
CHAPTER 58 

BRAGG REFLECTION OF WAVES BY ARTIFICIAL BARS 

James T. Kirby1, Jeffrey P. Anton2 

Abstract 

We consider the extension of previous theories for Bragg reflection of sur- 
face waves by parallel bars to the case of artificial bars placed discretely.on the 
seabed. The case of non-resonant, weak reflection is considered first, followed 
by a consideration of the application of resonant interaction theory to the dom- 
inant Fourier mode of the bar field. Both theories are compared to numerical 
results, and discrepancies are seen in both cases. Finally, experimental results 
are compared to theory. 

Introduction 

The discovery that the Bragg reflection mechanism leads to strong reflection 
of incident surface waves by periodic bottom undulations has led to speculation 
that artificial bars could be constructed which would partially shelter shores or 
localized structures from wave attack. Possible bar configurations of this sort 
have been discussed previously by Mei et al. (1988) and Naciri and Mei (1988). 
The paper by Bailard et al. (1990) in this conference describes an effort which 
was made to install and test an artificial bar field offshore of a natural beach. 

The purpose of the present study was to extend the scope of available theory 
and techniques which were available for predicting wave reflection from bars, in 
support of the proposed field study. Here, we discuss the application of ana- 
lytic perturbation methods for both non-resonant and resonant cases. We also 
discuss numerical results, which point out limitations present in both analytic 
approaches. Finally, experimental results largely provide a qualitative verifica- 
tion but in turn show some limitation of the small amplitude bar theory. 

Theory for Small Amplitude Bars 

The theory which provides the framework for analysis here is given by an 
extended mild-slope equation derived by Kirby (1986). 

We treat the water depth h'(x,y) as the superposition of a mildly-sloping 
bottom h(x,y) and a rapidly-varying but small- amplitude undulation 6(x,y): 

h'(x,y) = h(x,y) - S(x,y) (1) 
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Figure 1: Bar field with four discrete bars. 

Using h(x,y) as the reference depth in the mild-slope sense, the model equation 

vh • (ccavh<t>) + k2ccj =    ^kh^h • (SVh4>) = 0 (2) 

is obtained, where <j> is the value of the linear wave potential at the still water 
surface. The model coefficients are obtained from 

u? = ^tanhkh ; C = j ; Cg = ~ (3) 
K OK 

and are determined by the value of h(x,y) in all cases. 

The Artificial Bar Field 

In the absence of appropriate field data, we have restricted our attention here 
to the study of periodically spaced bars (6 = 8(x)) and an otherwise uniform 
depth h — constant. In principal, 8 is arbitrary aside from the small amplitude 
restriction. In the present study, we have chosen a bottom consisting of rectified 
sine waves, given by 

6(x\   =    [ D cos f-L(x-NL)  ;      NL - h-f < x < NL + ^ 
\ 0 • otherwise 

TV = 0, ...., Nb - 1 

where Nt is the number of bars, L is the periodic bar spacing, bL is the footprint 
of the bar on the bottom, and D is the bar height. The rectified cosine form 
is chosen mainly for its convenience in later analysis. An example bar field is 
shown in Figure 1. The bar field is periodic over intervals of width L, and can 
be conveniently represented by the cosine series, 

S(x) = ]P On cos (nXx)    ;    A = — (5) 

where 

L 

D D cc   , ., , 
Do = - ; Dx = -- ; Dn = D   h  w^(l + cosmr) (6) 

7T 2 7r(l — n2) 
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Non-resonant Reflection 

For the case of h constant, the model equation (2) may be written as 

V\4> + k2j> = aVh • (8Vh<j>) (7) 

where 
- 4fc 

a~ 2kh + smh2kh O 
With S(x) representing bars varying in the x-direction, we represent oblique 
waves according to 

4>(x,y) = 4>(x)eimy ; m = k sin 6 (9) 

and obtain 

4>xx + t2<f>   =   a(8cj>x)x - m2a8<j>, (10) 

e   =   k2 - m2 = k2 cos2 6 

This equation has been obtained by Miles (1981) who used it to study reflection 
from a single isolated obstacle. 

