
SEICHING IN A LARGE WAVE FLUME 
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Time series of cross-shore velocity and water surface elevation obtained during the 

CROSSTEX laboratory experiment show the presence of low frequency motions that are 

characteristic of the well-known phenomenon of wave basin seiching. In general, the modes 

appear to be mostly standing in nature and the individual modes do not appear to be directly 

forced by the paddle motions. A preliminary wavelet analysis shows they have well-defined 

frequencies that are well-predicted by a linear analysis that treats the motions as unforced 

standing waves. There are, however, some additional observed features that appear to be 

unique to this case. For example, wavelet analysis also indicates a complex time dependence 

of the modal amplitudes, which suggests the modes are interacting nonlinearly. In addition, 

observations of the spatial mode structures hint at direct evidence of dissipation (such as wave 

breaking) occurring in the higher modes. Finally, our initial nonlinear analysis approximately 

reproduces the time scales for modal energy exchange observed in the experiments. 

INTRODUCTION 
The Cross-shore Transport Experiment (CROSSTEX) is a multi-investigator, 

multi-university, scientific research project centered around a coordinated series 
of near-prototype scale experiments that were conducted at Oregon State 
University's O.H. Hinsdale Wave Research Laboratory (HWRL) during the 
summer of 2005 (Maddux et al, 2006). The experiments took place in the 104m 
long, 3.7m wide and 4.6m deep Large Wave Flume (LWF) on a movable bed 
consisting of medium sand (^50=0.22 mm). The objective of our portion of 
the experiments was to obtain high-resolution observations related to onshore 
and offshore sandbar migration. The analysis of seiching in the LWF was not 
a primary objective of our experiments; however, our early analysis of the data 
suggested they contained some unexpected behavior in regards to basin seiching. 
Herein, we have pursued a detailed analysis of the observed low-frequency 
motions as an "experiment of opportunity". 

The experimental conditions consisted of irregular waves generated by 
the paddle-type wavemaker with a range of peak periods (3-8 sec) and rms 
wave heights (0.3m to 0.6m) depending on whether erosive or accretionary 
conditions were desired. Observations of the hydrodynamics were carried out 
using instruments mounted onto the walls of the flume, suspended from a 
movable carriage, and remotely observed by video cameras as shown in Figure 
1. The present analysis will utilize a limited number of Nortek Vectrino 
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FIG. 1. Layout of tank and fixed instrumentation. 

Doppler Velocimeters (NDV's), 12 wall-mounted surface piercing wave staffs, 
and measured bathymetry. The data encompassed more than 80 15-minute wave 
runs, of which several are used here. Standard procedure was to collect data for 
20 minutes with active wave generation occurring in the center of this window. 
The results shown here are representative of the the accretional portions of the 
experiment (peak period of 8 seconds). 

In the following, we first examine the behavior of low frequency motions in 
the LWF and compare the dominant observed spectral peaks with the principal 
standing wave modes in the tank as predicted by linear theory. We then develop the 
free wave evolution equations appropriate to weakly nonlinear standing motions 
in this system, and show that predicted time scales for modal energy exchange are 
consistent with the observations. Finally, we provide evidence that dissipation is 
occurring in the higher standing modes, which may take the form of intermittent 
breaking. 

OBSERVATIONS OF SEICHING 
A typical time series from a 20 minute data run is shown in Figure 2. The time 

axis represents the time from the onset of data acquisition (not the onset of paddle 
motion) and the time series shows the presence of low frequency motion, which 
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FIG. 2 . Time series and power spectral density for NDV velocity record at x = 74.6m, 
08/25/05 Run 6. 

is most clearly seen after the wave paddle has stopped and the last incident wave 
has passed the instrument (t > 1000 sec for this record). A Fourier transform of 
these data shows the presence of isolated peaks at low frequencies (lower panel, 
Figure 2). In this particular plot, there is only a weak spectral peak at 0.065 Hz 
due to the location of the current meter near a cross-shore node for this particular 
mode and this particular run. 

