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Abstract

A solitary wave which interacts with a vertical breakwater at a normal angle of inci-
dence results in the formation and shedding of a single vortex. In the present study,
experiments were conducted which involved generating a solitary wave in a long, nar-
row, uniform depth wave flume which propagated past a thin, vertical, breakwater.
Both velocity and surface elevation data were collected. A numerical Boussinesq model
with Smagorinsky subgrid mixing was then employed to simulate the experimental
data. Comparisons of the model data to the experimental data revealed the capability

of the model to simulate wave-induced vorticies.
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Chapter 1

INTRODUCTION

A single solitary wave, interacting at normal incidence with a structure, in particular a
vertical wall, which extends half way across the width of the tank, results in the forma-
tion of a single vortex which is subsequently shed from the structure and propagates
downstream. Figure 1.1 shows the formation of a vortex from experiments conducted
in the present study resulting from this type of interaction. The ability to numerically
model this phenomenon with increasing accuracy is important for a number of reasons.
Measurement of the strength of the vortex (the magnitude of the velocities in the vor-
tex) is important because the energy that is required for vortex formation corresponds
to a loss of energy from the incident wave. This may have important consequences
i.e. for waves entering a harbor, as suggested by Liu (1984). Both the magnitude of
the vortex and whether or not the vortex persists in the generation region or moves
away from the structure may have significant consequences. One possible consequence
is that the area surrounding the structure may suffer from notable erosion depending
upon both the residence time and strength of the vortex. Sumer and Fredsge (1996)
conducted a study to investigate the effect of regular waves interacting with a vertical
breakwater on the scour occurring at the head of the breakwater. They found that the
major flow structures which cause scour are vortices and that only one lee-wake vortex
forms at the tip of the breakwater in each half cycle of the waves. They consider a
vertical wall which has a round head and they note that the scour is increased when
the head shape is changed to a sharp-edged one which is the type used in the present
study. Additionally, this type of study may provide useful information for improving

the design of breakwaters.



Figure 1.1: Vortex formed during the experiments.

1.1 Boussinesq Modeling of Solitary Waves

The Boussinesq equations describe nonlinear, longwave motion under the assumption
that the waves are both weakly nonlinear and weakly dispersive. The parameter used
to measure the degree of nonlinearity is ¢ = H/h and for weakly nonlinear motions
§ << 1. Dispersion is measured by the parameter p? = (kh)? and for weakly dispersive
phenomena p? << 1. The Ursell number (U, = §/u?) is used to relate the the degree
of nonlinearity to the degree of dispersion of the wave motion and has a value of
U, = O(1) for the standard Boussinesq equations (Wei et al., 1995). The Boussinesq
equations have been used to model wave transformation for a range of depths because
of their ability to represent shoaling, refraction, diffraction, and reflection. There are,
generally speaking, two classes of Boussinesq models (Madsen and Schéffer, 1999). The
first class of models are developed using Laplace’s equation. Mei and Méhauté (1966)
and Mei (1983) conducted several of the studies which followed this approach. Wu
(1981) developed a two equation Boussinesq model from Laplace’s equations, assuming
an inviscid, incompressible fluid of uniform density. The two equation model expresses
mass continuity in terms of 7 and the momentum equation, written using Bernoulli’s
equation, in terms of the velocity potential ¢. Because the velocity potential was used

in the derivation the fluid is irrotational. It will be shown in a subsequent chapter that



no vorticity could be generated or advected using this type of model. Nwogu (1993)
also derived a set of Boussinesq equations from Laplace’s equations and the horizontal
velocity at an arbitrary depth was used as the dependent variable. Subsequently, Wei
et al. (1995) derived a set of fully nonlinear Boussinesq equations in terms of the
velocity potential following the approach of Nwogu (1993). A depth specific velocity
was used as the dependent variable in their derivations. Full nonlinearity was obtained
in the boundary conditions and the resulting equations had improved linear dispersion
properties in intermediate depth water and were no longer limited to small nonlinearity.
The strongly nonlinear portions of the numerical solution, i.e. wave evolution near
wave breaking, show significantly improved predictions of wave heights as compared

to the weakly nonlinear Boussinesq model developed by Nwogu (1993).

The second class of models were developed using Euler’s equations of motion.
Peregrine (1967) derived a set of equations in two dimensions which were valid for
variable water depth. The model was applied to a solitary wave approaching a beach
having a uniform slope. Peregrine used the depth averaged velocity in his derivations.
Mei and Méhauté (1966) used the bottom velocity as the dependent variable and
applied this set of equations to long waves over an uneven bottom. Abbott et al.
(1984) alternatively derived the Boussinesq equations using the volume flux instead of
the depth-averaged velocity as the dependent variable. The model is applied to the

simulation of short wave propagation in shallow water.

The Boussinesq equations were initially only applicable to shallow water depths.
Witting (1984) developed a model which used a set of equations to describe mass flux
(in terms of the surface elevation and vertically averaged velocity), the equation of
motion and the kinematic surface condition (both in terms of the surface elevation,
surface slope, and surface velocities). A longwave expansion of linear theory took the
solution to fourth order accuracy in k?h? which was higher order than Boussinesq
theories so both shallow water and deep water waves could then be incorporated into
the model. No test of wave propagation from deep water to shallow water was carried
out in this study, however. The model was developed into a one dimensional model in
order to be able to implement a fast, fully vectorized numerical algorithm. Inspired
by Witting’s work, Madsen et al. (1991) developed a two dimensional model based on
the system of equations derived by Abbott (1984) using the depth integrated velocity
as the dependent variable. Comparisons are first made between phase and group

velocities computed using U, Uy, Uy, and expanded forms of U and U, by Witting



(1984). The phase and group velocities were expressed in terms of a constant, B, by
the following
c? 1 + Bk2h?

— = 1.1
gh 14 (B+ §)k*h? (11)

and

Bk*h? (B + 3)k*h?
cg=c[l + - I ]
1+ Bk?h? 1+ (B + 3)k?*h?

(1.2)

Comparisons of these constants from the phase velocity relation (Figure 1.2) were
plotted as determined from each of the four methods. B values of -1/3, 0, 1/15,
1/6 correspond to using U,, U, Pade’s expansion, and U,, respectively. Witting’s
approach was shown to give the best comparison to Stokes theory. Figure 1.3 shows a
comparison of the constant, B, from the group velocity relation based on derivations
from the four studies. Subsequently, in their derivation of the Boussinesq equations,
Madsen et al. (1991) showed how B could be utilized as a curve fitting parameter in
order to obtain the best comparison of the phase velocities to Stokes theory. Based on
their choice of B, the new equations incorporate notably improved phase velocities for
linear waves in water depths up to and beyond the deep water limit (see Figure 1.4).
The model was able to simulate the propagation of irregular wave trains traveling
from deep water to shallow water. As mentioned previously, Nwogu (1993) developed
a set of Boussinesq equations using the horizontal velocity at an abitrary depth as
the dependent variable. By letting the velocity variable be close to middepth it was
determined that the dispersive properties were significantly improved. An important
consequence is that the improvement allows this set of equations to be applicable to a

greater depth range.

