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Abstract

This document reports the development of tsunami inundation maps for the re-
gion covered by the NGDC tsunami DEM for Nantucket, MA. Section 1 describes
NTHMP requirements and guidelines for this work. The location of the study and the
bathymetry data utilized are described. Tsunami sources that potentially threaten the
upper East Coast of the United States are briefly discussed. Modeling inputs are de-
scribed in the Section 3, including model specifications and simulation methods such
as nesting approaches used in generating inundation maps. The process of generating
inundation maps from tsunami simulation results is described in Section 4, along with
other results such as arrival time of the tsunami. GIS data sets and organization, in-
cluding inundation maps, maximum velocity maps, maximum momentum flux maps,
are described in Appendix A. Modeling inputs for simulation are provided in Ap-
pendix B for interested modelers. In Appendix C, NTHMP guidelines for inundation

mapping are provided.
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1 Introduction

The US National Tsunami Hazard Mitigation Program (NTHMP) supports the develop-
ment of inundation maps for all US coastal areas through numerical modeling of tsunami
inundation. This includes high-resolution modeling and mapping of at-risk and highly
populated areas as well as the development of inundation estimates for non-modeled and
low hazard areas. This report describes the development of inundation maps for a region
covered by the Nantucket NGDC tsunami DEM (Eakins et al., 2009).

In section 2, background information about the mapped area is provided. Possible
tsunami sources that threaten the upper United States East Coast (USEC), and are consid-
ered in this analysis, are described. Modeling inputs are described in section 3. Section
4 presents simulation results and the development of mapping products. The process of
obtaining the tsunami inundation line, which is the most significant result of this work,
is explained in this section. Three appendices provide information about GIS data stor-
age and content (Appendix A), modeling inputs (Appendix B), and NTHMP inundation

mapping guidelines (Appendix C).

2 Background Information about Map Area

2.1 Location of coverage, and communities covered

The National Oceanic and Atmospheric Administration (NOAA), National Geophysical
Data Center (NGDC) have generated digital elevation models (DEM) as input for studies

focusing on hazard assessment of catastrophes like tsunamis and hurricanes at a number



of U. S. coastal areas. The Nantucket NGDC DEM covers the southern portion of the
Massachusetts State (Eakins et al., 2009). This DEM covers several populated coastal
communities including Nantucket, Falmouth, Marthas Vineyard, and Hyannis. Figure 1
shows the coverage area of the DEM. NGDC DEMs are provided in latitude/longitude
coordinates with 1/3 arc-second resolution. The DEM vertical datum is mean high water
(MHW), and vertical elevations are in meters. More information about the bathymetry

data is given in Section 3.2.
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2.2 Tsunami sources

The southern Massachusetts region has rarely experienced tsunami inundation. A gen-
eral overview of historic and potential tsunamigenic events in the North Atlantic Ocean is
provided by Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group (2008). In
this project, tsunami sources that threaten the upper US East Coast (USEC) were catego-
rized into three main categories, and have been studied separately due to their differences
in physics and location. First, two seismically active sources in the Atlantic Ocean were
used; a subduction zone earthquake in the Puerto Rico trench, and a simulation of the his-
toric Azores Convergence Zone earthquake of 1755. A far field subaerial landslide due to
a volcanic collapse in Canary Islands is also modeled. Finally, near-field Submarine Mass
Failures (SMFs) close to the edge of USEC continental shelf are used here as well. A brief

introduction and references to detailed studies of the sources are provided in this section.

2.2.1 Coseismic sources

2.2.1.1 Puerto Rico Trench: Previous research has confirmed the possibility of large
earthquakes in the Puerto Rico Trench (PRT) in the Caribbean Subduction Zone (CSZ)
(e.g. Grilli et al., 2010). These studies implied that an extreme event with return period
of 200 to 300 years could be powerful enough (M,, = 9.0) to rupture the entire PRT and
initiate a tsunami that will influence the USEC. Grilli and Grilli (2013a) have carried out
detailed computations for that event for use as initial conditions for tsunami inundation

modeling on the USEC.



