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Abstract

This document reports the development of tsunami inundation maps for the region
covered by the NGDC tsunami DEM for Virginia Beach, VA. Section 1 describes
NTHMP requirements and guidelines for this work. The location of the study and the
bathymetry data utilized are described. Tsunami sources that potentially threaten the
upper East Coast of the United States are briefly discussed. Modeling inputs are de-
scribed in the Section 3, including model specifications and simulation methods such
as nesting approaches used in generating inundation maps. The process of generating
inundation maps from tsunami simulation results is described in Section 4, along with
other results such as arrival time of the tsunami. GIS data sets and organization, in-
cluding inundation maps, maximum velocity maps, maximum momentum flux maps,
are described in Appendix A. Modeling inputs for simulation are provided in Ap-
pendix B for interested modelers. In Appendix C, NTHMP guidelines for inundation

mapping are provided.
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1 Introduction

The US National Tsunami Hazard Mitigation Program (NTHMP) supports the develop-
ment of inundation maps for all US coastal areas through numerical modeling of tsunami
inundation. This includes high-resolution modeling and mapping of at-risk and highly
populated areas as well as the development of inundation estimates for non-modeled and
low hazard areas. This report describes the development of inundation maps for a region
covered by the Virginia Beach NGDC tsunami DEM (Taylor et al, 2008).

In section 2, background information about the mapped area is provided. Possible
tsunami sources that threaten the United States East Coast (USEC), and are considered in
this analysis, are described. Modeling inputs are described in section 3. Section 4 presents
simulation results and the development of mapping products. The process of obtaining
the tsunami inundation line, which is the most significant result of this work, is explained
in this section. Three appendices provide information about GIS data storage and content
(Appendix A), modeling inputs (Appendix B), and NTHMP inundation mapping guide-

lines (Appendix C).

2 Background Information about Map Area

2.1 Location of coverage, and communities covered

The National Oceanic and Atmospheric Administration (NOAA), National Geophysical
Data Center (NGDC) have generated digital elevation models (DEM) as input for studies

focusing on hazard assessment of catastrophes like tsunamis and hurricanes at a number



of U. S. coastal areas. The Virginia Beach NGDC DEM covers the Atlantic coasts of
Virginia (Taylor et al., 2008). The DEM covers the coastal area surrounding the city of
Virginia Beach and the mouth of Chesapeake Bay. Figure 1 shows the coverage area of this
DEM. NGDC DEM'’s are provided in latitude/longitude coordinates with 1/3 arc-second
resolution. The vertical datum is mean high water (MHW), and vertical elevations are in

meters. More information about the bathymetry data is given in Section 3.2.

2.2 Tsunami sources

A general overview of historic and potential tsunamigenic events in the North Atlantic
Ocean is provided by Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group
(2008). In this project, tsunami sources that threaten the US East Coast (USEC) were
categorized into three main categories, and have been studied separately due to their dif-
ferences in physics and location. First, two seismically active sources in the Atlantic Ocean
were used; a subduction zone earthquake in the Puerto Rico trench, and a simulation of the
historic Azores Convergence Zone earthquake of 1755. A far field subaerial landslide due
to a volcanic collapse in Canary Islands is also modeled. Finally, near-field Submarine
Mass Failure (SMF) close to the edge of USEC continental shelf are used here as well.
A brief introduction and references to detailed studies of the sources are provided in this

section.

2.2.1 Coseismic sources

2.2.1.1 Puerto Rico Trench: Previous research has confirmed the possibility of large

earthquakes in the Puerto Rico Trench (PRT) in the Caribbean Subduction Zone (CSZ)
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Figure 1: Location of the NGDC Virginia Beach DEM (Taylor et al, 2008). Color bar
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(e.g. Grilli et al., 2010). These studies implied that an extreme event with return period
of 200 to 300 years could be powerful enough (M,, = 9.0) to rupture the entire PRT and
initiate a tsunami that will influence the USEC. Grilli and Grilli (2013a) have carried out
detailed computations for that event to be used as initial conditions for tsunami inundation

mapping on the USEC.

2.2.1.2 Arzores Convergence Zone: The other coseismic source used here is located on
the Azores Gibraltar plate boundary, known as the source of the biggest historical tsunami
event in the North Atlantic Basin (Gonzalez et al., 2007). The 1755 Lisbon earthquake
(M, = 8.6—9.0) generated tsunami waves with heights between 5 to 15 meters, impacting
the coasts of Morocco, Portugal, Newfoundland, Antilles, and Brazil. The procedure for
obtaining the initial condition for tsunami propagation is quite similar to the PRT rupture

and is discussed in Grilli and Grilli (2013b).