Subsequently, Wei and Kirby (1995) developed a numerical model based on
Nwogu’s equations. They use a fourth order predictor-corrector scheme for time step-
ping. The addition of a discretization of the first-order spatial derivatives to fourth-
order accuracy allowed for the elimination of error terms which are of the same form as
the dispersive terms. They applied the numerical model to solitary wave propagation
over a uniform depth and found that the wave height and shape remained stable over
a long distance without undergoing any damping or evolution, indicative of dissipative

effects that are negligible or non-existent.
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Figure 1.2: Comparison of the constant B from the phase velocity relative to Stokes
theory, i.e. 100(c — Csyokes)/Cstokes- B values of -1/3, 0, 1/15, 1/6 correspond to using
U, U, Pade’s expansion, and Uy, respectively. Equations used to generate the figure
are from Madsen et al. (1991).

Chen et al. (1999) investigated a rip current system using the theory for the
fully nonlinear Boussinesq equations developed by Wei et al. (1995). Additional
terms were added to the governing equations to account for wave breaking, shoreline

run-up, subgrid turbulent mixing, and bottom friction.

More recently, Shi et al. (2000) developed a numerical model in generalized
curvilinear coordinates based on the theory derived by Wei et al. (1995). An extra
term was included in the governing equations, which had the same form as used in

Chen et al. (1999), to account for subgrid turbulent mixing.

1.2 Solitary Wave Interactions with a Vertical Wall

Solitary waves propagating past a semi-infinite vertical wall at a normal angle of
incidence have been studied both numerically and experimentally for a range of pa-

rameters, domain shapes, and domain sizes.

Perroud (1957) conducted experiments in a constant water depth wave tank with
water maintained at a depth of 0.061 m. The experiments consisted of generating a

solitary wave both obliquely and normally incident on a vertical wall extending a
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Figure 1.3: Comparison of the constant B from the group velocity relative to Stokes
theory, i.e. 100(c, — ¢g,stokes)/Cq,stokes- B values of -1/3, 0, 1/15, 1/6 correspond to
using Uy, U, Pade’s expansion, and U, respectively. Equations used to generate the
figure are from Madsen et al. (1991).
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Figure 1.4: Comparison of the constant B from the phase velocity relative to Stokes
theory, i.e. 100(c — Csiokes)/Cstokes, for various selected values for B. Equations used to
generate the figure are from Madsen et al. (1991).



fraction of the distance across the tank. The wall used in the tank was .008 m thick
and had a round tip. Two across-tank gap spacings (the distance between the wall
tip and the opposite side of the tank) were studied, .254 m and .508 m, and a range
of wave height to water depth ratios of 0.2 to 0.58 were used. A clockwise rotating
vortex was reported to have formed and the orientation of this vortex is illustrated
by a schematic in Figure 1.5. The strength of the vortex was not measured. As
explained earlier, the strength refers to the magnitude of the velocities in the vortex.
An approximation of 0.0127 m was given as the depression of the surface elevation in

the center of the vortex for a wave amplitude of a = 0.0274 m.

Liu (1984) also conducted experiments of a solitary wave impinging on a wall
at both normal and oblique angles of incidence. Liu (1984) studied the diffraction
of solitary waves by comparing results from a theoretical model which was developed
based on linear diffraction theory to the results of his laboratory experiments. Good
agreement was obtained between the model results and the corresponding experimen-
tal results for incident and reflective wave heights. Some discrepancies were found
in the surface elevations between model and experimental results. It was suggested
that these are attributed to wave diffraction effects and frictional losses and that this
discrepancy is most significant in the 'shadow zone’, the region downstream of the
structure. Although a vortex was observed to have formed near the tip of the break-
water in the experiments, this was not considered as a possible source of energy loss
from the incident wave. The numerical model is not capable of simulating a vortex
because it’s development is based upon potential flow theory. The strength of the

vortex was not measured in this study.

Wang (1993) numerically modeled the interaction of a solitary wave with a wall
at both normal and oblique angles of incidence. The model used was the two equa-
tion model Boussineq developed by Wu (1981). An investigation of solitary wave
diffraction, reflection, and transmission was carried out in this study, however, vortex
formation was not examined because the model generates potential flow and, there-
fore, no vorticity could be generated. They found that their model produced surface
elevations which were comparable to Liu’s (1984) experimental data. It will be shown
that the numerical model used in the present study generates surface elevations which

improve the predictions of 7 relative to Liu’s (1984) results.

Roddier and Ertekin (1999) developed a numerical model based on the theory
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Figure 1.5: Clockwise rotating vortex formed during experiments by Perroud. From
Perroud (1957).

developed by Wu and applied the model to solitary wave propagation along the length
of a vertical structure. The solitary wave is diffracted when it reaches the tip of the
structure and a ’bathtub’ vortex is described to form at the tip (Figure 1.6). The
vortex in this case was actually a singularity which formed as the potential flow turns

the corner sharply. The 'vortex’ in this case is not a physical circulation feature.

1.3 Objectives of the Present Study

In the present study, experiments were conducted which involved a solitary wave prop-
agating along a uniform depth wave flume past a vertical wall. Two different wave
heights were considered in the experiments. As the wave propagates past the wall
structure a vortex forms (Figure 1.1) is shed from the structure, and subsequently
propagates away from the structure. The strength of the vortex was measured as well
as the magnitude and shape of the solitary wave. The numerical model developed
by Shi, et al. (2000) was then employed to simulate the experiments. Several model

parameters such as wave height and tank geometry were based on the experiments.
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Figure 1.6: “Bathtub vortex” formed due to a singularity occurring at the tip of the
wall (from Roddier et al. (1999).



1.4 Outline of Thesis

In the following chapter an explanation is given of both the experimental setup and the
experiments conducted. A description of the numerical model utilized in the present
study is then provided. Several tests were carried out and the descriptions of these
and their results are presented. In Chapter 3 the results of both the experiments and
model are given and comparisons are made between the two data sets. Chapter 4
contains a discussion of the results and comparisons are made to previous works. The

final chapter provides conclusions to the study.
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Chapter 2

METHODS

The first part of this study consisted of a series of experiments which were carried out
at The Center for Applied Coastal Research. The second part of this study consisted
of the implementation of a numerical model to attempt to simulate the experimental
results. A description of the experimental setup, procedure, and experimental tests
will be given followed by a description of the numerical model along with the numerical

tests carried out for this study.

2.1 Experimental Setup and Procedure

Experiments were conducted in the wave flume which had a length of approximately
25 m, a width of .6 m, and a height of .77 m. Figure 2.1 shows a photograph taken,
with a digital Epson camera, of the tank where the experiments took place. A water
depth of .30 m was used for all experiments. A vertical wall extending half-way across
the tank was constructed and placed at the midway point along the length of the
tank, 12.4 m from the wavemaker. Figure 2.2 shows the experimental setup with the
vertical wall extending from the right side of the tank to the center of the tank and the
instrumentation attached to the carriages beyond the breakwater. The structure was
composed of 1.9 em thick plywood which had a width of .30 m and a height extending
above the top of the tank. Figure 2.3 (a) shows a simplistic schematic plan view of

the wave flume.