For S(x) confined in a finite region of space, we may write 

(a; —> oo)   =   Te itx 

(x oo)    =   e'te +-Re-,te (11) 

where T and R are complex transmission and reflection coefficients. With 8 
small, we expand <j>, T and R as series in the small parameter e = D/h, and 
obtain 

^o = ei&       Ro = 0       T0 = l (12) 

at leading order. At second order, the reflection coefficient Rx for an arbitrary 
topography 8(x) is 

R, = -^ U2 - m2)  r 8(x)e2ie*dx (13) 

as found by Miles (1981). Note that Rt is singular in the limit as 6 -+ 7r/2. This 
effect has not been previously noted and its practical implications are unclear. 

For the case of a simple sinusoidal bottom 

8(x) = D sin (Xx) ; 0 < x < NhL (14) 

we obtain the expression 

(    aD  (P-m*\    2l/\    Lin(2t    N\\   .    U    I   i 
\R\={       '    }     *     ^'-inU^I'     A^l (15) 

y      2 P- 2      '    A   ~~ 1 

This result extends the non-resonant theory of Davies and Heathershaw (1984) 
to include obliquely incident waves. 
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For the periodic bar field described by (5) and (6), we substitute (5) in (13) 
and obtain the expression 

-ia f£2-m2\  ~   ^ r    s 
Rl = —  {—f-jYsDnln, (16) 

where the integrals In are given by 

J„ =  I cos(n\x)e2'txdx- (17) 

As in the case of a single sinusoidal bar, the integral /„ takes on special values 
when 2l/n\ = 1 for the corresponding value of n. We further simplify the 
notation by setting 

2/ 
7 = J (18) 

Then, for 7 / n, we obtain the expression 

2 

J»fr) =  l(727_n2)e'W*L *•iN>L    >1^n (19) 

For n = 7, we obtain the expression 

4(7 = n) = ^ (20) 

We thus obtain the general solution for obliquely incident waves 

(21) 
where 6{n — 7) is the delta function, and there n = 7 can only occur for one 
wavenumber component for a fixed value of I. For the case of normally incident 
waves (studied further below), we let I —> k, m —> 0 and obtain 

^ = - f { £ j^rfikNbL sin ^ + D^n -^)kJ¥)     (22) 
From the form of the solution, it is apparent that each harmonic of the bar field 
contributes to the reflection process, with the dominant contribution of the nth 

harmonic coming from the neighborhood Awn. An example plot of reflection 
coefficient | R\ | is shown in Figure 2 for a case of 4 bars with crest-to-crest 
spacing equal to the unrectified wavelength (&£, = L/2). Waves are normally 
incident on the bar field. The peak in | R\ | at 2k/ X — 1 corresponds to the~usuaT 
Bragg interaction between the surface wave and the fundamental harmonic of 
the bar field, when the surface wave length is twice the bar spacing. A second 
prominent peak is located at 2k/X = 2, corresponding to a surface wavelength 
equal to twice the length of the second harmonic of the bar field (and thus equal 
in length to the bar spacing). This strong second peak is absent when the bar 
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Figure 2: Reflection for four discretely placed bars. Non-resonant theory, equa- 
tion (22). 

field being considered is a simple sinusoid, as in Davies and Heathershaw (1984) 
and Mei (1985). 

In general, the relative amplitude of the peaks in the reflection coefficient 
may be adjusted by changing the spacing of artificial bars, assuming the cross- 
section of each bar to stay the same. Pushing bars closer together makes the bar 
field more sinusoidal and reduces the importance of higher harmonics. Placing 
the bars further apart makes them into relatively more "solitary" features, and 
thus emphasizes the relative importance of higher harmonics. Two cases illus- 
trating these extremes were investigated in the experiments described below. 
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Resonant Reflection 