2.2.1.2 Azores Convergence Zone: The other coseismic source used here is located on
the Azores Gibraltar plate boundary, known as the source of the biggest historical tsunami
event in the North Atlantic Basin (Gonzalez et al., 2007). The 1755 Lisbon earthquake
(M, = 8.6—9.0) generated tsunami waves with heights between 5 to 15 meters, impacting
the coasts of Morocco, Portugal, Newfoundland, Antilles, and Brazil. The procedure for
obtaining the initial condition for tsunami propagation is quite similar to the PRT rupture

and is discussed in Grilli and Grilli (2013b).

2.2.2 Volcanic cone collapse

In recent years, a potential cone collapse of the volcanic cone Cumbre Vieja (CVV) in
the Canary Islands has received attention as a possibly catastrophic source threatening
the USEC. In this project, a multi-fluid 3D Navier-Stokes solver (THETIS) was used to
compute the volcanic collapse tsunami source (Abadie et al., 2012; Harris et al., 2012).
Detailed description of the CVV modeling for use in this project is described in Grilli and
Grilli (2013c¢). Two different slide magnitudes were studied for this work; an 80 km3 slide,
representing a plausible event in a return period window on the order of 10,000 years, and
a 450 km?® source, consistent with estimates of the maximum event for the geological
feature. The magnitude of the latter event is significantly larger than all of the other cases
studied in this project. Thus, it was decided to exclude the 450 km? source from inundation
line calculations, and illustrate its results separately as a representation of the worst case
scenario condition. This is due to the fact that this source return period is expected to be

much more than 10,000 years.



2.2.3 Submarine mass failure

The US East Coast is fronted by a wide continental shelf, which contributes to the dissi-
pation of far-field tsunami sources, and diminishes the damage caused by simulated waves
from these sources on the coastline. On the other hand, it has been noted in literature (e.g.
Grilli et al. 2014) that there is a potential of a Submarine Mass Failure (SMF) on or near
the continental shelf break, causing tsunamis that affect adjacent coastal areas. Consider-
ing the fact that the only tsunami event that has caused fatalities on the US East Coast was
an SMF tsunami (Grand Banks, 1929), it is necessary to study possible impacts and con-
sequences of such catastrophes with respect to heavily populated coastal communities on
the USEC. In this project, four different locations are chosen as the most probable to expe-
rience a submarine mass failure tsunami. The process of obtaining the initial condition for
near-shore propagation and inundation modeling for all of these sources are comprehen-
sively documented in Grilli et al. (2013). The landslide movement is simulated with the
NHWAVE model (Ma et al., 2012; Tehranirad et al., 2012) and the results shown here are
interpolated into 500 meter grids for propagation and inundation modeling 800 seconds

after slump movement is initiated (Grilli et al., 2013).

3 Modeling Inputs

3.1 Numerical model

Tsunami propagation and inundation in this study is simulated using the fully nonlinear

Boussinesq model FUNWAVE-TVD (Shi et al, 2012a). FUNWAVE-TVD is a public do-



main open-source code that has been used for modeling tsunami propagation in ocean
basins, nearshore tsunami propagation and inland inundation problems. The code solves
the Boussinesq equations of Chen (2006) in Cartesian coordinates, or of Kirby et al. (2013)
in spherical coordinates. A users manual for each version is provided by Shi et al (2011).
FUNWAVE-TVD has been successfully validated for modeling tsunami wave characteris-
tics such as shoaling, breaking and runup by Tehranirad et al. (2011) following NTHMP
requirements (see Appendix C). Additional description of modeling specifications and in-
put files is provided in Appendix B.

One key specification in the model is the choice of friction coefficient defined for
tsunami simulation. Geist et al. (2009) have performed a study on sensitivity of tsunami
elevation with respect to a range of bottom friction coefficients and demonstrated that
large coefficients will unrealistically damp tsunami wave height. A review of the existing
literature suggests that a value of C;; = 0.0025 represents a reasonable friction coefficient
for tsunami simulations, as suggested by several researchers (e.g. Grilli et al., 2013), and

this value is used here.