Solitary waves were generated with a piston-type wave paddle using the following

equation taken from Goring (1978)

11



€)= - [ f(w)dw (2.1)

where £ is the trajectory along which the wavemaker plate moves, w is the dummy

variable of integration, and

0 =k(ct—¢) (2.2)
c=(g(h+ H))"? (2.3)
3H
= (m)l/2 (2.4)
and for solitary wave generation
f(8) =1/ cosh?# (2.5)

To solve this equation for 6, for a given time step, the relation for # is substituted

into equation 2.1 and differentiated with respect to #. Then using Newton’s rule,

F(6;)
=0, — 2.6
fi1 =10 o (6) (2.6)
where Fy = %—5, the solution is given by
(6; — ket + Ltanh(6;))
s =0 - z (27)
" (1+ % (1/ cosh(6;)?))

where ¢ is in seconds.

The wave paddle and data collection were controlled and synchronized using
several computers. The duration of each experiment varied but was approximately
10 s. Each experiment was conducted approximately 20-30 min. apart to allow for
the fluid surface in the tank to calm down completely. The sampling rate for the wave

gages was 20 Hz.

12



Two sets of experimental data were collected. For the first set of data an average
solitary wave height of 5.48 em was used and for the second set of experiments an

average wave height of 10.3 em was used.

Eight wave gages were set up to measure the temporal changes in the free surface
elevation. The gages were calibrated once each day. A total of nineteen data points
were used for the calibration of each gage. During the calibration procedure the gages
were automatically raised and lowered to known depths by 1 em increments and the
wire of each gage is correspondingly emerged and submerged for calibration. In general
the calibration data followed a straight line and the coefficients were obtained from
the least squares error fit to the data points. The linear calibration curves, of volts to
cm, were generated for all gages with the slope and intercept. For each data set 512

data points were collected at a sampling rate of 20 Hz.

The data in units of volts was then converted to units of length (specifically cm)

using the algorithm

n=npf+p2 (2.8)

where f is the data, in volts, to be converted and p; and py are the linear regression
coefficients. Gage 3 was located in front of the structure and was used as the location
for matching up the model data with the experimental data. When the wave crest
passed gage 3 this was marked in the time series as ¢ = 0 and the corresponding location
in the model data was marked as ¢ = 0 in that time series. In this way the two times
series could be aligned with one another. Because gage 3 was stationary throughout
all of the wave experiments, the data from multiple data runs could be aligned with

one another as well. The remaining gages were located behind the structure.

In the experiments, the gages held by the moving carriage, highlighted by the
red rectangle in Figure 2.3 (b) for H = 5.48 e¢m are gages 1, 2, and 4, while gages
3, 5, and 6 are fixed in their location in the tank throughout the experiments. For
the small wave height case there were three gages attached to the nearest carriage to
the structure. The red rectangle indicates the carriage which was moved during each
of the experiments and the arrow indicates the direction of motion of the carriage.
This carriage was moved in between each experiment (by 2 ¢m up to a distance of
37 ecm from the structure and then by 5 ¢m increments to a distance of 62 ¢m from

the structure) to create a 'mapping’ of the surface elevation and velocity data sets.
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For the large wave height case there were five gages attached to the mobile
carriage nearest to the structure and the remainder of the gages were fixed in location
for all of the experiments. The gages on the moving carriage for the case of H =
10.3 em are gages 1, 7, 2, 8, and 4, while gages 3, 5, and 6 are fixed in position and
these positions are indicated by z’s in Figure 2.4 (b). The red rectangle indicates the
mobile carriage and the arrow indicates the direction of motion of the carriage, the
same as for the small wave height case. The carriage was moved by increments of 2 cm
up to a distance of 39 em from the structure and then by increments of 5 ¢m up to a

distance of 69 ¢m from the structure.

Three Sontek acoustic doppler velocimeters (ADV) were used to measure the
velocity field. These were fastened onto the front of the moving carriage for both the
small and large wave height cases and these locations are indicated in Figures 2.3 (b)
and 2.4 (b), respectively by circles. A transducer sends two pulses of sound separated
by a time lag. The receivers face towards the transmitter so that the receive beam
patterns are directed 30° towards the transmitter beam, having a focus at 5 ¢m in
front of the transmitter. The sampling volume is defined as this focus region where
the receive beam patterns cross. As the transmitted acoustic pulse passes through the
sampling volume the energy is scattered in all directions by the particles present in
the water. The receivers then measure the phase of the return signal from the portion
of reflected energy of each pulse. The velocity of the particles in the water is directly
proportional to the change in phase divided by the time between pulses. The sampling

rate for the ADV’s was 20 Hz, the same as for the wave gages.

2.2 Repeatability

By moving the gages down the tank between experiments, an array of data locations
is generated to allow for a mapping of the area where vortex formation and advection
occurs, that is, near the structure location. Figures 2.3 (¢) and 2.4 (c) show the

resulting data arrays generated for the small and large wave height cases.

In order to use this entire array of data locations as one unit it is necessary to
show that the experiments are repeatable to within some reasonably small level of
error. One wave gage and one ADV gage were placed in a fixed location in the tank
and a solitary wave with an average height of 10.3 em was generated 10 times. The

surface elevation and the u and v velocity components were measured. From this data
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means and standard deviations were computed for each point in the time series. The
means (with the standard deviations shown in red) of these computations are shown
in Figure 2.5 for gage 3 located upstream of the structure, gage 1 located downstream
of the structure and the velocity components taken at the location of gage 1. Because
the error levels for all three data components are fairly small, the experiments then

are considered to be repeatable within this level of error.

2.3 Numerical Model

In the second part of this study a numerical model was applied to several cases of
solitary wave generation. In each experiment conducted, the actual wave height gen-
erated varied by up to several tenths of a c¢m, so an average wave height from ten
waves generated in the tank was used as the incident wave height in the numerical
model. The average of the wave heights was determined to be H = 5.48 e¢m for the
small wave height case and H = 10.3 ¢m for the large wave height case. The numerical

model employed was developed by Shi et al. (2000).

2.3.1 Model Description

The numerical model employed in this study was developed by Shi et al. (2000) and is
based on the fully nonlinear Boussinesq equations derived by Wei et al. (1995). The
model equations are derived in curvilinear coordinates and include a term to account
for subgrid turbulent mixing following the work of Chen et al. (1999). After tranfor-
mation to a curvilinear coordinate system the model equations become very complex
expressions and the contravariant component method is used for mathematical simpli-
fication of the system of equations. Details on the contravariant component method
as it is used in this model as well as details of the numerical method beyond what is

provided below are given in Shi et al. (2000).