2.2.2 Volcanic cone collapse

In recent years, a potential cone collapse of the volcanic cone Cumbre Vieja (CVV) in
the Canary Islands has received attention as a possibly catastrophic source threatening
the USEC. In this project, a multi-fluid 3D Navier-Stokes solver (THETIS) was used to
compute the volcanic collapse tsunami source (Abadie et al., 2012; Harris et al., 2012).
Detailed description of the CVV modeling for use in this project is described in Grilli
and Grilli (2013c). Here, two different slide magnitudes were studied; an 80 km? slide,
representing a plausible event in a return period window on the order of 10,000 years,
and a 450 km? source, consistent with estimates of the maximum event for the geological

feature. The magnitude of the latter event is significantly larger than all of the other cases
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studied in this project. Thus, it was decided to exclude the 450 km? source from inundation
line calculations, and illustrate its results separately as a representation of the worst case
scenario condition. This is due to the fact that this source return period is expected to be

much more than 10,000 years.

2.2.3 Submarine Mass Failure

The US East Coast is fronted by a wide continental shelf, which contributes to the dissi-
pation of far-field tsunami sources, and diminishes the damage caused by simulated waves
from these sources on the coastline. On the other hand, it has been noted in literature (e.g.
Grilli et al. 2014) that there is a potential of a Submarine Mass Failure (SMF) on or near
the continental shelf break, causing tsunamis that affect adjacent coastal areas. Consid-
ering the fact that the only tsunami event that has caused fatalities on the US East Coast
was an SMF tsunami (Grand Banks, 1929), it is necessary to study possible impacts and
consequences of such catastrophes with respect to heavily populated coastal communities
on the USEC. For this region, a slide near Cape Fear was modeled as the SMF source.
The process of obtaining the initial condition for near-shore propagation and inundation
modeling for this source is comprehensively documented in Grilli et al. (2013). The land-
slide movement is simulated with the NHWAVE model (Ma et al., 2012; Tehranirad et al.,
2012) and the results shown here are interpolated into 500 meter grids for propagation and

inundation modeling 800 seconds after slump movement is initiated (Grilli et al., 2013).



3 Modeling Inputs

3.1 Numerical model

Tsunami propagation and inundation in this study is simulated using the fully nonlinear
Boussinesq model FUNWAVE-TVD (Shi et al, 2012a). FUNWAVE-TVD is a public do-
main open-source code that has been used for modeling tsunami propagation in ocean
basins, nearshore tsunami propagation and inland inundation problems. The code solves
the Boussinesq equations of Chen (2006) in Cartesian coordinates, or of Kirby et al. (2013)
in spherical coordinates. A users manual for each version is provided by Shi et al (2011).
FUNWAVE-TVD has been successfully validated for modeling tsunami wave characteris-
tics such as shoaling, breaking and runup by Tehranirad et al. (2011) following NTHMP
requirements (see Appendix C). Additional description of modeling specifications and in-
put files is provided in Appendix B.

One key specification in the model is the choice of friction coefficient defined for
tsunami simulation. Geist et al. (2009) have performed a study on sensitivity of tsunami
elevation with respect to a range of bottom friction coefficients and demonstrated that
large coefficients will unrealistically damp tsunami wave height. A review of the existing
literature suggests that a value of C; = 0.0025 represents a reasonable friction coefficient
for tsunami simulations, as suggested by several researchers (e.g. Grilli et al., 2013), and

this value is used here.



3.2 Bathymetric Input Data

3.2.1 Virginia Beach NGDC DEM

In this project, an integrated bathymetric-topographic digital elevation model (DEM) that
generated by National Geophysical Data Center (NGDC) is used for high-resolution inun-
dation mapping for the area around Virginia Beach, VA (Taylor et al., 2008). This DEM
covers the coastline around the Chesapeake Bay mouth including Norfolk, Virginia Beach
and Hampton (Figure 1). The horizontal datum is set to be World Geodetic System of 1984
(WGS 84), and the vertical datum is mean high water (MHW). The resolution of the Vir-
ginia Beach DEM is 1/3 arc-second, which, with respect to the study location, means that
the North-South resolution is 10.29 meters, and East-West direction grids are 8.22 meters
(computed using the latitude in the middle of the domain). All of the runs in this do-
main have been performed in Cartesian coordinates. Considering the coverage area of this
grid, the difference between Cartesian grid and spherical grid (Simply comparing the total
length of domain in Cartesian grid and spherical grid) is about 1.5 meters for the whole
domain. This means that the average offset for each point is of O(10~%) meters. Therefore,
because of the negligible differences between Cartesian and spherical grids, this grid was
used as Cartesian grid directly to capture fully nonlinear effects of the tsunamis nearshore.
Further information about this grid is also given in Table 1.