3.2 Bathymetric Input Data

3.2.1 Nantucket NGDC DEM

In this project, an integrated bathymetric-topographic digital elevation model (DEM) that
generated by National Geophysical Data Center (NGDC) is used for high-resolution in-
undation mapping for the area around Nantucket, MA (Eakins et al., 2009). This DEM
covers coastlines of Nantucket Island, the eastern half of Marthas Vineyard, as well as

communities in the southern half of Cape Cod (Figure 1). The horizontal datum is set to
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be World Geodetic System of 1984 (WGS 84), and the vertical datum is mean high water
(MHW). The resolution of the Nantucket DEM is 1/3 arc-second, which, with respect to
the study location, means that the North-South resolution is 10.27 meters, and East-West
direction grids are 7.75 meters (computed using the latitude in the middle of the domain).
All of the runs in this domain have been performed in Cartesian coordinates. Consider-
ing the coverage area of this grid, the difference between Cartesian grid and spherical grid
(Simply comparing the total length of domain in Cartesian grid and spherical grid) is about
1.5 meters for the whole domain. This means that the average offset for each point is of
O(107°%) meters. Therefore, because of the negligible differences between Cartesian and
spherical grids, this grid was used as Cartesian grid directly to capture fully nonlinear ef-
fects of the tsunamis nearshore. Further information about this grid is also given in Table
1.

In the USA the period to determine MHW spans 19 years and is referred to as the
National Tidal Datum Epoch. For this project, inundation mapping processes have been
performed with MHW datum maps following NTHMP requirements (see Appendix C).
There are different approaches to relate MHW to NAVDS8S8 values in the literature, and
also, one can use existing datum conversion models to investigate the difference (e.g.
Vdatum generated by NOAA, Park et al., 2003). However, it should be noted that the
difference between these values is not constant for the whole domain. For Woods Hole,

MA, MHW is at NAVD&88+17.1 cm. For Chatham, MA, MHW is at NAVD+46.3 cm.



3.2.2 NGDC Coastal Relief Model (CRM)

Bathymetry data for shelf regions lying outside the NGDC Nantucket DEM are obtained
from the NGDC’s 3 arc-second U.S. Coastal Relief Model (CRM) (Divins and Metzger,
2003). This data delivers a complete view of the U.S. coastal areas, combining offshore
bathymetry with land topography into a unified representation of the coast. However, the

deeper part of the Ocean beyond the shelf break is not covered in this data.

3.23 ETOPO1

Bathymetry data for deeper parts of the ocean beyond the shelf break is taken from the
ETOPO1 DEM (Amante and Eakins, 2009). ETOPOL is a 1 arc-minute global relief
model of Earth’s surface that combines land topography and ocean bathymetry. It was
built from numerous global and regional data sets, and is available in "Ice Surface” (top of
Antarctic and Greenland ice sheets) and "Bedrock™ (base of the ice sheets) versions. Here,

we use the Bedrock version in areas where the CRM data is not available.

3.3 Model Grids

Although the Nantucket DEM satisfies the bathymetry data requirements for nearshore
simulations, proper offshore bathymetry data is required to model the tsunamis far from
the shoreline. Accordingly, Grids A and B (Figure 2) are generated for low resolution mod-
eling over the ocean basin and continental shelf. The input data for the tsunami sources
is divided into two categories. The first category consists of Cosiesmic and CVV sources,

which were simulated in larger scale ocean-scale model runs, with results recorded on the



boundaries of Grid A. The ocean-basin simulations in which this data were recorded was
performed with a 16 arc second spherical grid. Grid A was generated in order to keep the
nesting scale 4 or less (see section 3.4), and continue the simulation with a 4 arc second
grid. The grid sizes of the Grid A are 503.2 m in the north-south direction and 535.0 m in
east-west direction (Table 1). On the other hand, the SMF sources fall within the modeled
region and are initially modeled with a Cartesian grid using NHWAVE (Ma et al., 2012)
with 500 m resolution. The input data was in the form of initial conditions, in contrast
to the first category where the data is in form of boundary conditions. Therefore, it was
required to generate another grid larger than Grid A to allow space for model sponge lay-
ers (or damping regions) on the boundaries. Also, in order to directly use input data as
generated by NHWAVE, the grid sizes for Grid B were chosen to be 500 m.

