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Abstract

This document reports the development of tsunami inundation maps for the New
York City area. Section 1 describes NTHMP requirements and guidelines for this
work. The location of the study and the bathymetry data utilized are described.
Tsunami sources that potentially threaten the upper East Coast of the United States
are briefly discussed. Modeling inputs are described in the Section 3, including model
specifications and simulation methods such as nesting approaches used in generating
inundation maps. The process of generating inundation maps from tsunami simula-
tion results is described in Section 4, along with other results such as arrival time of
the tsunami. GIS data sets and organization, including inundation maps, maximum
velocity maps, maximum momentum flux maps, are described in Appendix A. Mod-
eling inputs for simulation are provided in Appendix B for interested modelers. In

Appendix C, NTHMP guidelines for inundation mapping are provided.
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1 Introduction

The US National Tsunami Hazard Mitigation Program (NTHMP) supports the develop-
ment of inundation maps for all US coastal areas through numerical modeling of tsunami
inundation. This includes high-resolution modeling and mapping of at-risk and highly
populated areas as well as the development of inundation estimates for non-modeled and
low hazard areas. This report describes the development of inundation maps for the New
York City metropolitan area.

In section 2, background information about the mapped area is provided. Possible
tsunami sources that threaten the upper United States East Coast (USEC), and are consid-
ered in this analysis, are described. Modeling inputs are described in section 3. Section
4 presents simulation results and the development of mapping products. The process of
obtaining the tsunami inundation line, which is the most significant result of this work,
is explained in this section. Three appendices provide information about GIS data stor-
age and content (Appendix A), modeling inputs (Appendix B), and NTHMP inundation

mapping guidelines (Appendix C).

2 Background Information about Map Area

2.1 Location of coverage, and communities covered

The National Oceanic and Atmospheric Administration (NOAA), National Geophysical
Data Center (NGDC) have generated digital elevation models (DEM) as input for studies

focusing on hazard assessment of catastrophes like tsunamis and hurricanes at a number



of U. S. coastal areas. The New York City metropolitan area is not covered in the DEMs
provided by NOAA for tsunami hazard analysis. Thus, a DEM was extracted from FEMA
region II surge study DEM (FEMA, 2014) for the area around the New York City. This
DEM covers several populated coastal communities including Seagate, Manhattan, and
several locations in Long Island. Bathymetric data was extracted from the DEM used for
the FEMA Region II storm surge modeling study. This data covered the water around New
York City, along the Hudson River, and throughout the Long Island Sound and waters
south of Long Island along New Jersey. The bathyemtric data was then combined with
numerous land-based, lidar-derived topographic datasets on the coasts of New York, New
Jersey, and a small area of Connecticut. The final topographic-bathymetric DEM mosaic
covers several populated coastal communities including Seagate, Manhattan, and several
locations in Long Island. Figure 1 shows the coverage area of the final DEM mosaic. The
bathymetric and topographic data is provided in latitude/longitude coordinates with 1/3
arc-second resolution. The DEM vertical datum is mean high water (MHW), and vertical
elevations are in meters. More information about the bathymetry data is given in Section

3.2.

2.2 Tsunami sources

The New York City metropolitan area has rarely experienced tsunami inundation. A gen-
eral overview of historic and potential tsunamigenic events in the North Atlantic Ocean is
provided by Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group (2008). In
this project, tsunami sources that threaten the upper US East Coast (USEC) were catego-

rized into three main categories, and have been studied separately due to their differences
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in physics and location. First, two seismically active sources in the Atlantic Ocean were
used; a subduction zone earthquake in the Puerto Rico trench, and a simulation of the his-
toric Azores Convergence Zone earthquake of 1755. A far field subaerial landslide due to
a volcanic collapse in Canary Islands is also modeled. Finally, near-field Submarine Mass
Failures (SMFs) close to the edge of USEC continental shelf are used here as well. A brief

introduction and references to detailed studies of the sources are provided in this section.

