001) modified the formulation of Wei et al. (1995) by allowing the reference elevation z4 to
depend on time and thus follow the rise and fall of the local water surface in some manner. The most
general case considered defined z as

Za =Ch+ Bén (70)

where the original theory of Wei et al. is recovered by taking 8 = 0 and ¢ = —1+4/1/5, correspond-
ing to the (2,2) Padé case. A special case of this relationship occurs when 8 = ¢ + 1 = ,/1/5, which
gives

¢ =—h+BH 1)
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This case corresponds to choosing a reference level which remains at a fixed proportion of the in-
stantaneous total water depth, and would be equivalent to choosing a fixed o, reference level in a
o —coordinate model. The revision to the model equations is contained entirely within the Vq term
(equation (24)), which is revised to read

Vi= BZ(%V(V Ug) +2aV(V- (hua))} -V B(«M)ZV “Ugr + 87V - (hllaz)] (72)
t

Kennedy et al. (2001) examined the optimal choice of 8 by examining a Stokes wave solution of the
form

n=aj[costkx — wt) + ay cos2(kx — wt) + a_] (73)

where a4 is a normalized second harmonic amplitude and a_ represents the steady set-down. Forc-
ing the Taylor series expansions of the resulting second harmonic amplitude to match the Taylor
series for the second harmonic amplitude of a regular Stokes wave for the full dispersive theory gives
the choice g = 17+/5/200. Figure 9 shows plots of the resulting second harmonic amplitudes and
set-down, normalized by the correct solutions, for a range of u = kh values. The second harmonic
amplitude from the optimized model behaves quite well in comparison to the result from the original
Wei et al. theory, and thus this revision to the original model is highly recommended.

Several studies have examined the enhancement of the O(Mz) evolution equations in order to ob-
tain higher-order dispersion. Schiffer and Madsen (1995) applied operators to rearrange dispersive
terms in the weakly nonlinear model equations of Nwogu (1993) and obtained four sets of operator
coefficients that would recover the more accurate (4,4) Padé dispersion relation in the model sys-
tem, without adding higher-order terms as in the model of Gobbi et al. Madsen and Schiiffer (1998)

2 T T T 1 T
(a) Superharmonic
15 r
. o mamE
w = En emnEm T T ==
81 T —-
+
(3]
05 4
ﬂ 1 1 L 1 |
a 0.5 1 1.5 2 2.5 3
2 T T T T
(b) Subharmonic
1.5F 1
%
g S ——
© “-—-\\
0.5 Rt 4
S,
—
D 1 L L 1 \
0 05 1 1.5 2 25 3
kh

Figure 9. Self interaction superharmonics (a) and subharmonics (or set-down) (b) relative to the Stokes solution
for the fully-dispersive problem. Original Wei et al. theory (dash), constant o level theory (dot), optimized moving
Zo theory (dash-dot). (From Kennedy et al., 2001).
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(From Kennedy et al., 2002).

extended this procedure to the fully nonlinear equations of Wei et al. (1995). Madsen and Schiffer
also demonstrated a procedure for recovering a model expressed entirely in terms of O(u?) terms
at the highest, but starting with an O(u*) model and then choosing a form which was expressed
only in O (u?) terms by means of operator rearrangements and choice of coefficients. Kennedy et al.
(2002) have extended this procedure, starting with the 0(;/,4) model of Gobbi and Kirby (1999) in
order to retain the very accurate vertical velocity profile given there. Kennedy et al. employed two
procedures, one based solely on choice of coefficients, and the second based on a combination of
operator rearrangement and choice of coefficients, to obtain model equations expressed in terms of
0(;1,2) terms at the highest. The resulting model retains the (4,4) Padé dispersion of the Gobbi and
Kirby model. Following Madsen and Schiffer, Kennedy et al. choose the remaining free parameters
in order to optimize an integrated shoaling coefficient, which represents a measure of error in lo-
cal shoaling effects integrated across the entire shoaling zone. Results for this measure are shown
in Figure 10 in comparison to results derived from Nwogu’s model and from the study of Madsen
and Schiffer. The results for the more involved optimization are almost graphically indistinguishable
from the exact linear shoaling theory for the vertical resolution chosen in the plot.

3.2. Extensions to Non-Cartesian Coordinate Systems

It is often necessary to apply Boussinesq models in complex geometries. This problem has clas-
sically been approached by employing stair-step boundaries in existing Cartesian grid finite differ-
ence codes. Resulting models can be robust, but there is evidence (as discussed below) that such an
approach can lead to spurious wave scattering behavior along oblique wall sections. Several more
modern approaches have been employed to solve this problem.
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The first approach involves switching to a numerical solution method which is not tied to a regular
gridding scheme. Finite element techniques are often the principal choice in this approach, and the
technique has been extensively developed for application to Boussinesq models. Recent examples
include the work of Li et al. (1999), Walkley and Berzins (1999), Sgrensen and Sgrensen (2000) and
Woo and Liu (2001).