Depth values for these grids were obtained from the 1 arc-minute ETOPO-1 database,
while nearshore bathymetry and topography were obtained from the CRM. The horizontal
datum and vertical datum are set to be WGS84 and MHW, similar to Nantucket NGDC
DEM. These grids are mapped from spherical coordinates into a Cartesian grid. This
means that there are some mapping errors considering the magnitude of these grids. For
example, for Grid A, the total difference between two different coordinate systems is 132
m comparing the arc length (spherical) with the straight line (Cartesian). The average
offset difference for each grid point between two coordinates is 12 cm, which is negligible
considering a grid size of about 500 m. To minimize the error around the mapping area,
the grid is lined up close to the Nantucket DEM. The total difference between spherical
and Cartesian coordinates for Grid B is 465 meters. The average offset difference between

two coordinates is 31 cm for each point of this gird. To make the error as small as possible



for the northern part of the domain (close to Nantucket, MA), this grid is also lined up with
the mapping area. Therefore, larger error values shows up in the eastern and southern parts
of the domain, which is not of concern because they fall within the sponge layer region.
Figure 2 shows the location of these grids, as well as the location of the SMF sources
simulated in this project. Further information about these grids are provided in Table 1.
Figure 3 shows the initial surface elevation of each SMF source mapped onto Grid B.
The results of the simulations using Grids A and B were recorded on the Nantucket DEM
boundaries in order to perform higher resolution modeling in nearshore regions. This

process is described in the next section of this document.

3.4 Nesting approach

In order to save computational time, an appropriate nesting approach is required to de-
crease the grid sizes from coarser grids offshore to finer grids nearshore. Accurate nesting
should insure that there would not be a loss of data on any of the boundaries on which
coupling is performed. The nesting scale represents the change in the grid size between
two levels of simulation. For example, if the 500 m grid results are used to perform a 125
m simulation, the nesting scale is 4. Although the coupling capabilities of FUNWAVE-
TVD are such that large nesting scales could be used, a largest nesting scale of 4 has been
used in this study in order to avoid any loss of data. As described in previous sections of
this report, Grids A and B are used to generate data on Nantucket DEM boundaries. Both
of these grids have grid sizes of roughly 500 meters and larger. Next, using the recorded
data on the boundaries of Nantucket NGDC DEM, simulations with grid sizes of roughly

125.0 meters (about 4 arc-sec) are implemented on this grid to record proper data around
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Figure 2: Locations of the Grids used in this project and also the center of SMF sources
simulated here.
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four DEMs with resolution of 1 arc-sec (extracted from 1/3 arc-sec Nantucket DEM) in the
main region to resolve tsunami inundation inland (and near-shore) with 30 meter (about
one arc-sec) grid size. Grilli et al. (2014) have used the similar nesting approach and
confirmed the values chosen here. Figure 5 depicts the diagram for the nesting approach
performed in this project. In addition, characteristics of each grid are defined in Table 1.

All of the runs in this document were performed in Cartesian coordinates.

4 Results

This section describes the data recorded for each inundation simulation and its organiza-
tion as ArcGIS rasters for subsequent map development. The tsunami arrival time is an
essential piece of information for evacuation planners. The results are categorized into
onshore and offshore results. The onshore results depict the characteristics of the tsunami
on the land during inundation. Onshore tsunami effects are mainly demonstrated through

three parameters,
1. Maximum inundation depth
2. Maximum velocity
3. Maximum momentum flux

Yeh (2007) reported different forces created by a tsunami on structures and concluded
that, having the three mentioned quantities, one can calculate good estimates of forces on
onshore structures resulting from tsunamis. Moreover, tsunamis can affect ship navigation;

therefore, in order to cover maritime planning and navigational issues during a tsunami,
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Figure 5: The sequence of grid nesting. The figure on the top left depicts the Grid A and
B as well as the location of the Nantucket DEM. The figure on the right show the 1
arc-sec grids described in Table 1.