The reflection coefficient described in (21) is defective for the cases 2£ « nA, 
where the coefficient can become arbitrarily large as N), —» oo. While this 
limit would never be reached in practice, the result shows that the theory is 
not strictly valid in the neighborhood of the resonances. The problem lies 
with assuming that i?i is < "9(1) in the perturbation series used above. Mei 
(1985) has developed a resonance theory which allows for 0(1) reflection in the 
neighborhood of each resonance. Mei et al. (1988) further suggested that, for 
the case of a bar field with multiple Fourier components, the reflection could be 
estimated using the resonance theory applied to the Fourier mode corresponding 
to the bar wavelength. This approach would not account for the occurrence of 
multiple strong peaks. In the present study, we define a neighborhood of each 
resonance 2£/X = n to be the range n — 1/2 < 2£/A < n + 1/2. Then, in each 
range, Mei's theory is used with 2£/X* replacing 2£/X, with A* = nX. We refer 
the reader to Mei (1985) for the expressions defining the reflection coefficients. 
The only necessary modification to the theory account for oblique incidence and 
the presence of multiple resonant peaks. The frequency u>n of the nth resonant 
peak is given by 

2~   9HX   tanh(-^M (23) n      2 cos 0 ^2cos 

The cutoff condition ft0 defined by Mei is replaced by 

_ P-m2   wnhDn _ J_ 
0n~      P      2sinh2Jb/»   ' cos0 K    > 

where the Dn are the amplitudes of the bar Fourier coefficients, and there Oon 

refers to the nth resonant peak. 
An example of the reflection calculated for the case of normal incidence is 

given in the following section, in comparison with numerical results and results 
of the non-resonant theory. 

Numerical Solutions 

In order to study the validity of each of the perturbation solutions, direct 
numerical solutions of equation (10) were also performed. For a bar field in the 
region 0 < x < NbL, an incident wave boundary is established at x = A < 0, 
and a downwave, transmitting boundary is established at x — B > N^L. For 
an incident wave </>/ = elix, the appropriate boundary conditions are 

i£(2^ -$);    x = A 
i£d> ;   x = B 

(25) 

Equations (10) and (25) are finite-differenced using central differences, leading 
to a tridiagonal system which is solved using the Thomas algorithm. 

Figure 3 shows a sample of calculated reflection coefficients obtained with 
the numerical solution and the two analytic solutions, for the bar field described 
in Figure 2. As expected, the non-resonant solution over-predicts reflection at 
2k/X = 1, in comparison with the resonant theory of Mei (1985). The discrep- 
ancy is relatively minor at the second peak 2fc/A = 2, where the resonance is 
relatively weaker.   In contrast to both analytic theories, the numerical results 
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Figure 3: Comparison of non-resonant, resonant and numerical solutions for a 
bar field with Nb — 4. , non-resonant theory; , resonant theory; 
  —, numerical results. 

show a strong downshift of the reflection peaks to lower values of 2k/X. This 
downshift is related to the simultaneous interaction between the wave field and 
several bottom modes; a similar effect occurs for the case of a sinusoidal bar 
field, but it is much more subtle. The numerical scheme also predicts a higher 
reflection coefficient at each peak. The large downshifts and higher peaks are 
largely validated by data described below. These results indicate that either 
of the two analytic solutions are at best qualitatively accurate when used to 
describe reflection from the type of bars that could be built in an actual con- 
struction project. 

Experimental Results 

Experiments were conducted in the 60 cm wide wave flume in the Coastal 
and Oceanographic Engineering Laboratory, University of Florida, in order to 
verify the basic aspects of the theory for normally incident waves. For the 
experiments, a water depth h = 15 cm was used. Bar height D was 5 cm, 
giving D/h = 0.33, which is relatively large and could contribute to some of 
the discrepancies between theory and data noted below. The bar footprint 
hjj = 50cm. Two bar spacings, L = 80cm and 120cm, were tested, corresponding 
to cases with bar field higher harmonics of low importance and great importance, 
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Figure 4: Bar field and wave gage placement 

respectively. The bar fields tested contained four discrete bars. 
In order to maintain a close correspondence between the assumed linearity 

of the wave theory and the experiments, incident waves on the order of 1 cm in 
height were generated. (Actual height varied with wave frequency, as would be 
expected from wavemaker theory.) Wave heights were measured using capac- 
itance wave gages mounted with 6 cm-long wires, which were calibrated over 
their full length. Data was sampled using 12-bit digitization, giving a resolution 
of 0.012 mm/division. The wavefield was sampled at a 10Hz frequency, with 
experimental waves being generated in the range OAHz < f < 1.6Hz. 