In order to determine how quickly these motions were established in the tank, 
we performed a preliminary analysis of the data using the continuous wavelet 
transform (Farge, 1992). A Morlet wavelet was used and results are shown in 
Figure 3 as the modulus of the transform for frequencies below 0.1 Hz. The 
growth of energy in frequency bands corresponding to the spectral peaks in Figure 
2 is apparent, with the peak near 0.085 Hz gaining energy first. It is also apparent 
that the individual spectral peaks experience unsteadiness in amplitude. It is 
possible that this is due to direct forcing by the wave groups associated with the 
train of random incident waves. However, there appears to be a pattern to the 
gain and loss of energy in the individual modes. For example, the mode near 0.04 
Hz appears to peak in amplitude around t = 700s, near a minimum of the higher 
frequency peak and before the peak in the lower frequency around 0.02 Hz occurs. 
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FIG. 3. Wavelet analysis of low frequency motion in tank, same conditions as Figure 
2. Upper panel: time series of on-offshore velocity. Lower panel: Modulus of Morlet 
wavelet transform for the frequency range 0 < / < 0.1Hz. Note structure of results 
near / = 0.02Hz, 0.04Hz, 0.06Hz and 0.08Hz, which are identified with seiching modes 
1,2, 3 and 4 below. 

In contrast, at t = 900 — 1000s, the peak near 0.04 Hz is nearly gone while the 
peaks at 0.02 and 0.08 Hz take on their largest values. The behavior shown here 
is suggestive of a significant energy exchange between individual spectral peaks 
due to nonlinear interaction, as examined below. 

LINEAR EIGENMOOE ANALYSIS 
We consider small amplitude seiching in a 1-D horizontal canal of depth h(x) 

and spanning the interval 0 < x < L, bounded at x = 0 by a vertical wall and at 
x = L by a sloping beach. The governing equations are given by the linear long 
wave equations 

r)t + {hu)x = 0 (1) 

(2) 

where u is horizontal velocity and J\ is water surface displacement. At x = 0, 
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impermeability of the wall and inspection of (2) gives 

u = r\x = 0; x = 0 (3) 

At the sloping boundary x = X, we require that the motion remain bounded. We 
may eliminate either u or r) between (1) and (2) to obtain either 

fkt ~ 9(hVx)x = 0; 0 < x < L (4) 

or 
utt - g{hu)xx = 0; 0 < x < L (5) 

together with the described boundary conditions on u or 77. 
For the case of time-harmonic motion with angular frequency u>, equations (4) 

and (5) may be rewritten as 

( H O X + ATJ = 0 (6) 
(hu)xx + \u = 0 (7) 

where A = UJ2 jg represents the eigenvalue for the problem. We note that 
(6) together with the sloping shoreline boundary condition does not represent a 
standard Sturm-Liouville problem due to the boundary condition at the shoreline. 
Nevertheless, it is simple to show that an expansion in the form 

00 

r) = ^jT)nGn{x) (8) 
n = l 

leads to the orthogonality condition 

/ GnGmdx = 0;n^m (9) 
Jo 

and, for n = m, a statement of the dispersion relation for each mode given by 

2 In HG'n)
2dx 

"l = - 9 J \ L ' (10) 
Jo Gldx 

Equation (5) also is not in Sturm-Liouville form. The Liouville transformation 
leads to the choice of volume flux q = hu as the dependent variable, giving the 
equation 

qxx-Xh~1q = 0 (11) 

together with homogeneous boundary conditions q(0,L) = 0, where the 
homogeneous boundary condition at a sloping shoreline arises by virtue of the 
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FIG. 4. Eigenmodes F\ - FA for volume flux q for profile measured on 8/22/05. 

zero in water depth. The corresponding expansion, orthogonality condition, and 
dispersion relation are given by 

l(x) = ^2qnFn(x) 
n = l 

JO 
h 1FnFmdx = 0; n^ m 

J0(K)2dx 
w« = -9~rr 

tfh-^FZdx 

(12) 

(13) 

(14) 

In this study, we have chosen to solve (11) numerically in order to determine 
the family of eigenmodes for measured tank geometry. The equation is finite 
differenced using centered second-order derivatives, and the resulting matrix 
eigenvalue problem is solved using the Matlab routine EIG. 

Modal amplitudes: an example from the tank 
An example set of the the 4 lowest modes Fi - F4 in the tank are shown 

in Figure 4 for a profile measured on 8/22/05. Corresponding modes for surface 
displacement Gn = dFn/dx are shown in Figure 5. 

Mode periods are computed from the eigenvalues of the numerical solution 
based on measured bathymetry for each run. A comparison of numerically 
predicted mode periods to measured mode periods is shown in Figure 6. 