A second approach is based on employing either analytic or numerically determined coor-
dinate transformations in order to obtain a boundary fitted coordinate system, in which ma-
jor boundary segments lie along constant values of the fitted coordinates. Methods for obtain-
ing coordinate transformations numerically are well-developed in the computational fluid dy-
namics literature; for example, Shi et al. (2001a) employ the scheme of Brackbill and Saltz-
man (1982) and have developed a publically available Matlab code which may be obtained at
http://chinacat.coastal.udel.edu/~kirby/programs/. Several levels of transformation can be employed
in such an approach. At the simplest level, the transformation can be applied to the coordinate system
only, while the identity of the surface elevation 7, x velocity component # and y velocity component
v are retained but determined at grid points in the new coordinate system. Results obtained with this
approach are perhaps somewhat easier to interpret, but the resulting transformed governing equations
are quite cumbersome; see, for example, the discussion of model equations in Li and Zhan (2001).

A more involved approach involves defining a tensor transformation applied to the velocity com-
ponents as well as the coordinate system. Shi et al. (2001a; 2001b) employed such an approach,
and chose to formulate the resulting model in terms of contravariant velocity components, which are
defined to be the velocity components perpendicular to coordinate lines at each point in the mod-
eled domain. Warsi (1993) provides an extensive discussion of the geometric considerations. While
the overhead of learning the details of the metric tensor geometry can be considerable, the approach
leads to a much more compact representation of the governing equations than is obtained in a method
based on the primitive variables.

Shi et al. (2001a; 2001b) provide a number of examples illustrating computations in generalized
curvilinear coordinates. Figures 11 and 12 illustrate the propagation of an initially plane wave into a
circular channel. The computation in a polar coordinate system corresponds closely to the analytic
solution in the linear limit, as shown by Shi et al. (2001a). In contrast, a similar calculation in a rea-
sonably finely-resolved Cartesian grid with stair-step boundaries produces a clear excess of scattered
wave components in comparison to the polar case.
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Figure 11. An example of initially plane wave propagation into a circular channel of constant depth. Boundary
fitted coordinate system. (From Shi et al., 2001a).
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Figure 12. Example of 11 repeated on a Cartesian grid with stair-step boundaries. Note the appearance of spuri-
ous reflected components close to the incident wave entrance on the right. (From Shi et al., 2001a).

Shi et al. (2001b) have also applied the model to the case of a coastal inlet and have compared
model results to measurements of surface elevation, skewness and asymmetry obtained from a labo-
ratory scale model. Detailed model-data comparisons for this case will appear in other publications.

3.3. Shoreline Conditions

The waterline on a beach subjected to wave action is highly variable, and thus the physical domain
in a nearshore Boussinesq model application changes in time. Although it is possible to utilize a
time-dependent, shoreline-following grid system in order to resolve the fluid domain only up to the
waterline (for example, Ozkan-Haller and Kirby, 1997), it is difficult to do so if the shoreline does not
remain single valued or becomes multiply connected. For this reason, it is more standard to employ
techniques whereby the entire region which is potentially wetted is treated as an active part of the
computational grid. One of the earliest methods along this line is the “slot” method of Tao (1984), in
which deep, narrow, flooded slots are added to each grid row, extending down at least to the lowest
elevation that will be experienced during shoreface rundown. Kennedy et al. (2000a) employed the
slot technique of Tao but modified it to better enforce mass conservation. Details can be found in the
aforementioned study. To date, utilization of slot methods remains something of an art form. Slots
which are too wide relative to the model grid spacing admit too much fluid before filling during
runup, and cause both a reduction in amplitude and a phase lag in modeled runup events. At the other
extreme, slots which are too narrow tend to induce a great deal of numerical noise, leading to the
need for intermittent or even fairly frequent filtering of swash zone solutions.

Alternatively, several moving boundary techniques where the occurrence of a shoreline is traced
on a fixed grid have been proposed. In one such method, Lynett et al. (2002) determine the position
of the shoreline on a beach face by linearly extrapolating the surface and velocities from the two
wetted grid points closest to shore. Derivatives at wetted grid points are then computed using the
regular finite difference stencil including extrapolated values, eliminating the need for conditional
application of off-centered difference stencils near the shore. The time stepping solution is then only
performed for the wetted grid points. Although this method does not impose any apparent constraints
on mass conservation at the shoreline, results for runup of regular and solitary waves are seen to be
quite accurate, indicating that the method holds promise for general application.