In the USA the period to determine MHW spans 19 years and is referred to as the
National Tidal Datum Epoch. For this project, inundation mapping processes have been
performed with MHW datum maps following NTHMP requirements (see Appendix C).

There are different approaches to relate MHW to NAVDGS8S8 values in the literature, and



also, one can use existing datum conversion models to investigate the difference (e.g.
Vdatum generated by NOAA, Park et al., 2003). However, it should be noted that the
difference between these values is not constant for the whole domain. For Norfolk, VA,

MHW is at NAVD88+34 cm. For Kiptopeke, VA, MHW is at NAVD+25.0 cm.

3.2.2 NGDC Coastal Relief Model (CRM)

Bathymetry data for shelf regions lying outside the NGDC Virginia Beach DEM are ob-
tained from the NGDC'’s 3 arc-second U.S. Coastal Relief Model (CRM) (Divins and
Metzger, 2003). This data delivers a complete view of the U.S. coastal areas, combin-
ing offshore bathymetry with land topography into a unified representation of the coast.

However, the deeper part of the Ocean beyond the shelf break is not covered in this data.

3.23 ETOPO1

Bathymetry data for deeper parts of the ocean beyond the shelf break is taken from the
ETOPO1 DEM (Amante and Eakins, 2009). ETOPOL is a 1 arc-minute global relief
model of Earth’s surface that combines land topography and ocean bathymetry. It was
built from numerous global and regional data sets, and is available in ”Ice Surface” (top of
Antarctic and Greenland ice sheets) and ”"Bedrock” (base of the ice sheets) versions. Here,

we use the Bedrock version in areas where the CRM data is not available.

3.3 Model Grids

Although the Virginia Beach DEM satisfies the bathymetry data requirements for nearshore

simulations, proper offshore bathymetry data is required to model the tsunamis far from



the shoreline. Accordingly, Grids A and B (Figure 2) are generated for low resolution mod-
eling over the ocean basin and continental shelf. The input data for the tsunami sources
is divided into two categories. The first category consists of Cosiesmic and CVV sources,
which were simulated in larger scale ocean-scale model runs, with results recorded on the
boundaries of Grid A. The ocean-basin simulations in which this data were recorded were
performed with a 16 arc second spherical grid. Grid A was generated in order to keep the
nesting scale 4 or less (see section 3.4), and continue the simulation with a 4 arc second
grid. The grid sizes of the Grid A are 493.0 m in the north-south direction and 406.2 m in
east-west direction (Table 1). On the other hand, the SMF sources fall within the modeled
region and are initially modeled with a Cartesian grid using NHWAVE (Ma et al., 2012)
with 500 m resolution. The input data was in the form of initial conditions, in contrast
to the first category where the data is in form of boundary conditions. Therefore, it was
required to generate another grid larger than Grid A to allow space for model sponge lay-
ers (or damping regions) on the boundaries. Also, in order to directly use input data as
generated by NHWAVE, the grid sizes for Grid B were chosen to be 500 m.

Depth values for these grids were obtained from the 1 arc-minute ETOPO-1 database,
while nearshore bathymetry and topography were obtained from the CRM. The horizon-
tal datum and vertical datum are set to be WGS84 and MHW, similar to Virginia Beach
NGDC DEM. These grids are mapped from spherical coordinates into a Cartesian grid.
This means that there are some mapping errors considering the magnitude of these grids.
For example, for Grid A, the total difference between two different coordinate systems is
143 m comparing the arc length (spherical) with the straight line (Cartesian). The average

offset difference for each grid point between two coordinates is 13 cm, which is negligible



considering a grid size of about 500 m. To minimize the error around the mapping area,
the grid is lined up close to the Virginia Beach DEM. The total difference between spher-
ical and Cartesian coordinates for Grid B is 483 meters. The average offset difference
between two coordinates is 32 cm for each point of this gird. To make the error as small as
possible for the western part of the domain (close to Virginia Beach, VA), this grid is also
lined up with the mapping area. Therefore, larger error values shows up in the eastern and
southern parts of the domain, which is not of concern because they fall within the sponge
layer region.