COASTAL ENGINEERING 2006 1165 

FIG. 5. Eigenmodes Gi — G± for surface displacement 77 for profile measured on 
8/22/05. 
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FIG. 6. A comparison of numerically predicted mode periods to measured values: 
08/25/05 Run 6. 
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A time series for each of the individual modes is computed as follows. First, 
the wave gage data for the 12 gages mounted along the tank wall (Figure 1) 
are band-passed for each predicted mode frequency, 0.8/„ < / < 1.2/„,n = 
1,2,3,4. Then, for each mode n, the numerically predicted Gn(xi) is projected 
onto the bandpassed data r)(xi, t) to give a single times series An (£). Here, xj are 
gage locations in the flume. Figure 7 displays the time history An (t) for the first 
4 modal amplitudes. Then, the motion of each mode at each gage is reconstructed 
according to rjn(xi,t) = Gn(xi)An(t). 

The results in Figure 7 show a pattern of energy exchange between modes, 
with modulations occuring more rapidly at higher mode numbers. The growth 
and decay of the fundamental mode 1 occurs over a time scale on the order of 
500-600s, slightly shorter than the entire data run duration. The drop in amplitude 
of the mode 1 peak starts at around 700s, clearly before the cessation of forcing 
around t = 960s. Modal evolution times for the higher modes are much shorter, 
on the order of 200-300 seconds for mode 2 and 100-200 seconds for modes 3 
and 4. Note also that mode 3, which was largely missing in the single current 
meter record examined above, is energetic and shows up clearly in the surface 
displacement time series. 

NONLINEAR THEORY 
Based on the previous examination of the time history of modal amplitudes for 

the observed low-frequency motions, we hypothesize that nonlinear interactions 
are contributing significantly to the evolution of these amplitudes, by way of 
allowing for energy transfer between the standing wave modes. In order to 
examine this hypothesis, we use a perturbation expansion based on the assumption 
of weak nonlinearity, applied to the nonlinear shallow water equations (NLSE). 
The resulting theory is in the form of coupled evolution equations for the modal 
amplitudes. The resulting interaction equations are detuned in the sense that 
significant mismatch exists in the sums of interacting frequency triads, but we 
observe that the resulting interactions occur on timescales which are in reasonable 
agreement with observations. 

Formulation 
In order to proceed, we nondimensionalize x by L, h by maximum depth ho, 

r\ by an amplitude scale a and time t by L/CQ where CQ = y/gho is the long wave 
speed in the deepest portion of the basin. Letting 5 = a/hQ, we obtain the scaled 
equations 

Vt + Sqx + {h~1T]q)x = 0 (15) 

qt + 6q(h~1q)x +hr]x=0 (16) 

or, eliminating rj in 0(1) terms, 

qtt - hqxx + S {[q(h~1q)x]t - h[h~lr)q]xx} = 0 (17) 
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FIG. 7. Modal amplitudes Ai(t) - A4(t) for the 08/25/05 Run 6 data. Short wave 
forcing begins at t = 60s and ends at t = 960s. The initial concentration of seiching 
energy in higher modes, and the subsequent transfer to, and then from, mode 1 is 
evident. 

As in the previous section, the boundary condition at a wall boundary is taken 
to be q = 0. At a sloping boundary, however, we must account for the motion 
of the shoreline, which we take to have instantaneous horizontal position 6£(t) 
relative to the still water shoreline. At this point, the discharge based on total 
depth H == h + Sr/, given by Q = uH, drops to zero. We introduce perturbation 
expansions 

Q = 

7) = Vo + <fyi + -

(18) 

(19) 

and further introduce a multiple scale expansion for fast and slow time scales 

t ^ t + 6t + ... = t + T1 +... (20) 

The leading order solution follows from the previous section and may be 
written as 

Qo (x,t) = J2<ln(t,T1)Fn(x) (21) 
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where the Fn's are solutions to (11). We write the qn in terms of slowly varying 
amplitudes as 

«n(t,Ti) = i M T i ) ^ + a^T^E-n); En = eiw"* (22) 