The fully nonlinear Boussinesq equations written in cartesian coordinates, as ex-
pressed by Chen et al. (1999) (excluding terms for shoreline run-up and wave breaking)
in terms of a reference elevation, z,, and reference velocity, @ = (u,v), are given by

the following forms for mass conservation
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m+V-M=0 (2.9)

where 7 is the surface elevation and M is the mass flux given by

2
. 1
Moo= (bt i+ (bt ) = (0 =+ )] V(Y - )
1 ,
+ (h+n)[za + 5(’1 —n)|VIV - (hid)] (2.10)
and momentum
G+ (@-V)i+gVn+Vi+Va+ R, =0 (2.11)

where ¢ is gravitational acceleration and V; and V5 are the dispersive Boussinesq terms

22

o 1
Vi= EO‘V(V i) + 24 VIV - (hily)] — V[§772V iy + V- (hidy)] (2.12)

Vs = V(e ) V)V (i) 5 (22 ) (9) (V- VIV - (i) 4+ ¥ - (213)

The last term, Rl, is an expression representing the subgrid mixing to account for the
eddy viscosity of the underlying flow. This expression is implemented similarly to that

of Chen et al. (1999) and the x and y components are given by

RZ - %ﬂ[(ys[(h + n)ua]m)x + %(VS[(h’ + ﬁ)ua]y + Z/S[(h + n)va]x)y] (2'14)
RY = %M[%(ys[(h + 0)als + vl(h+ Dualy)e + (wl(h+n)valy),]  (2.15)

here v; is the eddy viscosity due to the subgrid turbulence and is given by

vo = o D w Ay((U + (V) + 5 (U + V) (2.16)
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where Ax and Ay are the grid spacing in the x and y directions, respectively and ¢,

is a constant mixing coefficient.

A series of numerical tests were conducted using a one dimensional version of the
numerical model. A uniform grid was used and the grid domain had a solid boundary
at the end opposite to the side where wave generation occured. The maximum runup
height was measured as the wave reflected off of the solid boundary. Tests were run
for three incident wave heights (H = 3, 6, and 10 ¢m) and three mixing coefficients
(em =0, 3, and 10). A plot of the runup height vs. incident wave height for the three
values of mixing coefficients is shown in Figure 2.6. Plotted along with the model
results are data values obtained from experiments which were conducted by Chan
and Street (1970) and these data values are indicated in the figure. For the range of
mixing coefficients tested, the model results correlate well with the experimental data
plotted. It is clear that for the range of mixing coefficients tested that there is no
discernable effect on the numerical solution for small incident wave heights. For larger
incident wave heights the deviation in the numerical solution is negligible. A mixing
coefficient of 10 was ultimately used for all of the numerical simulations because this

choice resulted in the best physical behavior.

The contravariant component method was used to transform the system of equa-
tions because the kinematical lateral boundary conditions are more easily obtained.
The system of equations for mass conservation written in tensor-invariant forms which

are derived using a contravariant basis method have the form

1 0
e =0 210

with M expressed as

M = (h+n)uk+(h+n)[§—6(h2—hn+ﬂ2)][%ail(\/9_oul)]’“ (2.18)
bl (=l () (2.19)

and the momentum equation becomes

k

8t+g77'k+uu +VFE+VF+RF =0 (2.20)
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with tensors

k Zi 1 0 NI
W= 3[?@(\/9_0%0]- (2.21)
1 0 UNIL
+ Za[?@(\/g_ghut)]. (2.22)
2
9 n 0
- [2\/9—0@(\/9_0“1”%@(\/9_0%9]!'“ (2.23)

0

0
vy o= (Za—ﬁ)ul@[

ﬁm—m(\/g_oh“m)]!k (2.24)

R Rl el eI (2.25)
4 %([ﬁ%(@hdﬂ%%(ﬁoul)}?)!k (2.26)

where here the indices for k,1 and m are 1 and 2, (u',u?) = (U, V), (z', 2?) = (€1, &),

B%k is the partial derivative, (), indicates the covariant spatial derivative, and !¥ rep-

resents the contravariant spatial derivative and is defined by

and
RE— 1w (2.27)
S h4n '
where
L1
T =5(h+nv[Vi+ (V)] (2.28)

Here v is the diffusion coefficient and T represents the stress tensor.

_OF

1k

(2.29)

where ¢** is the contravariant basis.

A staggered grid system is used in the transformed image domain and the time

integration was performed using a fourth-order Adams-Bashforth-Moulton predictor-
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corrector scheme. There is a fourth-order discretization of the first-order spatial deriva-
tives by the use of the standard five-point finite-differencing, and a second-order dis-
cretization of the dispersive terms. This accuracy ensures that the truncation error
does not include terms which are mathematically similar to the actual dispersive terms
(Shi et al.,2000).

F. Shi (personal communication) demonstrated that this numerical model shows
improved prediction of the surface elevation over the model by Liu (1984) when com-
pared with experimental data collected by Liu (1984). Figure 2.7 shows the data for
two stations, station A which is located in a wave tank upstream of a breakwater and
station B which is located in the ’shadow zone’, downstream of the breakwater. The
figure shows data from Liu’s experiments, results from Liu’s linear theory, and results
using the model developed by Shi et al. (2000). It is clear that model results using
the numerical model developed by Shi et al. (2000) provide an improved prediction of

the surface elevation as compared to the linear theory (Hommel et al., 2000).

2.3.2 Model Grid

The numerical model was developed for a generalized curvilinear grid which is stag-
gered in the transformed image domain. The Figure 2.10 shows an example of this
which is the stretched grid utilized by the model in the present study. The purpose
of using a stretched grid is to allow for higher resolution around the region where
the structure is located while, at the same time, maintaining computational efficiency.
The range of grid resolutions used was from 1.9 ¢m to 7.6 em. The grid varies linearly
in x only and this stretching is described by

x; = xi_1 +.076 — s; (2.30)

where x; is in meters and s; is the stretch factor defined by

s; = (i — 11)(.00114) (2.31)

for x < 12.42 m and

s; = (12 — i)(.00114) (2.32)
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for © > 12.42 m. The variable /1 (12) is the grid point in the z direction where the
stretching begins (ends) and i is the iteration number from grid point to grid point. In
the present study /1 = 131 and [2 = 283. A plot of z; is given in Figure 2.8. Grid points
less than 131 and greater than 181 have a dx of 7.6 cm and grid points in the range of
131-181 have a dz of 1.9 em so there is a uniform, fine grid resolution in the vicinity of
the structure. There are discontinuities in the grid spacing in the x dimension of the
grid. A plot of the change in the grid resolution is shown in Figure 2.8. The model was
tested to ensure that the numerical solution was consistent when either the uniform or
variable grids were used. The model was run using the uniform grid and the stretched
grid and the numerical solutions were plotted together and are displayed in Figure 2.9.
The geometry of the uniform grid is illustrated in Figure 2.11. It is clear from the

figure that the solutions are consistent using either grid type.

2.3.3 Model Parameters

Several model parameters were largely determined by the experiments. The fluid
depth in the numerical model was .3 m and the structure representing the vertical
wall in the tank had a width of .3 m and a thickness of one grid point (1.9 c¢m).
This is equivalent to the physical thickness of the wall. The Courant number was
held constant (=0.180) throughout all of the experiments and was calculated based on
the finest grid resolution used in the model grid which was 1.9 em. The breakwater

structure is located at x = 12.42 m. The model grid dimensions are 406 x 32.