Figure 2 shows the location of these grids, as well as the location of the SMF sources
simulated in this project. Further information about these grids are provided in Table 1.
The results of the simulations using Grids A and B were recorded on the Virginia Beach
DEM boundaries in order to perform higher resolution modeling in nearshore regions.

This process is described in the next section of this document.

3.4 Nesting approach

In order to save computational time, an appropriate nesting approach is required to de-
crease the grid sizes from coarser grids offshore to finer grids nearshore. Accurate nesting
should insure that there would not be a loss of data on any of the boundaries on which cou-
pling is performed. The nesting scale represents the change in the grid size between two
levels of simulation. For example, if the 500 m grid results are used to perform a 125 m
simulation, the nesting scale is 4. Although the coupling capabilities of FUNWAVE-TVD
are such that large nesting scales could be used, a largest nesting scale of 4 has been used

in this study in order to avoid any loss of data. As described in previous sections of this re-
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port, Grids A and B are used to generate data on Virginia Beach DEM boundaries. Both of
these grids have grid sizes of roughly 500 meters and larger. Next, using the recorded data
on the boundaries of Virginia Beach NGDC DEM, simulations with grid sizes of roughly
125.0 meters (about 4 arc-sec) are implemented on this grid to record proper data around
four DEMs with resolution of 1 arc-sec (extracted from 1/3 arc-sec Virginia Beach DEM)
in the main region to resolve tsunami inundation inland (and near-shore) with 30 meter
(about one arc-sec) grid size. Grilli et al. (2014) have used the similar nesting approach
and confirmed the values chosen here. Figure 4 depicts the diagram for the nesting ap-
proach performed in this project. In addition, characteristics of each grid are defined in

Table 1. All of the runs in this document were performed in Cartesian coordinates.

Grid Name ma ny  dx(m) dy(m)
Grid A 1810 1575 406.26 492.96
Grid B 2000 2000 500.00 500.00
VB _4arc 627 1072 97.20 123.24
VB_larc.1 1440 1080 23.97 30.81
VB_larc.2 1080 1080 23.97 30.81
VB_larc.3 1080 1080 23.97  30.81
VB_larc4 1080 1080 2397 30.81
VB_larc.5 1200 960 2397 30.81
VB_larc.6 1080 1080 23.97 30.81
VB_larc.7 1600 600 2397 30.81

Table 1: Grid specification for all of the grids used in this project

4 Results

This section describes the data recorded for each inundation simulation and its organiza-

tion as ArcGIS rasters for subsequent map development. The tsunami arrival time is an
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essential piece of information for evacuation planners. The results are categorized into
onshore and offshore results. The onshore results depict the characteristics of the tsunami
on the land during inundation. Onshore tsunami effects are mainly demonstrated through

three parameters,

1. Maximum inundation depth
2. Maximum velocity

3. Maximum momentum flux

Yeh (2007) reported different forces created by a tsunami on structures and concluded
that, having the three mentioned quantities, one can calculate good estimates of forces on
onshore structures resulting from tsunamis. Moreover, tsunamis can affect ship navigation;
therefore, in order to cover maritime planning and navigational issues during a tsunami,
three other parameters are recorded and depicted offshore in this project. These three

offshore parameters include,

1. Maximum vorticity
2. Maximum velocity

3. Maximum recorded water surface elevation

All six variables are recorded for each of the modeling domains introduced in Table 1 for
all of the tsunami sources discussed in previous sections. Appropriate rasters are generated
which are compatible with ArcGIS and other GIS software for mapping purposes. Finally,
the inundation line, which is calculated from the envelope of tsunami inundation extent

for each source, will be presented.
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4.1 Arrival time
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Figure 5: Recorded surface elevation for gauges located in different locations in Virginia
Beach DEM, Virginia Beach (Blue), Norfolk (Red), Hampton (Green), Cape Charles City
(Orange), and New Point (Black)