three other parameters are recorded and depicted offshore in this project. These three

offshore parameters include,
1. Maximum vorticity
2. Maximum velocity
3. Maximum recorded water surface elevation

All six variables are recorded for each of the modeling domains introduced in Table 1 for
all of the tsunami sources discussed in previous sections. Appropriate rasters are generated
which are compatible with ArcGIS and other GIS software for mapping purposes. Finally,

the inundation line, which is calculated from the envelope of tsunami inundation extent

for each source, will be presented.
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4.1 Arrival time

Tsunami arrival time plays an important role in evacuation planning during the occurrence
of an event. It is vital to report the arrival time of each tsunami relative to the time of initial
detection of an event. Here, the arrival time of the tsunami is based on the time that the
first tsunami bore passes the shoreline. Table 2 reports tsunami arrival times for several
places located in Nantucket NGDC DEM. For each location, arrival times of all different
tsunami sources have been reported. The arrival time for each city in Table 2 is a value for
that particular location with about a 5 minute error margin. Since tsunami propagation in
the ocean is constrained by bathymetry, the propagation of tsunamis toward the Nantucket,
MA area is quite similar for all of the different sources. The southern part of the domain
(e.g. Nantucket Island) is the first spot that would face the tsunami. However, within 30
to 40 minutes difference, the northern part of the domain inside the southwestern part of
Cape Cod will be affected by the tsunami as well (e.g. Falmouth). Finally, within 50 to
60 minutes lag in comparison with the southern parts of the domain, tsunami would reach
the northwestern parts of domain (e.g. Hyannis, MA). Figure 6 demonstrates the location
of gauges where the recorded surface elevation was used to assess tsunami arrival time
for all of the sources (Table 2). SMF sources are clearly the closest source to the location
of study, and will reach the entire domain within 1 to 2 hours. The tsunami induced by
Puerto Rico Trench (PRT) will affect the Nantucket area between 4 to 5 hours after the
earthquake. The Lisbon historic event and the Cumbre Vieja Volcanic collapse (CVV)
sources have similar transoceanic travel time, and will influence the domain 8 to 9 hours

after the incident.
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Figure 6: Recorded surface elevation for gauges located in different locations in Motauk
DEM, Nantucket (Blue), Matha’s Vineyard (Red), Falmouth (Green), and Hyannis

(Black).
Location SMF1 SMF2 SMF3 SMF4 PR LIS CVV! CVV?
Nantucket, MA 75 55 100 110 280 505 515 485
Martha’s Vineyard, MA 80 60 105 115 280 505 515 490
Falmouth, MA 110 110 135 145 325 560 565 535
Hyannis, MA 125 90 155 160 335 565 570 540

Table 2: Arrival time in minutes after tsunami initiation for different locations and sources
in Nantucket DEM based on the location of the gauges. CVV! and CVV? refer to 80 km?
and 450 km? slide volumes respectively.
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4.2 Raster Data

One of the most important results of this work is the inundation map corresponding to each
tsunami source. In order to facilitate the GIS work, appropriate rasters which are compat-
ible with any GIS software such as ArcGIS are created for all of the grids mentioned in
Table 1. As an example, Figure 7 depicts the inundation depth for the Puerto Rico source
for the Nantucket DEM grid with 4 arc-second resolution. In this figure the domains in
which 1 Arc-second resolution runs have been performed are displayed as well.