Due to the small wave heights being used, there was an additional source of 
noise in the data associated with mechanical vibration in the wavemaker and 
other high-frequency effects. In retrospect, it would be better to use slightly 
higher waves in future experiments unless great care were taken to isolate me- 
chanical vibration. (For a particularly spectacular example of clean data in a 
related low-amplitude wave experiment, see Benjamin et al, (1989)). 

The three-gage, least squares method developed by Funke and Mansard 
(1980) was used to separate incident and reflected waves. The gage layout 
relative to the bar field is shown in Figure 4. The incident-reflected separation 
was performed both upwave and downwave of the experimental bar field. The 
downwave separation indicated a reflection from the absorbing beach on the 
order of 5-6%. This reflected energy was neglected in subsequent processing 
and the downwave region was assumed to be perfectly transmitting. 

Figure 5 shows the measured reflection coefficient for the case of L = 80cm, 
when bar field harmonics are relatively unimportant. Also included in the figure 
is the prediction of the numerical model described in the previous section. The 
data largely validates the theory, although there is a great deal of scatter. (It 
also appears that shifting the data to higher values of 2k/X would bring the data 
into fairly close agreement with theory. No systematic error was ever detected in 
the experimental procedure which could account for such a shift, unfortunately.) 

Figure 6 shows corresponding data for the case of L — 120cm, where the 
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Figure 5': Experimentally measured reflection coefficient, L = 80c 



766 COASTAL ENGINEERING -1990 

1.0 I—i—i—i—i—I—i—i—i—i—r—i—i—i—r 

0.8 

|R,I 

0.6 

0.4 

0.2 

0.0 I 1 1 ' L 

0.5 

Figure 6: Experimentally measured reflection coefficient, L = 120c 

second harmonic component of the bar field is comparable in height to the fun- 
damental harmonic. Due to time constraints, the data here is relatively sparse, 
and tests were grouped in order to show the relative heights of the two reflection 
peaks. Both the presence and the relative importance of the two numerically- 
predicted peaks are substantiated by the data. 

Response of a Closed-end Channel 

One question that arises in response to the realization that bars can reflect 
significant amounts of incident energy is whether or not a region downwave of a 
bar field experiences a less severe wave condition than the region on the incident 
site. The answer to this question can be positive or negative, depending on the 
geometry of the downwave region and the reflectivity of the end boundary. For 
cases where reflection from the end wall is nearly complete, waves travelling 
back towards the bar field are partially re-reflected into the sheltered region. 
The possibility of resonating the sheltered region exists, as does the possibility 
of reducing the wave activity, and depends primarily on whether the sheltered 
region contains an integer multiple of one-half the surface wavelength. 

Figure 7 shows the numerically predicted amplitude at a vertical wall sit- 
uated four barfield wavelengths downwave of a bar field with four bars, as in 
the previous examples. The incident wave has an amplitude of unity, and so an 
amplitude of 2 represents simple reflection. The figure shows that the amplitude 
at the wall can reach as high as 3.6 and as low as 1, representing a range of 
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Figure 7: Wave Amplitude at End Wall of a Channel Sheltered by an Artificial 
Bar Field 

resonance and sheltering conditions. 
For the case where the channel end is primarily absorbing (due to wave 

breaking or frictional effects), the possibility of resonating the sheltered region 
is greatly reduced. This virtually guarantees that a bar field designed to shelter 
a beach from wind-wave band waves would not resonate the shoreline. How- 
ever, as the wave frequency becomes low, even a mildly-sloped shoreline can 
become essentially reflective. It is thus possible that broad, low bars contribute 
significantly to amplifying long wave energy on the beach face. The long waves 
that could be amplified or resonated by this mechanism may be locally gener- 
ated by nonlinear processes in the surfzone, or they may be arriving as part of 
the forced or free long wave climate incident from offshore. Problems of this 
sort need further investigation to determine the relative importance of bottom 
interaction in influencing the nearshore wave climate. 
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