Tsunami arrival time plays an important role in evacuation planning during the occur-
rence of an event. It is vital to report the arrival time of each tsunami relative to the time of
initial detection of an event. Here, the arrival time of the tsunami is based on the time that
the first tsunami bore passes the shoreline. Table 2 reports tsunami arrival times for sev-
eral locations in the Virginia Beach NGDC DEM. For each location, arrival times for each
modelled tsunami source have been reported. The arrival time for each city in Table 2 is a
value for that particular location with about a 5 to 10 minute error margin. Since tsunami
propagation in the ocean is constrained by bathymetry, the propagation of tsunamis toward

the Virginia Beach area is quite similar for all of the different sources. The Atlantic coasts
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of the domain (e.g. Virginia Beach) are among the first areas affected by tsunami. How-
ever, within about 40 minutes lag difference, tsunami waves will penetrate in Chesapeake
bay and impact Norfolk, Cape Charles City, Hampton and several other towns and cities
in the bay. After two hours that tsunami impacts the Atlantic coasts, in about 2 hours for
the north parts of the domain inside the Chesapeake Bay will be affected as well. Figure 5
demonstrates the location of gauges where the recorded surface elevation was used to as-
sess tsunami arrival time for all of the sources (Table 2). SMF source is clearly the closest
source to the location of study, and will reach the entire domain within 2 to 3 hours. The
tsunami resulting from a Puerto Rico Trench (PRT) event will affect the Virginia Beach
area between 4 to 5.5 hours after the earthquake. The Lisbon historic event and the Cum-
bre Vieja Volcanic collapse (CVV) sources have similar transoceanic travel time, and will

influence the domain 8 to 10 hours after the incident.

Location SMF1 PR LIS CVV! CVV?
Virginia Beach 130 255 525 530 500
Norfolk 170 290 565 570 530
Hampton 195 310 580 580 550
Cape Charles City 190 305 580 580 550
New Point 235 345 620 615 590

Table 2: Arrival time in minutes after tsunami initiation for different locations and sources
in Virginia Beach DEM based on the location of the gauges. CVV! and CVV? refer to 80
km? and 450 km? slide volumes respectively.

4.2 Raster Data

One of the most important results of this work is the inundation map corresponding to each

tsunami source. In order to facilitate the GIS work, appropriate rasters which are compat-
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ible with any GIS software such as ArcGIS are created for all of the grids mentioned in
Table 1. As an example, Figure 6 depicts the inundation depth for the CVV 80 km? slide
for the Virginia Beach DEM grid with 4 arc-second resolution. In this figure the domains
in which 1 Arc-second resolution runs have been performed are displayed as well.
Figures 7-13 show the maximum inundation depth for the 1 Arc-second domains
shown in Figure 6. These figures provide a comparison for different sources studied in
this project. This includes the inundation map for the SMF source, and the envelope of co-
seismic sources, as well as both CVV sources. The PRT event is the dominant coseismic
source by far, and its inundation pattern is similar to CVV80 source with some differ-
ences especially behind the barriers. Since coseismic sources have larger wavelengths,
they are able to penetrate behind the barriers with less attenuation in comparison to SMF
sources. Figures 7-13 show that the CVV 450 km? source is clearly the dominant source
for the area studied here, and represents worst case scenario by far in comparison to other
sources. However, because its return period is estimated to be beyond 10000 years, it is
excluded from inundation line calculations at this point. The 80 km? slide CVV has a
similar inundation pattern to Puerto Rico source. Except for some few locations CVV80
is the dominant source among all other sources, excluding the CVV 450 km? slide source.
The other important criteria required to be reported for inundated area, is the maxi-
mum momentum flux. Figure 14 is an example of the maximum momentum flux which is
extracted from VB_larc_2 domain for the CVV80 tsunami. Maximum-recorded velocity
is another essential quantity required to be reported for inundated areas. Maximum ve-
locity is also an important factor for navigational issues during a tsunami. Therefore, for

better realizations of maximum velocity maps, two different maps are acquired for max-
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Figure 6: CVV 80 km? slide Inundation Map for the Virginia Beach DEM with 4
arc-second resolution. Red squares depicts the 1 arc-second resolution domains.
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Figure 12: Inundation depth for VB_larc_6 domain, A) SMEF, B) Coseismic Envelope, C)

CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts VB_larc_6 domain
boundaries.
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imum velocity on land (basically inundated area) and maximum velocity offshore, which
an example of that is shown in Figure 15. Finally, the other important variable for navi-
gational problems during a tsunami, which is the maximum vorticity is also reported with
the similar method as the other gridded values. Figure 16 depicts the maximum vorticity
in Lynnhaven River inlet during PR tsunami. All of the rasters in this project have the
Mean High Water (MHW) datum and have ASCII format. In each raster file, the grid size
(number of row and columns), the latitude and longitude coordinates corresponding to the
southern and western boundaries of the domain, and cell size that defines the resolution of
the simulation are included. Also, no data value for each raster is defined as well to limit
the information to the inundated areas or other areas of interest. More information about

the raster data is provided in Appendix A.