Figures 8-11 show the maximum inundation depth for the 1 Arc-second domains
shown in Figure 7. These figures provide a comparison for different sources studied in
this project. This includes the envelope inundation map for SMF and coseismic sources as
well as both CVV sources. The inundation depth for SMF sources are similar to each other,
however, the inundation depth values for SMF2 is larger for the most part in comparison
to the other SMF sources. This is probably because of the fact that the SMF2 is the closest
SMEF source to the location of study. Also, the PRT event is the dominant coseismic source
by far, and its inundation pattern is similar to SMF sources with some differences espe-
cially behind the barriers. Since coseismic sources have larger wavelengths, they are able
to penetrate behind the barriers with less attenuation in comparison to SMF sources. Fig-
ures 8-11 show that the CVV 450 km? source is clearly the dominant source for the area
studied here, and represents worst case scenario by far in comparison to other sources.
However, because its return period is estimated to be beyond 10000 years, it is excluded
from inundation line calculations at this point. The 80 km? slide CVV has a similar inun-

dation pattern to Puerto Rico source and SMF2. Except for some few locations that Puerto
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Rico source has the most impact, SMF2 is the dominant source among all other sources,

excluding the CVV 450 km? slide source.
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Figure 7: SMF1 slide Inundation Map for the Nantucket DEM with 4 arc-second
resolution. Red squares depicts the 1 arc-second resolution domains

The other important criteria required to be reported for inundated area, is the maximum
momentum flux. Figure 12 is an example of the maximum momentum flux which is ex-
tracted from NA _larc_1 domain for the CVV (80 km? slide) tsunami. Maximum-recorded
velocity is another essential quantity required to be reported for inundated area. Maximum
velocity is also an important factor for navigational issues during a tsunami. Therefore, for

better realizations of maximum velocity maps, two different maps are acquired for max-
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Figure 8: Inundation depth for NA _larc_1 domain, A) SMF Envelope, B) Coseismic

Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NA_larc_1
domain boundaries.
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Figure 9: Inundation depth for NA _larc_2 domain, A) SMF Envelope, B) Coseismic

Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NA_larc_2
domain boundaries.
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imum velocity on land (basically inundated area) and maximum velocity offshore, which
are shown in Figure 13. Finally, the other important variable for navigational problems
during a tsunami, which is the maximum vorticity is also reported with the similar method
as the other gridded values. Figure 14 depicts the maximum vorticity in west part of Nan-
tucket island during SMF2 tsunami. All of the rasters in this project have the Mean High
Water (MHW) datum and have ASCII format. In each raster file, the grid size (number
of row and columns), the latitude and longitude coordinates corresponding to the south-
ern and western boundaries of the domain, and cell size that defines the resolution of the
simulation are included. Also, no data value for each raster is defined as well to limit the
information to the inundated areas or other areas of interest. More information about the

raster data is provided in Appendix A.

4.3 Inundation line

Tsunami inundation line is the main result of this project. The inundation line demon-
strates the envelope of the onshore maximum inundation extent of all tsunamis studied
in this work. We extracted the inundation line from inundation depth data. For each lo-
cation an envelope inundation depth map was generated from all of the tsunami sources.
Then, the zero contour of that map represents the inundation line, which is the extent
of tsunami inundation inland. As mentioned in the previous section, the 450 km? CVV
source is excluded from the inundation line calculations, and its inundation line is sepa-
rately demonstrated as the low probability worst case scenario (shown in blue (Figure 15)).
The main inundation line is the envelope for all of the other cases studied here (shown in

red (Figure 15)). The inundation line for 4 arc-sec and 1 arc-sec domains were very close
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Figure 12: (Maximum Momentum Flux Map for the east of the Nantucket island during
CVV (80 km? slide) tsunami (Colorbar values are in m?/s?).
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Figure 13: (a) Maximum Velocity map for inundated area in Chappaqudick island, MA
(PR source) (b) Maximum Velocity map for Chappaqudick island, MA for offshore areas
(PR source).
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Figure 14: Maximum Vorticity map for the the east of the Nantucket island (SMF2).
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to each other for all of the sources. For most areas, the SMF2 (which is the closest SMF
source to the mapping location) source was the dominant source controlling the inundation
line; however, in a few locations the inundation line representing the CVV 80 km? source
was the dominant tsunami source. It must be noted again that the 450 km® CVV source
would have been the dominant source by far if it was not excluded from the inundation
line calculations. Also, it should be noted that the inundations line in the overlapping areas
between different domains were almost identical for most of the cases, which is result of
a well performed nesting process. The inundation lines are saved as a shape file (.shp)
in order to simplify the inundation map generation process. More information about file

formats and names is provided in Appendix A.