2.2.1 Coseismic sources

2.2.1.1 Puerto Rico Trench: Previous research has confirmed the possibility of large
earthquakes in the Puerto Rico Trench (PRT) in the Caribbean Subduction Zone (CSZ)
(e.g. Grilli et al., 2010). These studies implied that an extreme event with return period
of 200 to 300 years could be powerful enough (M,, = 9.0) to rupture the entire PRT and
initiate a tsunami that will influence the USEC. Grilli and Grilli (2013a) have carried out
detailed computations for that event for use as initial conditions for tsunami inundation

modeling on the USEC.

2.2.1.2 Azores Convergence Zone: The other coseismic source used here is located on
the Azores Gibraltar plate boundary, known as the source of the biggest historical tsunami
event in the North Atlantic Basin (Gonzalez et al., 2007). The 1755 Lisbon earthquake
(M, = 8.6—9.0) generated tsunami waves with heights between 5 to 15 meters, impacting
the coasts of Morocco, Portugal, Newfoundland, Antilles, and Brazil. The procedure for
obtaining the initial condition for tsunami propagation is quite similar to the PRT rupture

and is discussed in Grilli and Grilli (2013b).



2.2.2 Volcanic cone collapse

In recent years, a potential cone collapse of the volcanic cone Cumbre Vieja (CVV) in
the Canary Islands has received attention as a possibly catastrophic source threatening
the USEC. In this project, a multi-fluid 3D Navier-Stokes solver (THETIS) was used to
compute the volcanic collapse tsunami source (Abadie et al., 2012; Harris et al., 2012).
Detailed description of the CVV modeling for use in this project is described in Grilli and
Grilli (2013c¢). Two different slide magnitudes were studied for this work; an 80 km3 slide,
representing a plausible event in a return period window on the order of 10,000 years, and
a 450 km? source, consistent with estimates of the maximum event for the geological
feature. The magnitude of the latter event is significantly larger than all of the other cases
studied in this project. Thus, it was decided to exclude the 450 km? source from inundation
line calculations, and illustrate its results separately as a representation of the worst case
scenario condition. This is due to the fact that this source return period is expected to be

much more than 10,000 years.

2.2.3 Submarine mass failure

The US East Coast is fronted by a wide continental shelf, which contributes to the dissi-
pation of far-field tsunami sources, and diminishes the damage caused by simulated waves
from these sources on the coastline. On the other hand, it has been noted in literature (e.g.
Grilli et al. 2014) that there is a potential of a Submarine Mass Failure (SMF) on or near
the continental shelf break, causing tsunamis that affect adjacent coastal areas. Consider-
ing the fact that the only tsunami event that has caused fatalities on the US East Coast was

an SMF tsunami (Grand Banks, 1929), it is necessary to study possible impacts and con-



sequences of such catastrophes with respect to heavily populated coastal communities on
the USEC. In this project, four different locations are chosen as the most probable to expe-
rience a submarine mass failure tsunami. The process of obtaining the initial condition for
near-shore propagation and inundation modeling for all of these sources are comprehen-
sively documented in Grilli et al. (2013). The landslide movement is simulated with the
NHWAVE model (Ma et al., 2012; Tehranirad et al., 2012) and the results shown here are
interpolated into 500 meter grids for propagation and inundation modeling 800 seconds

after slump movement is initiated (Grilli et al., 2013).

3 Modeling Inputs

3.1 Numerical model

Tsunami propagation and inundation in this study is simulated using the fully nonlinear
Boussinesq model FUNWAVE-TVD (Shi et al, 2012a). FUNWAVE-TVD is a public do-
main open-source code that has been used for modeling tsunami propagation in ocean
basins, nearshore tsunami propagation and inland inundation problems. The code solves
the Boussinesq equations of Chen (2006) in Cartesian coordinates, or of Kirby et al. (2013)
in spherical coordinates. A users manual for each version is provided by Shi et al (2011).
FUNWAVE-TVD has been successfully validated for modeling tsunami wave characteris-
tics such as shoaling, breaking and runup by Tehranirad et al. (2011) following NTHMP
requirements (see Appendix C). Additional description of modeling specifications and in-
put files is provided in Appendix B.

One key specification in the model is the choice of friction coefficient defined for



tsunami simulation. Geist et al. (2009) have performed a study on sensitivity of tsunami
elevation with respect to a range of bottom friction coefficients and demonstrated that
large coefficients will unrealistically damp tsunami wave height. A review of the existing
literature suggests that a value of C;; = 0.0025 represents a reasonable friction coefficient
for tsunami simulations, as suggested by several researchers (e.g. Grilli et al., 2013), and

this value is used here.