3.4. Wave Breaking
Simulation of wave breaking in Boussinesq models has been approached with a number of tech-
niques, ranging from fairly ad-hoc additions of eddy viscosity formulations up to reasonably detailed
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calculations of the generation and transport of vorticity or turbulent kinetic energy under the breaking
wave crest. Regardless of the formulation, each of the approaches can be thought of as a means for
adding the breaking wave force term Ry, to the momentum equation. At minimum, these terms must
be scaled similarly in order to reproduce the correct amount of energy dissipation. They must also be
localized in the region of the front face of the breaking wave, in order to provide the correct distri-
bution of dissipation in the frequency domain and preserve the proper relative phasing of harmonic
components in the wave. Beyond these requirements, the range of physical approaches taken has a
great deal of variety.

3.4.1. Eddy Viscosity Models

Zelt (1991) provided an early model for Boussinesq wave breaking, in the form of an eddy vis-
cosity model applied in a one-dimensional (1-D) horizontal model. Extended to two-dimensions, the
breaking wave force term Ry, can be written as

1 1

Ry = T ({Ub[Hua]x}x + E{”b[Hua]y + Vb[Hva]x}y) 74
1 1

R}},] = H <{Vb[HUot]y}y + E{Vb[HUot]x + Vb[Huot]y}x> (75)

Following Zelt, Kennedy et al. (2000a) give the breaking wave eddy viscosity as
vp = BSEH™, (76)

where §, is a mixing length coefficient which is calibrated to a value of 1.2. The coefficient B is
used to turn the breaking term off or on depending on a criterion based on the vertical velocity of the
surface. Again, following Zelt but using time derivatives in place of space derivatives, Kennedy et al.
used

1, ne = 2nf
Nt * *
B= n—*—l,n,<m§2nt an
t
0, ne <nf

The parameter 7 determines the onset and cessation of breaking. Zelt chose this criterion to have
a constant value, but Kennedy et al. use a model for the parameter which involves a time history in
order to allow the slope of the breaking wave crest to relax after the onset of breaking, as in the roller
model described below. The relationship is

P, (27

= (78)
7 t—1
D + —T*O P =gy o<t —1g<T*

%

Here, T* is the elapsed time since the onset of the local breaking event, and the initiation and relaxed
critical surface velocities are given by nt(l) =0.65,/gh and nt(F) = 0.15,/gh. In 2-D applications,
the relationship must be augmented with a tracking algorithm to follow events along rays (see Chen

et al., 2000a).
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Figure 13. Computed (dash line) and measured (solid line) free surface elevations and shoreline runup for a
bichromatic wave train shoaling on a plane beach. Data from Mase (1995). (From Kennedy et al., 2000a. Repro-
duced with permission of ASCE).

Figure 13 shows an example of bichromatic waves shoaling over a plane beach, including breaking
and runup effects. Data is from the laboratory study of Mase (1995). The test verifies the basic fea-
tures of both the breaking process and the runup using the slot method. Additional two-dimensional
calculations for wave breaking and runup on a circular island may be found in Chen et al. (2000a).
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Nwogu and Demirbilek (2001) present a more sophisticated eddy viscosity model in which the
eddy viscosity is expressed in terms of turbulent kinetic energy k and a length scale /;,

vp = vkl (79)

The turbulent kinetic energy is computed using a one-equation model which expresses the gener-
ation, horizontal advection, and dissipation of total depth-integrated k. Breaking is triggered when
horizontal fluid velocity at the surface exceeds the linear estimate of the wave phase speed. Tur-
bulence production falls immediately to zero when this criterion is not exceeded, so there is no
relaxation effect as described above or as in the roller model described below.

3.4.2. Roller Models

A simplified formulation with a more direct physical interpretation, was developed by Schiffer et
al. (1993), using the surface roller concept of Svendsen (1984). The model is developed using a two-
layer velocity profile, where it is assumed that the velocity u below the elevation of the roller bottom
corresponds to the depth-averaged value from irrotational theory, while the roller volume itself is
moving at the phase speed ¢ of the wave. The effect of the roller is expressed as a modification
to the momentum balance for the organized wave motion. The resulting momentum equation for
depth-integrated volume flux Q may be written as (in one horizontal dimension)

2 2 3
h h
0 +5(L) semm -0+ 2 (£)  4r, (80)
H) 2 6 \ /i

where R is the excess momentum flux in the roller, given by

2 —~1
R=d<c—%) (1_7‘9 @1)

where d is the local roller thickness. Calibration of the model and testing against data are described in
Madsen et al. (1997), and results are of comparable accuracy to the eddy viscosity models described
above.

3.4.3. Vorticity Transport Models

The most elaborate model of Boussinesq model wave breaking is the vorticity transport model
of Veeramony and Svendsen (2000). In this model, there is no a priori separation between roller
region and a zone of irrotational flow beneath. Instead, the entire vertical fluid column is treated as a
rotational flow, and the vorticity transport equation is solved with simplifying assumptions in order
to determine the entire velocity profile over depth. The resulting model is similar to the model of
Schiiffer et al. (1993) in overall form, but the resulting wave breaking terms require more evaluation.