S Map Construction

The final results of this project are inundation maps that can be used for emergency plan-
ning. The inundation line shape files (.shp) provide the main resource for construct-
ing these maps. These shape files are mapped over USGS and ESRI topographic maps
to construct the inundation map. In addition to the inundated area and the inundation
line, information regarding the map construction is provided on each map. The tsunami
sources used to obtain these maps are mentioned in these maps. Also, the process of
map construction is briefly described on the map. Figures 16-22 show the draft inunda-
tion maps for the “East Nantucket, MA” in 1:30,000 scale, as well as “West Nantucket,
MA”, “Marthas Vineyard, MA”, “Falmouth, MA”, “Hyannis, MA”, “Dennis, MA”, and

“Chatham, MA” communities in 1:40,000 scale. The location of these maps are shown in
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Figure 15: Tsunami inundation line for Nantucket NGDC DEM area based on tsunami
sources simulated in this project. The blue boxes show the location of the inundation
maps discussed in Section 5.
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Figure 15. The basemaps for these figures are the USGS topographic maps obtained from

(http://basemap.nationalmap.gov/ArcGIS/rest/services/USGSTopo/MapServer).
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Figure 18: Inundation map for emergency planning for Marthas Vineyard, MA in
1:40,000 scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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Figure 19: Inundation map for emergency planning for Falmouth, MA in 1:40,000 scale.
The inundated area is shown in red, and the thick red line represents the inundation line
for this particular area.
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Figure 20: Inundation map for emergency planning for Hyannis, MA at 1:40,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
for this particular area.
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Figure 21: Inundation map for emergency planning for Dennis, MA at 1:40,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
for this particular area.
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Figure 22: Inundation map for emergency planning for Chatham, MA at 1:40,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
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Appendix A Gridded Data Information

In order to facilitate GIS work used to report tsunami inundation simulation results, the
output data is saved in ESRI Arc ASCII grid format, which is compatible with GIS soft-
ware such as ArcGIS. For each file, the grid spacing could have two different values
(23.25,30.81) m, and (93.00,123.24) m) depending on the domain, and the coordinate
system is based on Geographic decimal degrees (Longitude and Latitude). Also, the ver-
tical datum of all rasters is mean high water (MHW), and the horizontal datum is World
Geodetic System of 1984 (WGS 84). The name of each file implies some information
about the file contents as well. The first part defines the type of data and could be one of
the following,

Inun . .. Onshore inundation depth

Inun_area ... Depicts the inundated area (inundation line)

Hmax. . . Maximum recorded offshore water surface elevation

Mfmx ...Maximum recorded onshore momentum flux

Uwet. .. Maximum recorded onshore velocity

Udry. .. Maximum recorded offshore velocity

vorm. . . Maximum recorded offshore vorticity

depth. .. depth

The rasters including inundation depth, maximum momentum flux, and maximum onshore
velocity (udry) are only meaningful onshore (for initially dry points, basically inundated

points), and by using the bathymetry data, nodata values have been defined for onshore



points in these rasters (nodata value=-9999). The reverse is performed for maximum vor-
ticity and maximum offshore velocity (uwet) rasters by setting the offshore values to -9999
to just consider the initially wet points in the domain. The second part of the raster name
defines the tsunami source used to obtain that data. This could be seven different sources

and are categorized as follows,

SMF1-4...Submarine Mass Failure 1-4
PR...Puerto Rico Trench
LIS...Lisbon Source

CVV...Cumbre Vieja Volcanic Collapse.