Equations for Detuned Triad Interactions 
Use of (22) in the governing equation for qi leads to a coupled set of 

evolution equations for modal amplitudes an(Ti), with the interactions resulting 
from energy exchange through detuned triads. The evolution equations are given 
schematically by 

dan _ 

with 

( -y - \ 22i Rn,l,n-laian-lEn-l,l,-n + '^2 ^n,l,l-nO,iai_nEi 
yn—l, — i 

" " 1 1 I 

+ 2_uTn,l,n+ia>*an+lEn+l,-l,—n. f (23) 

E±a<±b,±c = e*^" -^^ )* (24) 

Here, the factors E express the detuning of the underlying triads resulting from 
non-commensurate linear mode frequencies. This detuning would drop to zero 
in a rectangular, flat-bottomed tank, but is on the order of 10% for the nearly 
triangular geometry studied here. 

The system described here does not incorporate either the forcing due to 
incident short waves or dissipation, and thus represents a conservative system. 
Solutions involving more than 3 modes are essentially chaotic. Since we do 
not have a means of predicting modal amplitudes in the absence of forcing and 
dissipation, we choose a set of initial amplitudes of reasonable size compared to 
the data. Figure 8 shows a representative calculation. We note that the time scales 
for evolution of the various modes vary from 600-700 seconds for the fundamental 
mode 1, down to around 200 seconds for the highest mode 4. These periods are 
slightly long compared to observed data, but the overall conclusion is that, in 
the absence of any fine tuning corresponding to the introduction of forcing and 
damping, the theory appears to provide a reasonable estimate for the overall time 
scale for energy exchange in the flume. 

INTERMITTANT BREAKING OF SEICHE MODES 
The analysis above depends heavily on the assumption that low frequency 

motion in the tank is described by a superposition of standing waves. A quick 
analysis of a water surface constructed by examining the band-passed time series 
for each gage location, r)(xi,t) confirms this assumption for the most part for the 
lower two mode numbers. However, an examination of the higher mode number 
motions suggests that progressive modes are also present. 
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FIG. 10. Measured surface displacement rn(xt,t) for a band pass around n = 4» for a 
window 430s < t < 490s. Progressive wave behavior. 

Figures 9 and 10 show plots of surface elevation time series from all the 
wall-mounted wave gages. The time series have been bandpassed about the mode 
4 frequency and each plot shows a different 60 second window. Figure 9 shows a 
pattern that is mainly consistent with a standing wave pattern with a node around 
x = 65m (see the corresponding pattern for G4 in Figure 5.) The nodal position 
shifts slowly in the offshore direction but is present for the entire window. In 
contrast, Figure 10 illustrates a transition to progressive wave behavior in the 
middle of the window, with standing wave behavior near the beginning and end of 
the window. The trajectory of the crest position in the middle of the window 
is consistent with a phase speed of sfgK. The centers of these two windows 
are 90 seconds apart, indicating that there is a rapid transition between standing 
and progressive wave behaviors. This result indicates that dissipation plays a 
potentially important role in the evolution of at least some of the seiching modes, 
and that the description of the low-frequency motion may need to be done in terms 
of superposed progressive solutions instead of simple standing waves. 

We note that Van Dongeren et al (2006) have described laboratory experiments 
involving low-frequency waves forced at the difference frequency of incident 
bichromatic wave trains, in which the behavior of the low-frequency wave was 
clearly consistent with the occurrence of breaking of the forced wave. The 
resulting forced motion was regular and periodic. However, we do not know of 
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previously reported observations in which a particular seiching mode shifts from 
standing to breaking/progressive on a time scale which is of the order of only a 
few periods of the mode in question. This behavior greatly complicates the overall 
problem of describing the low frequency motion, and needs further examination. 

CONCLUSIONS 
Analysis of data from a large scale laboratory experiment demonstrates the 

presence of multiple low-frequency motions, which are generally similar to 
classical linear standing waves (seiching). However, there are some unexpected 
aspects to the present observations. First, though spectral analysis indicates the 
modes have well-defined frequencies, a wavelet analysis suggests that individual 
modes are exchanging energy through nonlinear interactions. A calculation of 
the linear seiching modes well-predicts the observed frequencies. A preliminary 
nonlinear calculation, that treats the seiching modes as weakly nonlinear, 
unforced standing waves, also does well at reproducing the time scales of modal 
energy exchange. Finally, observations also suggest that dissipation, such as wave 
breaking, of the higher seiching modes may play a significant role in the modal 
amplitude evolution. 
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