Since the flow is rotational over depth in this treatment, the basic formulation of the problem in
terms of a velocity potential is not valid. Veeramony and Svendsen restricted their attention to prop-
agation in one horizontal dimension and formulate the problem in terms of a scalar stream function
in the vertical plane,

Wiy + Yy =& (82)

where v is the stream function and £ is the magnitude of the out-of-plane vorticity vector. Boundary
conditions are given by

V=—h)=9;z=—-h)=0 (83)
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Within the weakly dispersive approximation, equation (82) may be solved to give

1 1
¥ =uo(z+h) — E;ﬂ(z + 1) (hyxug + 2hxug 5) — guz(z +h)3ug rx

74 Z 2 z Z Z z
+f / Edzdz — / f / / Exxdzdzdzdz (34)
~nJ—n A S S

where u is the value of the irrotational velocity at the bottom and where terms in uq correspond to
the usual irrotational theory. In terms of scalar volume flux Q, the resulting Boussinesq momentum
equation (without dispersion enhancement) takes on the form

% 2h? 2P (Q 2
Or+Hnx+3{ ) ' = Qxur+u"— |- +3(AM)x + L (AP)xxr =0 (85)
H . 2 6 \h /)iyt
Breaking effects are expressed through the quantities AM and A P, given by
8n pén pz
AP = / / / (uy —ur)dzdzdz (86)
~hJz J—h
o
AM = / W? -z 2)dz 87
—h

where (¥) denotes a depth average. u, is the rotational component of the horizontal velocity, given

by
Z 2 z 4 Z 4

ur=/ §dz—p / / / &xxdzdzdz 4 O(u™) (88)
—h ~hJ—hJ—h

The vorticity £ is formally unknown at this point, and Veeramony and Svendsen (2000) use the
leading order terms of the vorticity transport equation, neglecting advective effects to get
b=kt k=15 o=t (89)
Boundary conditions for the vorticity are derived from hydraulic jump experiments described in
Svendsen et al. (2000). Veeramony and Svendsen solve equation (89) analytically for the case of
eddy viscosity held constant over depth. Figure 14 illustrates the evolution of a vorticity field under
a breaking wave crest. Results for undertow profiles were also obtained and show general agreement
with laboratory measurements.

Further development of the theory of Veeramony and Svendsen would involve the use of a numer-
ical solution of equation (89) so that more realistic values of eddy viscosity could be used. However,
the extension of the model to two horizontal dimensions is hampered by the use of the stream function
formulation, and thus an alternative formulation allowing a three-dimensional flow field is required.
The key to this future development may lie in the formulation of Shen (2001), mentioned in Section 5
below.

3.5. Bottom Friction and Subgrid-Scale Mixing

Since the velocity field in a Boussinesq calculation resolves the instantaneous wave orbital mo-
tion, the choice of a bottom friction formulation is relatively straightforward, and is given in the
applications below by

Re= {7]“& Jug (90)
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Figure 14. (a) Contours of vorticity at 2 = 14.29 cm. (b) Vertical profiles of vorticity under the roller and behind
the crest at & = 14.29 cm. The ordinate y = k + z is zero at the bottom. (From Veeramony and Svendsen, 2000).

where the friction factor is on the order of 10~3 in most simulations (Chen et al., 1999; 2000a).
Note that the term is written in terms of the reference velocity rather than the bottom velocity, which
would tend to somewhat reduce the size of f.

Nearshore current systems are affected by several lateral mixing effects, including both turbulent
mixing and lateral shear dispersion resulting from the three-dimensional structure of real currents
and their interaction with the wave orbital velocity. Of these, the shear dispersion can be an order
of magnitude larger (Svendsen and Putrevu, 1994), and an attempt has been made to incorporate its
effect in most of our nearshore simulations. Chen et al. (1999) formulate the effect as a Smagorinsky
subgrid model with the form

1 1
R} = i ({vS[Hua]x}x + E{vs[Hua]y + vs[Hva]x}y> 91)
y 1 1 .
Ry = E {Vs[Hva]y}y + 'Z“{Vs[HUa]x + Vs[Hu(x]y}x 92)
where v; is an eddy viscosity arising from the mean flow field,
3 , 1 1/2
Vs =cmAxAy |:(Ux) +(Vy)“ + E(Uy + Vx)2:| 93)

and where U and V are suitable time averages of the velocity field. Chen et al. (1999) and subsequent
studies have used time averages over two wave periods for regular waves or over ten peak wave
periods for irregular waves, and typically use ¢, = 0.25. This aspect of the model application has
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not been extensively evaluated. Ongoing work is examining the evolution of shear instabilities in
model results as an indicator of the correct level of lateral mixing.