In each file, the grid sizes (mx,ny), the coordinates for south west corner of the domain,
and the grid size are included in the file heading as well as a nodata value through the

following format,

ncols 9397

nrows 12853

xllcorner -75.580046296295
yllcorner 37.679953703705
cellsize 9.2592589999999¢e-005

NODATA _value -9999



Beneath the file heading, the corresponding values to each point are written in the file
with the format that starts from the southwest edge of the domain, and writes each row
from western to eastern boundaries of the domain from south to north. This format is
different from FUNWAVE-TVD output format, and it is flipped upside down. There-
fore, the FUNWAVE-TVD outputs are flipped vertically to match with ESRI Arc ASCII
grid format here. The last part of the file name represents the name of the grid that the
raster is built for. The names for each grid can be found in table 1. Therefore, the raster
“Inun_SMF?2 _oc_30_1.asc” refers to the inundation depth data for the SMF2 source for the
first Nantucket grid (NA_1) with the resolution of roughly 30 m ((dz,dy) = (24.30,30.81)
m (corresponding to 1 arc-sec in spherical coordinates)) described in the main document
(Table 1). Finally, the inundation lines are saved as shape files (.shp) for each domain
and have the same name format and projection with rasters. The combined inundation
line, which depicts the inundation line for the whole domain based on the finest results
available in any area, is presented as “final_inundation_line.shp” in the main folder of the
results. Figure 23 shows the way the data is organized. There exists a folder for each
domain (NA_1, NA_2 ) and each of them involve seven folders for each tsunami source
studied here. The raster data and inundation line shape file explained above are located in

these folders.
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. LIS
= EJ PR
EF Depth_na_1.asc
27 hmax_PR_na_1.asc
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Figure 23: Screen shot of the results folder

A4



Appendix B Modeling inputs

A brief description of model inputs that were saved during the simulation process is pro-
vided here. These files provide sufficient data for researchers who are interested to model
the tsunamis on their own. In the main results folder, there exist a folder called “input”
(Figure 24). In this folder, three categories of input files exist. First, depth files for each
domain are provided. The file name represents the location of the bathymetry data, and
one could figure it out using Table 1. For example, if the file name is “NA_larc_1, it
is the bathymetry data for the NA_larc_1 domain defined previously in this report (Ta-
ble 1,Figure 8). Next, the coupling file for each simulation domain is provided for seven
sources studied in this work. Coupling files force the boundary conditions on the domain
based on recordings from coarser grids in order to simulate tsunamis with finer resolution.
Similar to the bathymetry files, names of coupling files show their domain, as well as their
source. For instance, the file “smf3_mo_larc_3.txt” is the coupling file for SMF3 source
for the NA_larc_3 domain (Figure 10, Table 1). The coupling files can be easily distin-
guished from bathymetry files because bathymetry files do not have a tsunami source label
included in their names.

General instructions for configuring input files for FUNWAVE-TVD may be found in
the program’s users manual (Shi et al., 2011), available at,

http://chinacat.coastal.udel.edu/papers/shi-etal-cacr-11-04-version2.1.pdf.



_na_darcsec, trt nan_larc_2 smfl_nan_larcsec_4. txt
_na_darc. tt nan_larc_3 smfl_nan_darcsec, txt
Hﬂﬂ_lﬂ'LEEL_l.txt nan_larc_4 smfZ_nan_larcsec_1.txt
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Figure 24: Screen shot of the input folder



Appendix C Inundation Mapping Guidelines

The development of inundation maps for tsunami hazard assessment and evacuation plan-

ning is governed by three documents and a related appendix. These include:

1. NTHMP Inundation Modeling Guidelines

Available at: http://nws.weather.gov/nthmp/modeling_guidelines.html

2. Mapping Guidelines Appendix A

Available at: http://nws.weather.gov/nthmp/documents/MnM _guide_appendix-final.docx

3. NTHMP Tsunami Evacuation Mapping Guidelines
Available at:

http://nws.weather.gov/nthmp/documents/NTHMPTsunamiEvacuationMappingGuidelines.pdf

4. NTHMP Guidelines for Establishing Tsunami Areas of Inundation for Non-Modeled
or Low-Hazard Areas
Available at:
http://nws.weather.gov/nthmp/documents/Inundationareaguidelinesforlowhazardareas-

Final092611.docx