2.3.4 Test For Convergence

A series of model runs were carried out for the purpose of testing convergence of the
numerical model, to examine the effect of different grid resolutions on the numerical
solution. Tests were run for grid spacings of 0.076 ¢m, 0.038 ¢m, and 0.019 ¢m. Results
from these tests are shown in Figure 2.12 for ¢ = 0 s and ¢ = 5.28 s. From these results
it is clear that there is no significant variation in the numerical solution for all three
cases. The larger grid spacing was included in the test for the purpose of determining
the extent to which the model grid could be stretched.
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2.3.5 Vortex Formation

The vorticity in the fluid is obtained by taking the curl of the momentum equation

V x [dy + (G- V)i +gVn+Vi+Va+ R,] =0 (2.33)
This gives
N . - > -
E—F(U-V)Q:—(Q-V)u+VXRs+VXW+VXV2 (2.34)
where
Q=Vxa (2.35)

is the vorticity vector and is oriented vertically and V x R, contains the eddy viscosity
term while (@ V)Q represents the advection of vorticity and comes from taking the curl
of the advective acceleration term in the momentum equation. The term —(2 - V)4
represents vortex stretching. The complete form of the advective acceleration may be

expressed as

1 .
(it V)il = 5V (it i) i x & (2.36)

If the form of the advective acceleration is $V (i - @), as in some models, then

the curl of this term looks like

VX(%V@-@)ZO (2.37)

and no advection and stretching of vorticity results. A more thorough investigation of
this subject is given by Gobbi et al. (2000). The form of the advective acceleration
which allows for the advection of vorticity is (@ - V)@ and not $V(@ - @). The eddy
viscosity allows for separation of the fluid and it is this process of fluid separation which
(in the present study occurs at the tip of the breakwater) is the source for vorticity.
Therefore, in order to numerically simulate the phenomena of vortex formation and
advection it is necessary to have both the source of the vorticity (fluid separation) and

the advective acceleration in the correct form.
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Figure 2.1: Digital photograph showing the wave flume at CACR used for the experi-
ments.
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Figure 2.2: Digital photograph showing the breakwater and instrument setup.
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Figure 2.3: (a) Wave flume, (b) gage locations, and (c¢) data locations for H = 5.48 c¢m.
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(a) Wave Flume Geometry
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Figure 2.4: (a) Wave flume, (b) gage locations, and (c) data locations for H = 10.3 ¢m.
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(a) Mean and Standard Deviation of ) from 10 Waves (gage 3)
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Figure 2.5: Repeatability tests for solitary waves with an average H = 10.3 em.
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Figure 2.6: Wave runup vs. incident wave height. Nine numerical tests were carried
out, three different wave heights (H = 3, 6, and 10 ¢m) for each of three mixing

coefficients (¢, = 0, 3, and 10). Circles represent experimental data from Chan and
Street (1970).
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Figure 2.8: Plot of grid points and corresponding = and dx values for the tank.
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Figure 2.9: Numerical solution for both the uniform and variable grids. In (a) ¢ = 0
and ¢t =7.29 s in (b).

29



O o o o o o
o = N W O~ o0 o
O o
N R TTTRITLPPY
—
QO [*ecvcvecccccccscsccsccccccccccccccce

............................... w
.
=
@
X o
—_ >
D
3 g
Q
=.
a
_.._L llllllllllllllllllllllllllllll
o
N TR TLY
o lllllllllllllllllllllllllllllll
N L
o

Figure 2.10: Stretched grid utilized by the model.

30



pub wioyun

N L
o

Figure 2.11: Uniform grid utilized by the model.

31



0.06

0.05

0.04
£0.03
0.02

0.01

12 14 16 18

0.06 T T T T T T T T
— dx=.019
0.05H — dx=.038
— - dx=.076
0.04F
Eoo3f
c
0.02F
0.011
0 = —+ —- == —+—
0 2 4 6 8 10

Figure 2.12: Convergence tests showing the surface elevation at ¢ = 0 in (a) and
t =5.28 s in (b).

32



Chapter 3

RESULTS and COMPARISONS

The results from the modeling part of this study are presented first followed by results
from the experiments that were conducted. Comparisons between data and model

results are made in this chapter and will be discussed in the following chapter.

3.1 Surface Elevation Data

The time series of surface elevations from the numerical model were overlayed on top
of the time series of experimental data for corresponding locations in the domain of the
wave flume to show how the temporal changes in the surface elevation occur throughout

a single model run as a solitary wave propagates past the breakwater structure.

3.1.1 Small Wave Height

The data is plotted in several ways to facilitate understanding of the fluid processes
in this study. The data for H = 5.48 ¢m in Figure 3.1 shows a spatial arrangement
representative of the x and y wave gage locations in the tank relative to one another for
the small wave height case. The correlation between the model and the experiments is
very good in general, but with some differences. For example, the surface elevation in
the experimental and model data decreases by more than 1 ¢m when the transmitted
solitary wave reaches the gage at = 12.55 m, y = 0.30 m but by the time the
transmitted solitary wave reaches gage 5 at x = 13.83 m, y = 0.40 m the surface

elevation returns to that predicted by the model data.

33



Figure 3.2 shows 7 time series comparisons between model and experimental data
at the six z locations, from the moving carriage, highlighted in red in Figure 2.3 (c).
There is a slight overprediction of the surface elevation at z = 12.55 m, y = .50 m
and at © = 12.55 m, y = .30 m. Moving away from the structure (in the positive x
direction) the model prediction improves. This can be seen more clearly in the data
plotted in Appendix A for all three gages on the moving carriage, 1, 2, and 4. The
entire array of x locations for the data shown in Appendix A are plotted in Figure 2.3
(c). The time series data in Appendix A show that there is a significant decrease in
the experimental data at gage 2 for x = 12.64 — 12.80 m, y = 0.30 m. This may
be a physical phenomenon or it may be due to instrument error. More data needs
to be collected before this may be determined. The model slightly underpredicts the
wave height for x = 12.57 — 12.63 m and the predictions at gage 1 are very good and

improve with increasing x to capture details in the wave structure extremely well.

Figure 3.3 shows 7 contours of four instances in time from the experimental data.
The plot was formulated by taking the surface elevation data collected from all of the
z locations shown in Figure 2.3 (c) and forming contours of the surface elevation at
four instances in time. The gap in the data, to the right of the structure, is due to an
inability to move the instruments any nearer to the structure. The vortex location is
indicated by a depression in the surface elevation and the contours at ¢ = 5.2 s with
values of n = —1.5 em and n = —1.0 ¢m show the first sign of the vortex. At t =5.2 s
the vortex had begun to move downstream of the structure and is also moving in the
increasing y direction. The depression at the core of the vortex increases to greater
than —2.0 ¢m indicated by the contour line of n = —2.0 cm at t = 5.4 s. As the vortex
begins to spread out the surface depression dissipates and this is illustrated by the
contour plots at ¢t = 5.5 s and ¢t = 7.25 s. Dissipation of the surface depression at the
core of the vortex occurs over several seconds, however, the vortex itself was observed

to persist for several minutes.

Contours of n from the model data for the small wave height case are shown in
Figures 3.4 and 3.5 for eight time steps. In these figures it is clear that there is a surface
depression in 7, representing the vortex core, and that this signature of the vortex is
advected away from the structure. The magnitude of the surface depression increases
to nearly —1.0 em at ¢ = 3.4 s and then by t = 3.9 s the vortex has begun to spread
out and the surface signature dissipates. The model underpredicts the magnitude of

the surface depression observed in the experimental data.
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Velocity vectors were plotted over contours of surface elevation in Figures 3.6 and
3.7 for the same eight time steps to verify the temporal and spatial coincidence of the
depression in the surface elevation, which is being called here the surface signature,
with the vortex itself. The vortex location is represented in these figures by a closed
loop of velocity vectors. These plots show that as the vortex forms the surface becomes
depressed at the center of the vortex and this surface depression is advected away from
the structure along with the vortex. Once the surface signature dissipates, the vortex

persists beyond that time.