4, BOUSSINESQ MODELING OF NEARSHORE CIRCULATION

Once the effectiveness of breaking and runup models for Boussinesq codes was established, at-
tention turned to the question of whether the models could provide an accurate rendition of mean
currents in the surf zone. A classical analysis of wave-averaged surf zone dynamics shows that both
cross- and longshore mean currents arise due to the presence of gradients of radiation stresses, which
represent fluxes of wave-averaged momentum. An analysis of wave-averaged forms of the Boussi-
nesq equations readily shows that the relevant forcing mechanisms are present in the time-dependent
form of the evolution equations (Yoon and Liu, 1989), and hence mean currents should be generated
in models which account for wave energy dissipation through breaking, which in general would be
expressed as —pHuy - Ry + O(uz) following from equation (69). Such a demonstration was pro-
vided by Madsen et al. (1997). More recently, Peregrine (1998) examined the instantaneous vorticity
dynamics, with particular attention to the idea that vertical vorticity generation in the surf zone is
mainly provided by the mechanism

9 _ g xR 94
Et_ =V X Ry 94
where  is discussed in Section 2.3. Peregrine examines the generation of circulation in finite patches
of the surf zone and relates its generation to variations in breaking intensity along wave crests. An
example of this mechanism in action is provided in Section 4.3 for the case of a rip current stabilized
in place by the presence of a channel in a longshore-uniform bar.

4.1. Longshore Currents

Chen et al. (2000b) have considered the case of longshore current generation in field conditions,
using data from the DELILAH field experiment at Duck, North Carolina in October 1990. Figure 15
shows the bathymetry at the experimental site for October 10, 1990. The bar field in this case is
nearly longshore uniform aside from a slight kink in bottom contours near the location of an array of
cross-shore current measurements, indicated by the dashed line. Cross-shore decay of breaking wave
heights and resulting longshore currents are indicated by circles in Figure 16(c) and (d), respectively.
The longshore current has a strong maximum in the trough between the shoreface and the longshore
bar crest, at a location where local forcing due to radiation stress gradients should be weak. Chen
et al. simulated this experiment using a version of FUNWAVE and the wave generation algorithm
of Wei et al. (1999) which was extended to cover periodic longshore conditions. A TMA directional
wave spectrum was used to provide input conditions (improved simulations using actual measured
directional spectra are presently under review for publication). Figure 16 illustrates a snapshot of
the surface wave field over the simulated area in panel (a). Refraction of the wave pattern, which is
propagating from the lower right, is evident, as is crest splitting in several locations as waves pass
over the bar crest. Panel (b) illustrates the time-averaged mean currents in the area. Chen et al. show
that there is a time-steady net longshore pressure gradient over the stretch of beach in the vicinity
of the current measurements, and thus the strong longshore current in the trough is at least partially
hydraulically driven. Note that time averaged currents in the Boussinesq model do not reproduce a
sufficiently strong undertow, even though the velocity being averaged is located near mid depth. This
deficiency is also noted in results of Madsen et al. (1997), and occurs because there is no explicit
treatment of breaking wave roller volume in the volume conservation equation (9). This deficiency is
removed in the 1-D cross-shore model of Veeramony and Svendsen (2000), which recovers undertow
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Figure 15. The bathymetry at the Field Research Facility, Duck, NC, Oct. 10, 1992: (a) topography, (b) depth

contours. (From Chen et al., 2000b. Reproduced with permission
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Figure 16. Model results: (a) snapshot of computed free surface elevation, light areas indicate wave crests;
(b) computed time-averaged longshore current. (From Chen et al., 2000b. Reproduced with permission of ASCE).
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Figure 17. Time sequence of vorticity field, indicating presence of shear waves. Top panels display velocities
and vorticity averaged over ten peak wave periods. Bottom panels display instantaneous vorticity. (From Chen et
al., 2000b. Reproduced with permission of ASCE).

values reasonably well, but the correction still remains to be made in most two-dimensional (2-D)
models. Overall, results for longshore currents agree well with data in both laboratory and field
settings, providing encouragement that the models are ready to use in realistic settings.
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4.2. Shear Waves

Based on observations by Oltman-Shay et al. (1989), Bowen and Holman (1989) examined the
linear stability problem for longshore currents and showed that currents are likely to be unstable for
a range of realistic conditions. Ozkan-Haller and Kirby (1999) carried out numerical simulations of
the same experiment using a radiation stress formulation,and have illustrated the growth to finite
amplitude of the instabilities, or shear waves. They have shown that the presence of shear waves
contributes to the cross-shore mixing that leads to the determination of the longshore current profile,
and they have shown that the increase or decrease of imposed dispersive mixing (i.e., the mechanism
of Svendsen and Putrevu, 1994) leads to a corresponding decrease or increase in the energetics of
the shear wave climate, in such a way that the overall longshore current profile is insensitive to the
relative importance of the two mechanisms. This result has not been explained to date, or examined
fully in other modeling schemes.