4.3 Inundation line

Tsunami inundation line is the main result of this project. The inundation line demon-
strates the envelope of the onshore maximum inundation extent of all tsunamis studied
in this work. We extracted the inundation line from inundation depth data. For each lo-
cation an envelope inundation depth map was generated from all of the tsunami sources.
Then, the zero contour of that map represents the inundation line, which is the extent
of tsunami inundation inland. As mentioned in the previous section, the 450 km? CVV
source is excluded from the inundation line calculations, and its inundation line is sepa-
rately demonstrated as the low probability worst case scenario (shown in blue (Figure 17)).
The main inundation line is the envelope for all of the other cases studied here (shown in

red (Figure 17)). The inundation line for 4 arc-sec and 1 arc-sec domains were very close
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to each other for all of the sources. For most areas, the 80 km? CVV source was the dom-
inant source controlling the inundation line; however, in a few locations the inundation
line representing the PR source was the dominant tsunami source. It must be noted again
that the 450 km?® CVV source would have been the dominant source if it was not excluded
from the inundation line calculations. Also, it should be noted that the inundations line
in the overlapping areas between different domains were almost identical for most of the
cases, which is result of a well performed nesting process. The inundation lines are saved
as a shape file (.shp) in order to simplify the inundation map generation process. More

information about file formats and names is provided in Appendix A.

5 Map Construction

The final results of this project are inundation maps that can be used for emergency plan-
ning. The inundation line shape files (.shp) provide the main resource for construct-
ing these maps. These shape files are mapped over USGS and ESRI topographic maps
to construct the inundation map. In addition to the inundated area and the inundation
line, information regarding the map construction is provided on each map. The tsunami
sources used to obtain these maps are mentioned in these maps. Also, the process of map
construction is briefly described on the map. Figures 18-23 show the draft inundation
maps for the “False Cape, VA”, “Norfolk, VA”, “Hampton, VA” and “Cape Charles City,
VA” communities in 1:40,000 scale, as well as “South Virginia Beach, VA” and “North
Virginia Beach, VA” in 1:30,000 scale. The location of these maps are shown in Fig-

ure 17. The basemaps for these figures are the USGS topographic maps obtained from
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(http://basemap.nationalmap.gov/ArcGIS/rest/services/USGSTopo/MapServer).
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Figure 18: Inundation map for emergency planning for False Cape, VA in 1:40,000 scale.
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inundation line for this particular area.

36



State of Virginia

METHOD OF PREPARATION
“The inundation mapping for Vi
he National Tsunami Hazard ¥ melm ( MP) Tore. 3
iption is provided about the process this map was generated
through. For comprehensive information about i 3
inundation

Four sources were modeled for this work, two volcanic
lspse, and o Submarne Mess Faire Source (SMF).

a large earthquake in the

Trancn (PR, i tho Carobean Susdocion Zone (G52,
sarthquske locsed on Azors Gt pists boundar. Both ofthese
sources are generated according to the st Okada method.
Cumben Ve Vekearc (GVV) collepee Located in Canary Isands s

and another

A mnlbllm 3D Navier-Stokes solver (THETIS) was used to model this
a slide close 1o Cape Feart location was studied as the
'nusa landslide sources are all simulated with the

is provided from the i bathymetric-
loponrlpﬁm auul Geveton model (Viginia Beach NGOG DEM).
genersed by Ha Data Center (NGDC) for high-
ant mummn mapoingFor ‘ocean basn. tsunam
the depth values were obtained from the 1 arc-minute
ase, whle noarshors etimety and opogaphy wero
obtained from NGDCs Coastal Relief Models, which are typically
provided on a 3 arc-second grid
FUNWAVE-TVD model to simulate tsunami nearshore
and_onshore inundation. FUNWAVE-TVD is a pul
Gomai open-saurca code thal has been used fo rodelng tsunamis
inside ocaan basn, nesrshore. snd hek nand inundaton process.
Four levels of nesting was performed in this project to biing the
Jon fom 1 a1 inule (about 3 xlomelosy 1 ocoan pesk
o1 s ec (sbout 30 metrs) nearshore. For oach egon.

e to genersle the ‘mundation e from
. The accuracy of the inundation line
shown on this map is constrained by several factors such as the
used hare. 58 wel 2 the sccuracy of the

data. The inundation ine depits the envelope of the
rundatn 1nea for 8l te tsunarmi sours stucled, no ong partular

sou
Forfuther questions about the map contact James T Kirby
(kirby@udel.edu).