3.1.2 Large Wave Height

Similar results are observed for the large wave height case as for the small wave height
case. Figure 3.8 shows the time series of surface elevation data comparing model
and experimental data. The individual plots are arranged according to the way the
instruments were set up in the tank. For the large wave height case there is increased
resolution in the cross-tank (y) direction because there are two additional gages on
the moving carriage (compare Figures 2.3 (¢) and 2.4 (c¢)). Comparisons between the
model and experimental data in general are not as good near the structure for gages 1,
7,2, 8, and 4. However, comparisons improve dramatically further from the structure.
This can be seen more clearly in Figure 3.9 representing several time series of 7 for the
x locations marked in red in Figure 2.4 (¢). There is a surface depression, indicative
of the location of the vortex core (or proximity to the vortex core) at x = 12.49 m,
y = 0.40 m. The signature of the vortex, manifested as a depression in 7, is actually
evident in several of the gage locations. Appendix B shows the time series data for the
five gages on the moving carriage for all of the = locations shown in Figure 2.4 (¢). The
prediction of n improves by the time the transmitted solitary wave reaches a distance
of only 14 ¢m downstream of the breakwater. Here the model captures detail in the
wave structure extremely well. The model simulation of the transmitted solitary wave
is particularly good for gages 1, 7, and 2 for x > 12.57 m. Gage 8 predicts n well and

gage 4 slightly overpredicts the experimental data for all z locations.

Figures 3.10 and 3.11 shows 7 contours for eight instances in time from the
experimental data. These figures were generated in the same manner as was described
for the small wave height case. The contours in Figure 3.10 at ¢ = 3.3 s show the

first stages of the vortex generation indicated by the contour line n = —0.03 m. At
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t = 3.4 — 3.5 s the surface deformation increases in magnitude to a value greater than
17 = —.05 m. The vortex moves in the increasing y direction. In Figure 3.10 at t =4 s
and in Figure 3.11 at t = 4.1 — 4.3 s the vortex moves downstream and then in the
direction of increasing y. At t = 4.4 — 5.2 s the depression of the water surface begins

to dissipate though the vortex itself was observed to persist for several minutes.

Contours of the surface elevations from the model are shown in Figures 3.12
and 3.13 for eight time steps. The depression in 7 forms over the time interval t =
1.5 — 1.8 s and during this time the depression in 1 seems to move slightly upstream.
Subsequently, the surface signature is advected downstream and this is illustrated by
the contours at t = 2.2—2.3 s. It is not clear why the surface depression initally moves
upstream in the model but it is thought to be erroneous and this is something that

needs to be investigated further.

Figures 3.14 and 3.15 show contours of n overlayed with velocity vectors. For
the large wave height case the vortex is first formed at approximately ¢ = 1.8 s
as evidenced by the closed loop of velocity vectors. The advection of the surface
depression downstream of the structure at ¢ = 2.2 — 2.3 s is coincident with the
movement of the vortex. The magnitude of the surface depression is nearly n =
—0.01 m. This, again, underpredicts the magnitude of the experimental data which

shows that a maximum is reached of n > —.05 m.

3.2 Vorticity Data

The vorticity, generated by taking the curl of the momentum equations as described
earlier, can be a convenient way to view the velocity field and evolution of the flow
field over time. In both the experimental and numerical parts of the study, a vortex
was generated and the strength of this vortex may be visualized through consideration
of the vorticity field. In order to view the vorticity of the experimental data it would
be necessary to obtain a high resolution data set. In the present study this was not
possible. However, it is possible to view the vorticity of the numerical data and this

is presented below for both the small wave height and large wave height cases.
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3.2.1 Small Wave Height

In Figures 3.16 and 3.17 the vorticity field generated from the instantaneous velocity
fields is plotted with the instantaneous velocity vectors superimposed. Eight differ-
ent time steps illustrate how the vortex forms and is shed from the structure and is
subsequently advected downstream. The vortex core initially forms at y < 0.3 m and
x < 12.5 m and, subsequently, as the vortex is shed from the structure it moves to-
wards both larger x and y values. This pattern of movement of the vortex corresponds
to what occurs in the experiments as well. The strength of the vortex is greatest
during the initial formation and decreases as the vortex separates from the structure
and propagates downstream. This makes sense since the only forces acting after the
solitary wave propagates past the breakwater are viscous forces. For the time steps

shown the maximum horizontal velocity is u = 0.70 m/s.

3.2.2 Large Wave Height

The vorticity field for the large wave height case is similar to the small wave height
case. Figures 3.18 and 3.19 show the vorticity field overlayed with the velocity vectors
for eight times steps as shown. For the time steps shown the maximum horizontal
velocity is u = 1.08 m/s and the maximum vorticity occurs during vortex generation.
The vortex follows a similar pattern of movement as the experimental data. Vortex
generation initially occurs at y < 0.2 m and x < 12.65 m and, subsequently, as the

vortex is shed from the structure it moves towards both larger x and y values.

37



0.06

0.04
€ — observed
£0.02 — - model
0

o 1t 2 3 4 01 2 3 4 01 2 3 4 01 2 3 4
time (s) time (s) time (s) time (s)
0.06
gage 4
ﬁ\x:12.53m
oo \y=0.10m
£
=0.02

time (s)
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Chapter 4

DISCUSSION

The surface elevations from both the model and experimental data are discussed and
comparisons are made to previous studies. The total circulation of the fluid is cal-
culated and it’s relevance to this study is discussed as well. Additionally, there is a

section on vortex formation and a discussion of vortex characteristics.

4.1 Surface Elevation Data

The predictions of surface elevations by the model vary somewhat for both cases.
Generally, comparison’s of  between the model and experimental data are fairly good
near the breakwater and model predictions are very good further downstream of the
breakwater structure. Details in the wave structure are captured extremely well by

the model at some of these locations (see Appendix B).

Wang (1993) compared surface elevations from his numerical model to data col-
lected from Liu’s (1984) experiments. His results agreed fairly well with the experi-
ments except it is noted that the wave heights from the experimental data are smaller
due to dissipation effects not accounted for in the model. It was also observed that the
amplitude of the transmitted solitary wave varies along the crest of these waves. An
across tank oscillation has also been reported to occur in the experiments by Perroud
(1957). In the present study there is substantial variation along the crest of the trans-
mitted wave and this is illustrated in Figure 4.1 comparing 1 between the model and
the experiments at ©+ = 12.53 m for H = 5.48 em. The figure shows both the model

results (solid line) representing the surface elevation in the across tank (y) direction
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with the experimental data (circles). The magnitude of the cross tank oscillation is
illustrated as the solitary wave propagates past the structure. As the solitary wave be-
gins to propagate past the structure the water surface rises more rapidly for y > 0.3 m
(Figure 4.1, ¢t = 0.5 — 1.4 s). Diffraction of the wave then causes the n surface to
rise higher for y < 0.3 m (Figure 4.1, ¢ = 1.5 — 1.7 s) indicating a piling up of water
downstream of the structure in the ’shadow zone’. Finally, after the solitary wave has
propagated downstream and the vortex has also moved downstream of the structure,
the surface elevation returns to a level surface. The surface deformation occurs more
rapidly in the experimental data but the surface returns to a level surface over the
same approximate time interval in both the model and the experimental data. In
the experimental data there is some change in the surface elevation from y > 0.3 m
to y < 0.3 m but it is not as large in magnitude as is evident in the model data.
The depression near y = 0.30 visible at ¢ = 1.3 — 1.7 is thought to be due to vortex
generation. The surface deformation has the greatest magnitude where the vortex is

generated, near the breakwater, and this is illustrated in the following section.