Since shear waves are essentially unsteady motions, it is not immediately clear how to separate
them from the incident wave field in a time domain simulation. Chen et al. (1999) approached this
problem, in the context of rip currents, by applying a time average over several wave periods in
order to suppress the incident wave signature in the modeled velocity field. The resulting filtered
velocity field was then differentiated to provide a vertical vorticity field. During this study, Chen et al.
discovered that a vorticity field constructed directly from the instantaneous horizontal velocities was
similar to the wave-averaged field. In particular, the signature of incident waves in the instantaneous
vorticity field is very slight, even after interaction with the underlying vortical current field, and is
mainly limited to strong local bottom friction events associated with the passage of wave crests.
At the same time, the instantaneous vorticity plots showed more detail in the structure of vortical
features such as eddies, since these were not being subjected to an arbitrary low-pass filter.

Figure 17 shows an overlay of a wave-averaged current field and resulting derived vorticity field
for the October 10, 1990 DELILAH case described above. For the field cases, the choice of an
averaging period is not obvious since the wave field is unsteady in time. Averages here are over
a period corresponding to 10 peak wave periods. Vorticity computed from the instantaneous flow
field is illustrated in the bottom panel, and shows an energetic flow field associated with growth
of instabilities and shedding of eddies to the region offshore of the surf zone (to the right in each
panel). Ongoing studies are examining whether these depictions of the flow field are consistent with
more detailed array measurements of currents in the field, primarily using data from the Sandyduck
experiment in 1997.

4.3. Rip Currents

Haller and Dalrymple (2001) performed a laboratory study of a rip current generated on a beach
with a fixed channel in an otherwise longshore-uniform bar. The rip was observed to be unstable,
leading to lateral motion of the rip both in the rip channel and offshore. An instability analysis
provided information on the time scales of fluctuations and the downstream evolution of mean current
profiles which agreed qualitatively with laboratory observations.

Chen et al. (1999) examined the experiment of Haller and Dalrymple using the FUNWAVE code.
The Boussinesq model was shown to reproduce most features of the laboratory experiment, although
it was impossible to perform model runs long enough to examine whether the longest time scales
observed in the fluctuating laboratory flow field (on the order of 100 seconds) were reproduced
in model simulations. Figure 18 illustrates the state of the wave-averaged flow field soon after the
initiation of breaking over the bar crest in the simulation. The position of the longshore bar and the rip
channel are outlined by dashed lines in each of the three panels. The middle and lower panel show the
presence of strong, localized vorticies fixed at the transition between bar crest and deep rip channel.
These are presumably driven at these locations by the mechanism described by Peregrine (1998),
and are responsible for the initiation of the rip current jet, which is driven primarily by the dipole
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Figure 18. A snapshot of (a) the computed free surface elevation, (b) the underlying current field and associated
mean vorticity, and (c) the instantaneous vorticity field at ¢ = 20s, shortly after initiation of wave breaking over
the longshore bar. Dashed lines indicate outline of longshore bar geometry in the laboratory. (From Chen et al.,
1999, copyright [1999] by the American Geophysical Union).

forcing provided by the pair of counter-rotating eddies. As the current field evolves further, these
vortex pairs are ejected as coherent eddy pairs and advected offshore by the instantaneous jet, after
which subsequent eddy pairs form and are also ejected. A portion of such a sequence is illustrated
in Figure 19. Figure 20 shows a comparison of long-time averages of cross-shore velocities along
4 longshore transects. The extreme unsteadiness of the rip current leads to a rapid decay of the
time-mean cross-shore velocity offshore of the rip channel. This result is deceptive as a measure of
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(a.1) Free Surface Elevation at t=100 s (a.2) Free Surface Elevation at t=120 s
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Figure 19. Snapshots of (a) the computed free surface elevation, (b) the underlying current field, and (c) vorticity

at (left) r = 100s and (right) = 120s, illustrating unsteady behavior of rip current jet. (From Chen et al., 1999,
copyright [1999] by the American Geophysical Union).
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rip strength and must be tempered with the indication of the strength of the instantaneous flow, as
indicated in Figure 19.

Overall, Boussinesq models have performed quite well in comparison to both laboratory and field
measurements, in situations where flow fields are strongly affected by instability mechanisms and
become extremely complex. Further work to examine the energetics of shear wave climates and the
mixing of tracers in the cross-shore direction needs to be carried out. In addition, the application
of Boussinesq models to the problem of sediment transport and evolution of coastal morphology is
underway, and will be a fertile area of work for the next several years.