3.2 Bathymetric Input Data

3.2.1 FEMA Region II Bathymetry

The bathymetric component of the integrated, seamless bathymetric-topographic (topo-
bathy) DEM used in this project was obtained from the US Federal Emergency Manage-
ment Agency (FEMA) Region II as part of their storm surge modelling efforts. The FEMA
Risk Assessment, Mapping, and Planning Partners (RAMPP) team assembled the bathy-
metric dataset from several sources, including those form the NOAA National Geophysical
Data Center (NGDC), the USACE, and local New York and New Jersey surveys. FEMA
compiled the various datasets, along with adjacent land-based topographic datatsets, at
high spatial resolution and resampled to 10 meters in UTM Zone 18 (NAD83) coordinate
system. Elevations below the zero-line referenced to North American Vertical Datum of
1988 (NAVDS88) were extracted as a bathymetry-only dataset, which was integrated into
the current project’s seamless topobathy DEM. More details on the associated data sources
and processing steps used by FEMA in developing the bathyemtric dataset can be found
in the FEMA, 2014 document. The New York City DEM covers the coastlines of Staten

Island, New York City, the western half of Long Island and, the western parts of the the
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State of Connecticut (Figure 1). The horizontal datum is set to be World Geodetic System
of 1984 (WGS 84), and the vertical datum is North American Vertical Datum of 1988
(NAVDS8S8). However, to cover NTHMP requirements the DEM was converted to Mean
High Water (MHW) for inundation mapping using Vdatum software provided by NOAA
(Park et al., 2003). The resolution of FEMA region II DEM is 1/3 arc-second (FEMA,
2014), which with respect to study location means that the North-South resolution is 10.27
meters, and East-West direction grids are 7.87 meters (computed using the latitude in the
middle of the domain). All of the runs in this domain have been performed in Cartesian
coordinates. The domain shown in Figure 1 is extracted from the FEMA region 11 DEM.
Also, the maximum recorded elevation data was about 100 meters and there were no data
available for higher elevated area. However, since the tsunami did not inundated those
areas at all (Several test runs were performed to make sure), a fixed value equal to the
maximum recorded elevation was chosen for those areas (The parts without depth values
within the box shown in Figure 1). Considering the coverage area of this grid, the dif-
ference between Cartesian grid and spherical grid (Simply comparing the total length of
domain in Cartesian grid and spherical grid) is about 1.5 meters for the whole domain.
This means that the average offset for each point is of O(10~%) meters. Therefore, because
of the negligible differences between Cartesian and spherical grids, this grid was used as
Cartesian grid directly to capture fully nonlinear effects of the tsunamis nearshore. Further
information about this grid is also given in Table 1.

In the USA the period to determine MHW spans 19 years and is referred to as the Na-
tional Tidal Datum Epoch. For this project, inundation mapping processes have been per-

formed with MHW datum maps following NTHMP requirements (see Appendix C). There



are different approaches to relate MHW to NAVD@&S values in the literature, and also, one
can use existing datum conversion models to investigate the difference (e.g. Vdatum gen-
erated by NOAA). However, it should be noted that the difference between these values
18 not constant for the whole domain. For Atlantic Beach, NY MHW is at NAVD88+51.5

cm. For Port Jefferson, NY in the Long Island Sound MHW is at NAVD+95.1 cm.

3.2.2 NGDC Coastal Relief Model (CRM)

Bathymetry data for shelf regions lying outside the FEMA region II DEM are obtained
from the NGDC’s 3 arc-second U.S. Coastal Relief Model (CRM) (Divins and Metzger,
2003). This data delivers a complete view of the U.S. coastal areas, combining offshore
bathymetry with land topography into a unified representation of the coast. However, the

deeper part of the Ocean beyond the shelf break is not covered in this data.