4.2 Characteristics of Vortex Formation

Figure 4.2 shows a schematic of a theoretical stationary vortex to illustrate simplisti-
cally how the velocity magnitude varies across the vortex in the present study. The
velocity increases from the outer edge to a maximum velocity (moving across the vor-
tex towards the center) and then reduces in magnitude again to a viscous core at the
center of the vortex. Theoretically, there is a stagnation point at the core of the vortex

and this is observed in both the experimental and numerical results as well.

Initially, when the vortex is first generated, the vortex has a small diameter and
over time it was observed that the vortex spreads out resulting in a larger area of fluid
rotation. This can be observed best in the model data. In Figures 3.6 and 3.7 for
the small wave height case at time steps ¢t = 4 s, the velocities are the largest and
only a small area of fluid is rotational. At ¢ = 4.5 — 6.5 s the area of fluid rotation
has increased but the magnitude of velocities has decreased. Figures 3.14 and 3.15

showing the model data for the large wave height case show a similar pattern.

As stated in the introduction, the results of the study by Sumer and Fredsge
(1996) showed that vortices forming at the head of the breakwater are the primary

cause of erosion. In the present study it has been shown that a vortex forms as a
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Figure 4.1: Profile of n across the width of the tank. The circles represent experimental
data points and the solid lines are from the model output.
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Figure 4.2: Schematic showing velocity magnitudes across a Rankine vortex.

result of unsteady flow past a breakwater at normal incidence. Plots of the model
velocity vectors also show an increase in the velocities associated with the vortex
corresponding to an increase in the wave height. It would be expected that a vortex
with larger magnitude velocities would have a more significant erosional effect than a
smaller vortex with reduced velocities. If a vortex persists in the generation region,
significant erosional effects could result, depending upon the strength of the vortex,

which could threaten the integrity of the structure.

In the work conducted by Perroud (1957) a vortex was generated by a solitary
wave, nonuniform flow, past a vertical structure, however, he observed that the vortex
persisted near the structure and was not immediately advected downstream. In the
present study, as has been mentioned previously, the vortex generated from nonuniform
flow past a structure was advected away. Further investigation is needed in order
to understand the circumstances which determine whether or not the vortex will be
advected downstream. One familiar example of flow past a structure producing a

single shed vortex comes from the field of aerodynamics.

In aerodynamics it is well known that a steady flow past an airfoil, for a specific
angle of incidence to the ambient flow direction, results in the generation of a vortex
which is then shed from the airfoil. Figure 4.3 shows a sequence of images as the flow
starts up past an airfoil. In Figure 4.3 (a) just after start-up the flow is irrotational
and inviscid. A stagnation point occurs on the upper surface of the rear of the airfoil.

This occurs theoretically and is not physically realizable. The flow cannot make the
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Figure 4.3: Steady flow past an airfoil (White, 1999).

sharp turn and separation occurs which causes a starting vortex to form (Figure 4.3

(b)). This starting vortex is shed and is advected downstream as shown in Figures 4.3
(c) and (d).

In order to adequately compare results from previous studies with the present
study it is necessary to consider the differences in the model parameters used. The
parameters from three studies are given in Table 4.1 and comparisons of nondimen-
sionalized parameters from the same three studies are presented in Table 4.2. Further
investigation is necessary to determine how these variables effect vortex propagation

downstream.

In the experiments the depression (d) in 1 occurring at the center of the vortex
(scaled by the wave height), for the small wave height case, is approximately d/H =
0.46 for an H/h = 0.18. For the large wave height case the depression is approximately
d/H = 0.58 of the incident wave height for an H/h = 0.34. Perroud (1957) estimated
that the surface depression was approximately d/H = 0.47 of the incident wave height
for an H/h = 0.45. Liu (1984) observed that a vortex formed during his experiments,
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Table 4.1: Comparison of parameters used in three studies. H=incident wave height,
L=wall length, W=tank width, h=fluid depth, d=surface depression at the center of
the vortex.

Study L(m)|W (m)|H (cm)| h(m) |d(m)
Perroud (1957) 88-.62 | 1.12 2.7 .061 -.013
Liu (1984) 3.02 4.00 .65-2.2 | .050-.052 | N/A
Present study (case 1) | .30 .60 5.5 .30 -.025
Present study (case 2) | .30 .60 10.3 .30 -.060

Table 4.2: Comparison of nondimensionalized parameters for three studies.
H=incident wave height, L=wall length, W=tank width, h=fluid depth, d=surface
depression at the center of the vortex.

Study H/h | L/W |d/H
Perroud (1957) b8 | .78-56 | -.47
Liu (1984) 13-42| 76 |N/A
Present study (case 1) | .18 .50 -.46
Present study (case 2) | .34 .50 -.58

however, no measurement was given for the surface depression at the center of the
vortex in that study. Based on this evidence, it is difficult to determine the relationship

between the surface depression and the parameter H/h.

The reference to a surface depression is being used in the present study as a
signature of the vortex location and as a reference for comparison with the model
results. It is of interest to find that the numerical model predicts this depression
in 7 (despite the underprediction in magnitude) and that the surface depression is
advected with the vortex as shown in Figures 3.6 and 3.7. The surface depression in
the model data begins to dissipate over approximately 2 s similar to what is observed
in the experimental data. The prediction of this signature by the model is further
verification of the model’s ability to simulate the fluid motion that was observed in

the experimental data.

From the model data it was illustrated, by contours of  (Figure 3.4), that the
vortex is identified by a surface depression, however, the magnitude of the deformation

is underpredicted by the model. Figure 4.4 shows plots of 1, from the model data,
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for six time intervals to illustrate the evolution as well as the variability of the surface
deformation that occurs as the vortex is being generated and advected downstream.
The incident wave is just passing the vertical wall at ¢ = 4 s and the vortex is being
generated. The surface deformation is greatest as the vortex is being generated. After
the wave has moved past the breakwater, the vortex is shed from the structure and
begins to propagate downstream (¢ = 4.4 — 5.6 s). The signature of the surface
depression dissipates more rapidly (approximately 0.5 s) in the model than in the
experimental data (2.0 s) for the small wave height case. The vortex itself persists for
several minutes in the model results and this is similar to what was observed in the

experimental data.