5. WAVES ON VERTICALLY SHEARED CURRENTS

Waves in coastal regions can be stratified due to the presence of net freshwater runoff, and it is
therefore not uncommon to see tidal currents which are sheared over the vertical. The presence of
vertical shear greatly complicates the development of appropriate propagation models, since the use
of a velocity potential is no longer valid except for the special case of horizontal vorticity components
which are uniform over depth (linear current shear).
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For the case of propagation in one horizontal dimension, a formulation in terms of a scalar stream
function can be employed as in the wave breaking model of Veeramony and Svendsen, describe
above. This approach has been explored by Rego et al. (2001). Starting with the Poisson equa-
tion (82), Rego et al. developed a fully nonlinear Boussinesq type equation to 0(;/,2) using a de-
pendent variable &, defined as the horizontal velocity at reference elevation z,. For the case of
linearized, periodic waves and an imposed current shear, the rather complex model equations yield a
dispersion relation given by (in dimensional form)

&1 — (k)™ = (gk — dyo)khl1 — (o + %)(kh)zl +@k(y1 +Ky2)

—&khyoll — a(kh)?] (95)
where the intrinsic frequency is given by
®=w~—kus (96)

and where w is absolute frequency, u¢ is the current velocity at z =0,

1 0 2 0 b4 5
Vo=zf_h$dz Vl-:z/_h_/;hédz 97
and
0 % 00 z
y2=% / ((z+h)2—(za+h)2)/§dz dz,+/f (z+h)/$d2 dz* 98)
“n —h —h z —h

The accuracy of the resulting dispersion relation was checked for several cases by comparing to
numerical solutions of the Rayleigh equation following the method of Fenton (1973). Figure 21
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Figure 21. Normalized phase velocity (model phase velocity cj divided by exact phase velocity c, calculated
from the Rayleigh equation) and associated current profiles: a) 1/7 power law, b) cubic polynomial. (From Rego
et al., 2001. Reproduced with permission of ASCE).
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shows results for the case of a 1/7 power law profile and a profile given by a cubic polynomial. The
results indicate that the model dispersion relation retains accuracy over a range of wave numbers
comparable to the (2,2) Padé dispersion relation for the no-current (or uniform over depth current)
case.

As with the wave breaking model of Veeramony and Svendsen (2000), the use of the scalar stream
function in the present case makes a general extension to two horizontal dimensions difficult. A way
around this can be seen by noting that the derivative of equation (82) with respect to x gives

Mzwxx + wgz =6 99)

giving a problem formulated in terms of vertical velocity w. Starting from the general three-
dimensional Euler equations, it is straightforward to show that this relation is generalized by

w2 o+ wy,, =V & (100)

where § is now a vector formed by the two horizontal components of the general three-dimensional
vorticity vector. Shen (2001) has explored the use of equation (100) as a starting point for deriving
Boussinesq model equations.

6. MISCELLANEOUS APPLICATIONS

6.1. Depth Inversion

The question of whether the spatial pattern of water depths in the surf zone can be deduced from
images of the water surface has been with us since the early days of military amphibious operations.
Recently, several successful video-based techniques have been described for waves in slowly varying
depth in open water (Dugan et al., 2001) or in the surf zone (Stockdon and Holman, 2000). Each
of these methods depends on having dense spatial information and long time series so that both
frequency and wave number content of the signal can be determined. The direct need for a model-
based simulation is then avoided by using the linear wave dispersion relation to relate frequency to
wave number in order to determine the unknown water depth. Methods of this type are not readily
applicable to data streams obtained during a rapid overflight of the target area, as in typical airborne
INSAR or LIDAR measurements, and thus the question of using a model to determine the relation
between spatial and temporal information arises. Kennedy et al. (2000b) considered the question of
whether the Boussinesq model could be used as a bridge between two images of dynamic variables
with small separation in time. Considering an artificial example where both uy and 7 are given at two
times over a dense spatial image, they developed a realizable method in which the model is initialized
with the first image and an assumed bathymetry, and then integrated forward in time to the time of
the second image. The mismatch between computed and measured dynamic variables at the time of
the second image is used as a basis for iterative correction of the bathymetry. Kennedy et al. showed
that the iteration converged rapidly and that separations on the order of 1/4 to 1/3 of a dominant wave
period were adequate. Subsequently, Misra et al. (2000) have considered a more realistic case where
one or more dynamic variables are missing.

6.2. Tsunami Propagation and Runup

An important and rapidly growing area of Boussinesq model application is in the modeling of the
generation, propagation and runup of tsunamis. This process has traditionally been approached using
models based on nonlinear shallow water equations (see, for example, Synolakis et al., 2002), but
there are obvious advantages to using Boussinesq models, particularly in the better representation
of vertical flow structure near source regions, a better prediction of wave crest geometry and crest
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Figure 22. Model estimates of maximum local water surface elevations during July 17, 1998 Papua New Guinea
tsunami event. Slump region is in vicinity of strong surface displacements offshore (upper right in picture). Shore-
line is indicated by black line. Results indicate inundation beyond the mean shoreline, with runup amplitudes in
excess of 10 meters in the region East of Sissano Lagoon, the main embayment in the figure (after Watts et al.,
2002).