Reference:
Tehranirad, B., Kirby, J. T, and Shi, F., 2015, “Tsunami Inundation
Mapping for Virginia Beach, VA NGDC DEM', Technical Report No.
CACR-15-11, Center for Applied Coastal Research, University of
Delaware.

Norfolk

5150w

MAP EXPI.ANATION

/\/\/ Tsunami Inundation Line
> TsunamiInundated Area

PURPOSE OF THIS MAP

» TSUNAMI INUNDATION MAP
FOR EMERGENCY PLANNING

August, 2015
. oty thei tsunami hazad. This map i 1ot 3 legl document and
Scale 1:40,000 requirements for real estate transactions nor
qemos e 2 ar oy ober regusiry pupose. The. Imumdaton mbp has bewn
——— obtained through using the best available scientifc information. The
om0 _aso som

- imber of extreme, yet scientifically realistic, tsunami sources. Tn.s

o_os 1 2 nap. & supposed to poray the wirs case scanaro and doce

provide any futher ormaton soou e rotr periods of the s

MAP BASE

Tsunami sources modeled for Virginia Beach, NGDC DEM

sowce Locaion At T () prepared by the U.S. Geological
Quadrangle Map Series (omm-», 24000
[R— Jecow, 10m 20 |3cale). Tsunami inundation iine coundares oo may reflect updated digtal
base map.
s
DISCI.AIMER

Atores Gibraltar Convergence Zone (We8.69.0) | Glbatar Sright 99| The National Tsunami Hazard Migation Program (NTHMP),
“Cumbre VieaVolcnic Cone Collpsn oy lands 5o | Universty of Delaware (UD), and the IJrlNlmly S o Isand (LR
no or warranties regarding the accuracy of this
inundation map nor the data from which the map was derived. Neither
he NTHMP nor UD shall be fable under any cecumstances fo sny

Center for Applied Coastal Research direct, indirect, special or consequential damages

mpoﬂwmydumbytnyunrmmylmpmymmummw

arising from the use of this map.

s /m

PA

N

($
-

Figure 21: Inundation map for emergency planning for Norfolk, VA at 1:40,000 scale.

The inundated area is covered in

red, and the thick red line represents the inundation line
for this particular area.
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Figure 22: Inundation map for emergency planning for Hampton, VA at 1:40,000 scale.

The inundated area is covered in red, and the thick red line represents the inundation line

for this particular area.
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Figure 23: Inundation map for emergency planning for Cape Charles City, VA at
1:40,000 scale. The inundated area is covered in red, and the thick red line represents the

inundation line for this particular area.
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Appendix A Gridded Data Information

In order to facilitate GIS work used to report tsunami inundation simulation results, the
output data is saved in ESRI Arc ASCII grid format, which is compatible with GIS soft-
ware such as ArcGIS. For each file, the grid spacing could have two different values
(24.65,30.87) m, and (98.62,123.48) m) depending on the domain, and the coordinate
system is based on Geographic decimal degrees (Longitude and Latitude). Also, the ver-
tical datum of all rasters is mean high water (MHW), and the horizontal datum is World
Geodetic System of 1984 (WGS 84). The name of each file implies some information
about the file contents as well. The first part defines the type of data and could be one of
the following,

Inun . .. Onshore inundation depth

Inun_area ... Depicts the inundated area (inundation line)

Hmax. . . Maximum recorded offshore water surface elevation

Mfmx ...Maximum recorded onshore momentum flux

Uwet. .. Maximum recorded onshore velocity

Udry. .. Maximum recorded offshore velocity

vorm. . . Maximum recorded offshore vorticity

depth. .. depth

The rasters including inundation depth, maximum momentum flux, and maximum onshore
velocity (udry) are only meaningful onshore (for initially dry points, basically inundated

points), and by using the bathymetry data, nodata values have been defined for onshore



points in these rasters (nodata value=-9999). The reverse is performed for maximum vor-
ticity and maximum offshore velocity (uwet) rasters by setting the offshore values to -9999
to just consider the initially wet points in the domain. The second part of the raster name
defines the tsunami source used to obtain that data. This could be seven different sources

and are categorized as follows,

SMF. .. Submarine Mass Failure
PR...Puerto Rico Trench
LIS...Lisbon Source

CVV...Cumbre Vieja Volcanic Collapse.