Figure 4.5 shows the trajectories for the vorticies formed in both the experiments
and the model for the small wave height case. Each trajectory was generated by es-
timating the center position of the vortex from contour plots of surface elevation at
selected time steps. Although vortex formation and advection are predicted by the
model, this figure shows the temporal and spatial differences between the model and
experimental data, for the process of vortex formation and advection. The vortex
formed in the model travels farther and more rapidly downstream than in the exper-
iments and does not travel far in the increasing y direction. The vortex generated in
the experiments traveled in the increasing y direction and impacted on the side wall

and began to travel downstream.

4.3 Circulation

As described previously in the methods chapter, in order to have vortex formation
as well as advection from the structure it is necessary to be able to simulate flow

separation. In addition, the form of the advective acceleration must be of the form

(@-V)u (4.1)
rather than
| P
§V(u - 1) (4.2)
If the latter form is used then there will be no advection and if, additionally,
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there is no eddy viscosity flow separation will not occur to provide a source for the
vorticity. To verify this theory using the numerical model, the total circulation was
calculated for both forms of the advective acceleration. The total circulation is defined

as the line integral of the tangential velocity along any closed contour curve s,

r:fa.d} (4.3)

Most of the model domain was used as the control volume for the computation as
shown by the arrows in Figure 4.6 (a). The positive direction used for the computation
was chosen, following convention, to be counter-clockwise. For the first case Figure 4.6

(b) the form of the advective acceleration used was

1
§V(ﬁ - 1) (4.4)
and no source term for the vorticity. The flow in this case is irrotational. For the
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Figure 4.6: (a) Control volume used for computation of I', (b) I" for the potential flow
case, (c) I' for the nonpotential flow case
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second case Figure 4.6 (c) the form of the advective acceleration used was

(@ V)i (4.5)

and eddy viscosity was included so in this case the fluid has vorticity. For the irrota-
tional case the total circulation theoretically should be zero for all time. And in the
figure it is nearly zero with a small increase occurring around ¢ = 4 s due to numerical
error. For the second case, the fluid is not irrotational, there is a net negative cir-
culation. This makes sense because the positive direction for the computation of the
total circulation was chosen to be counter-clockwise and the vortex which forms has
a clockwise rotation so the total circulation should become negative over time for this
case and this is in fact the result. If the vortex was shed and did not propagate down-
stream and was small in diameter so that it’s presence did not effect a large portion
of the fluid domain then the total circulation would be expected to become negative
and reach some maximum value and then begin to decrease over time as the intensity
of the vortex dissipates over time. However, in this case the vortex is shed and is then
advected downstream. So over time more of the fluid in the model domain becomes
effected and so the total circulation continues to decrease with time. The intensity of
the vortex itself is decreasing with time, however, over the entire control volume more
of the fluid becomes rotational. If the model simulation were continued eventually the
vortex would spin down to the extent that the surrounding fluid motion would also

decrease and the a maximum of the total circulation would have been reached.

[lustrations of how the flow fields in these two cases differ is shown in Figures
4.7 and 4.8. The velocity vector field for four time steps is shown in Figure 4.7. No
vortex forms over time in this case. In Figure 4.8 velocity vectors for the same four

time steps shows that in this case the vortex is formed and is advected.
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Chapter 5

CONCLUSIONS

The interaction of a single solitary wave with a vertical wall is studied. It is shown using
both numerical model results and experimental results that a single vortex forms which
persists for some time. The vortex, once formed, is shed and subsequently advected
from the structure and propagates downstream. Two cases are considered, a small

wave height case, H = 5.48 cm and a large wave height case, H = 10.3 cm.

Surface elevations for both wave heights are predicted by the model to be fairly
close to the experimental data and the prediction improves significantly a small dis-

tance from the structure.

It was found that in order for vortex formation and advection from the structure
to occur, it is necessary to have a source of the vorticity, and in this study eddy viscosity
was included which allowed the fluid to separate as it flowed past a sharp corner. The
source of vorticity comes from the occurrence of fluid separation. Additionally, it is

necessary to have the advective acceleration in the form

(@ V)a (5.1)

rather than in the form

%V(ﬁ. ) (5.2)

To derive the vorticity of the fluid the curl of the momentum equations is cal-
culated. If the acceleration term has the form given by equation 5.1 then the curl of

this term gives rise to advection of vorticity. If the acceleration term is of the form in
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equation 5.2, the curl of this term is zero, therefore, no advection of vorticity arises.

From contours of surface elevations and from plots of the vortex trajectories for
the small wave height case it was shown that vortex formation and advection occurs
in the model, however, this process is temporally and spatially offset compared with
the experimental data. It was observed that a surface depression forms, located at the
center of the vortex, and persists for approximately the same length of time in both
the model and experimental data, however, the model underpredicts the magnitude of

the surface depression observed in the experimental data.

Verification of the model, showing that the potential flow case was in fact irro-
tational, was determined by computing the total circulation of the fluid in the model
domain. For the potential flow case the total circulation should theoretically be zero
for all time and in the model results it was shown that the total circulation has a near
zero value over time (the deviation from zero due possibly to numerical error). For
the rotational flow case the total circulation has a net negative value over time. A
maximum negative value would be expected for a wave flume with an infinite length
but in this study the wave flume had a finite length, so the solitary wave reflected
off of the end of the tank and propagated back through the model domain before a

maximum value could be reached in the data.

In the present study it was observed that the vortex, once formed, is advected
downstream of the structure. Previous studies do not consistently report that a vortex
which is shed from the structure is also advected. In order to predict whether advection
of the vortex would in fact occur this process needs to be compared with previous

studies to try to determine the factors necessary.

It was suggested that the persistence of the vortex in the same location as well
as the strength of the vortex would have an effect on the erosional processes near the
structure so this is an important aspect of this study and would be worthy of further
consideration. It was observed, principally from the model data, that the strength of
the vortex was greatest during initial formation and decreases as the vortex is shed from
the structure and propagates downstream. Energy losses from the solitary wave due to
vortex formation need to be determined in order to more accurately estimate erosional
effects. In order to carry out an energy analysis, measurements of the velocities within

the vortex are necessary.
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Appendix A

Time series of 1 from wave gages
on the moving carriage for the
small wave height case
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Figure A.1: Time series of surface elevations for z = 12.53—12.63 m and H = 5.48 cm.
The solid line is the experimental data and the dashed line is model results.
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Figure A.2: Time series of surface elevations for z = 12.64—12.72 m and H = 5.48 cm.
The solid line is the experimental data and the dashed line is model results.
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Figure A.3: Time series of surface elevations for z = 12.74—12.80 m and H = 5.48 cm.
The solid line is the experimental data and the dashed line is model results.
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Appendix B

Time series of 1 from gages on the
moving carriage for the large wave
height case
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Figure B.1: Time series of surface elevations for x = 12.49—12.55 m and H = 10.3 cm.
The solid line is the experimental data and the dashed line is model results.
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Figure B.2: Time series of surface elevations for x = 12.59—12.64 m and H = 10.3 cm.
The solid line is the experimental data and the dashed line is model results.
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Figure B.3: Time series of surface elevations for x = 12.66 —12.72 m and H = 10.3 cm.
The solid line is the experimental data and the dashed line is model results.
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Figure B.4: Time series of surface elevations for x = 12.74—12.82 m and H = 10.3 cm.
The solid line is the experimental data and the dashed line is model results.

83