disintegration during propagation over complex topography, and in the modeling of accumulated fre-
quency dispersion effects in ocean-basin scale propagation problems. Applications of this sort are in
their infancy, but will play a prominent role in the future. Lynett and Liu (2002) have presented an
initial study of the generation of tsunamis due to bottom slumping, concentrating on one-dimensional
and symmetric two-dimensional bottom motions. Watts et al. (2002) have described a modeling sys-
tem called GEOWAVE, which consists of a modified version of the FUNWAVE model coupled to a
three-dimensional nearfield tsunami source model. Figure 22 shows an example calculation based
on a slump-type source for the Papua New Guinea tsunami of July 17, 1998. The figure indicates
maximum surface elevation occurring at each location in the modeled domain, and indicates runup
and inundation of the shoreline facing the source region. Results of this study are preliminary, and
detailed quantitative comparisons to estimated runup elevations in the field will be described else-
where.

7. CONCLUSIONS

The development of Boussinesq models for application to coastal hydrodynamics problems has
reached a level of maturity that would probably not have been expected a decade ago. The model
formulation has been extended to allow for wave propagation in almost all finite water depths, ren-
dering the notion of the models being only applicable in shallow water obsolete. A wide range of
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associated physical phenomena have been incorporated in model formulations, making it possible to
apply Boussinesq model technology to the surf zone. The technology is also beginning to supplant
the nonlinear shallow water equations (NLS) in a number of areas where the NLS has long been the
dominant player; in calculation of wave runup and overtopping on coastal structures and in calcu-
lation of tsunami propagation and inundation. In addition, the application of Boussinesq models to
problems of coastal sediment transport is just beginning (see Chapter 10). The long computational
times involved in present calculations still hinder this line of research, but increasing computer ca-
pacity and speed will make it possible, in time, to approach the problem of morphological planform
evolution with direct application of Boussinesq model codes.

It is apparent from several of the sections above that the existing versions of higher-accuracy
Boussinesq models are dauntingly complex in form, and it becomes relevant to address the ques-
tion of whether further development along these lines is warranted relative to direct utilization of
the Navier-Stokes equations. This concern is well placed. However, there is a great deal of room in
numerical efficiency between the practical O(u?) models described above and any competing for-
mulation of the Navier-Stokes or Euler equations in three-dimensions, and thus the models described
here are likely to be the basis for practical computations for a number of years. Indeed, the examples
of Navier-Stokes based wave propagation calculations which are presently available (for example,
Casulli, 1999 or Lin and Li, 2002) show results for the shoaling example of Beji and Battjes (1993)
which are less accurate than corresponding Boussinesq calculations, even using O(uz) models for
comparison. It is likely that the typical second-order accurate numerical schemes used in Navier-
Stokes solvers to date are a limiting factor in obtaining accurate results, indicating a need for further
development in this area.
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LIST OF SYMBOLS
ap —  wave amplitude scale
c —  wave phase speed
m —  coefficient in expression for vorticity in Smagorinsky scheme
f —  bottom friction factor
g —  gravitational constant
k. k —  scalar wave number, vector wave number
ko —  wave number (or inverse wavelength) scale
h(x) —  still water depth
ho —  water depth scale
H(x,t)=h+8n — total instantaneous water depth
M(x, t) —  horizontal depth-integrated volume flux vector
Q —  horizontal volume flux in 1-D theory
Ry, Rs, Ry —  wave breaking, subgrid mixing and bottom friction terms in horizontal

momentum equations
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13 —  time coordinate
u=(u,v) — horizontal velocity vector
Uy = (Uy, Vg) ~—  horizontal velocity at reference elevation
a= (i, ) —  weighted horizontal velocity in Gobbi’s theory
Vi1, V3 — o), dispersive terms in Boussinesq equations
w — vertical velocity
Xx=(x,y) —  horizontal coordinate
Ax, Ay — finite difference grid spacings
4 —  vertical coordinate
2a,2bs Za — reference elevations
o —  dispersion enhancement parameter, see equation (17)
B —  weighting factor in theory of Gobbi
8 =ap/ho — nonlinearity parameter
n(x,1t) —  water surface elevation
nw=kohp —  dispersion parameter
v —  viscosity coefficient
vp —  eddy viscosity coefficient in Zelt-type breaker model
Vs — eddy viscosity coefficient in Smagorinsky subgrid scheme
w —  wave angular frequency
@, w1 —  total and 0(,u,2) contribution to vertical vorticity vector
¢ (x,z,1) — velocity potential
Pa, Pp, Pa(X, 1) —  velocity potential at reference elevations
d(x,1) —  weighted velocity potential in Gobbi’s theory
) -—  components of series solution for ¢
Wv(x,z,t) —  scalar stream function
£ —  scalar magnitude of horizontal vorticity
§=(&x.&y) —  projection of total vorticity vector in horizontal plane
¢ —  parameter in Kennedy’s moving reference elevation model
V= (i, —a—) —  horizontal gradient operator
dx 3y
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