In each file, the grid sizes (mx,ny), the coordinates for south west corner of the domain,
and the grid size are included in the file heading as well as a nodata value through the

following format,

ncols 9397

nrows 12853

xllcorner -75.580046296295
yllcorner 37.679953703705
cellsize 9.2592589999999¢e-005

NODATA _value -9999



Beneath the file heading, the corresponding values to each point are written in the file
with the format that starts from the southwest edge of the domain, and writes each row
from western to eastern boundaries of the domain from south to north. This format is
different from FUNWAVE-TVD output format, and it is flipped upside down. There-
fore, the FUNWAVE-TVD outputs are flipped vertically to match with ESRI Arc ASCII
grid format here. The last part of the file name represents the name of the grid that the
raster is built for. The names for each grid can be found in table 1. Therefore, the raster
“Inun_CVV80_vb_larc_l.asc” refers to the inundation depth data for the CVV80 source
for the first Virginia Beach grid (VB_1) with the resolution of roughly 30 m ((dz,dy) =
(24.30,30.81) m (corresponding to 1 arc-sec in spherical coordinates)) described in the

main document (Table 1). Finally, the inundation lines are saved as shape files (.shp) for

EN=ET]
# [ Depths
# £ G6Is
= EJvB_1
® B CFs
@ E3 cvv4so
® 3 cvvao
= EJ ENV
= hmax_env_VB_larc_l.asc
& ## Inun_areaenv_VB_larc_1l.asc
® Inun_env_VB_larc_l.asc
® ## mfmx_env_VB_larc_l.asc
= BB udry_env_VB_larc_l.asc
& B# uwet_env_VB_1arc_l.asc
® BB vorm_env_VB_larc_1.asc
® B Lus
@ EJPR
= Eve2
# EJ VB3
® EJvB_4

Figure 24: Screen shot of the results folder

each domain and have the same name format and projection with rasters. The combined

A-3



inundation line, which depicts the inundation line for the whole domain based on the finest
results available in any area, is presented as “final_inundation_line.shp” in the main folder
of the results. Figure 24 shows the way the data is organized. There exists a folder for
each domain (VB_1, VB_2 ) and each of them involve seven folders for each tsunami
source studied here. The raster data and inundation line shape file explained above are

located in these folders.
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Appendix B Modeling inputs

A brief description of model inputs that were saved during the simulation process is pro-
vided here. These files provide sufficient data for researchers who are interested to model
the tsunamis on their own. In the main results folder, there exist a folder called “input”
(Figure 25). In this folder, three categories of input files exist. First, depth files for each
domain are provided. The file name represents the location of the bathymetry data, and
one could figure it out using Table 1. For example, if the file name is “VB_larc_1, it
is the bathymetry data for the VB_larc_1 domain defined previously in this report (Table
1,Figure 7). Next, the coupling file for each simulation domain is provided for five sources
studied in this work. Coupling files force the boundary conditions on the domain based on
recordings from coarser grids in order to simulate tsunamis with finer resolution. Similar
to the bathymetry files, names of coupling files show their domain, as well as their source.
For instance, the file “CVV80_vb_larc_3.txt” is the coupling file for CVV80 source for the
VB _larc_3 domain (Figure 9, Table 1). The coupling files can be easily distinguished from
bathymetry files because bathymetry files do not have a tsunami source label included in
their names.

General instructions for configuring input files for FUNWAVE-TVD may be found in
the program’s users manual (Shi et al., 2011), available at,

http://chinacat.coastal.udel.edu/papers/shi-etal-cacr-11-04-version2.1.pdf.



[(kirby:btrad)@mills input]$ 1s

[Ckirby:btrad)@mills input]$

Figure 25: Screen shot of the input folder



Appendix C Inundation Mapping Guidelines

The development of inundation maps for tsunami hazard assessment and evacuation plan-

ning is governed by three documents and a related appendix. These include:

1. NTHMP Inundation Modeling Guidelines

Available at: http://nws.weather.gov/nthmp/modeling_guidelines.html

2. Mapping Guidelines Appendix A

Available at: http://nws.weather.gov/nthmp/documents/MnM _guide_appendix-final.docx

3. NTHMP Tsunami Evacuation Mapping Guidelines
Available at:

http://nws.weather.gov/nthmp/documents/NTHMPTsunamiEvacuationMappingGuidelines.pdf

4. NTHMP Guidelines for Establishing Tsunami Areas of Inundation for Non-Modeled
or Low-Hazard Areas
Available at:
http://nws.weather.gov/nthmp/documents/Inundationareaguidelinesforlowhazardareas-

Final092611.docx