3.23 ETOPO1

Bathymetry data for deeper parts of the ocean beyond the shelf break is taken from the
ETOPO1 DEM (Amante and Eakins, 2009). ETOPOI is a 1 arc-minute global relief
model of Earth’s surface that combines land topography and ocean bathymetry. It was
built from numerous global and regional data sets, and is available in "Ice Surface” (top of
Antarctic and Greenland ice sheets) and “Bedrock” (base of the ice sheets) versions. Here,

we use the Bedrock version in areas where the CRM data is not available.



3.2.4 Lidar-based Topographics DEMs

In addition to the bathmetry data mentioned above, lidar-based topographic (inland) datasets
were obtained from numerous counties in New York, New Jersey, and Connecticut. Al-
though the numerous datasets were generated from lidar flown at various times, using var-
ious technologies and processing standards, the best available bare-earth DEM datasets
(which only represent earth’s natural surface, man-made objects such as buildings or
bridges are not included) were obtained at the time of this project. All of the data, except
NYC and CT DEMs described below, were obtained from the FEMA Region II Support
Center in New York City through Dewberry, Inc. under contract with FEMA RAMPP
team. All data were also referenced to NAVDS8S vertical datum.

In northern New Jersey, this included Bergen County, Union County, Essex County,
Hudson County, and the Hudson Valley. Data were obtained in NJ State Plane (NADS83)
feet at 10 ft spatial resolution. For the New York area (not included New York City), this
included Richmond County, Kings County, Queens County, West Chester County (also
obtained in NJ State Plane (NADS83) feet but at 6.56 ft resolution) as well as Nassau and
Suffolk Counties on Long Island (obtained in NY Long Island State Plane (NADS83) feet
at 10 ft resolution.)

Elevation data from New York City was obtained from the City of New York Depart-
ment of Environmental Protection, based on lidar flown in April and May in 2010. The
elevation values were referenced to NAVDS88 vertical datum and distributed in NY Long
Island State Plane (NAD83) meters in 1 ft spatial resolution. The NYC DEM More infor-
mation about the NYC dataset is available, as well as download access information, on the

NYC OpenData Portal at https://data.cityofnewyork.us/City-Government/1-foot-Digital-
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Elevation-Model-DEM-/dpc8-z3jc

The northeastern portion of the study area overlapped with southwestern Connecticut.
For this area, elevation data was extracted from the USGS National Elevation Dataset
(NED.) The NED includes multiple digital elevation models from across the US, combined
into a seamless, nationwide digital elevation model at approximately 30 meter resolution.
Data can be extracted and downloaded for custom rectangular areas (clipped from the
compiled seamless DEM.) Additional, higher resolution data can also be downloaded for
certain areas, if available. For the current required region in CT, high resolution data at
1/9 arc-second was available for most of the area while the remaining area covered by 1/3
arc-second data. Both datasets, available in geographic coordinates (NADS83) referenced
to NAVDS8S vertical datum, were obtained for this project. More information about the

USGS NED as well as download access information, is available at http://ned.usgs.gov/.

3.2.5 Integration of Elevation Data Sources

All of the bathymetric and topographic data in the nearshore region, approximately 20
datasets, were combined into a seamless mosaic dataset using ArcGIS Desktop software
from ESRI. The ArcGIS Spatial Analyst extension Blend method was used for the majority
of the work when merging various data into a single raster dataset. The Blend method uses
a distance-weighted algorithm to determine the value of overlapping pixels while merging
two datasets. The weight of each input pixel is based on the distance from the pixel to the
dataset edge within the overlapping area; the closer to the edge, the less weight the pixel
carries. Although the most computationally intensive option for raster mosaicking within

ArcGIS Desktop, it provides a smooth surface in the transition zone between datasets.
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The first step was to mosaic all of the land-based topographic data to a common 10 ft
spatial resolution grid. Data from the five NYC boroughs were merged first all all values
less than zero (NAVDS88) were removed; this was due to the fact that most water bodies
in these data were hydro-flattened (assigned a constant value across entire water body)
and the FEMA R2 dataset included much of these data. Long Island datasets, New Jersey
datasets, and CT datasets were also each merged together in their respective coordinate
systems and resolutions. The next step was to merge all of these regional datasets into a
common coordinate system (NY Long Island State Plane NAD83) and resolution (10 ft.)
The complete land-based topographic dataset was then projected to UTM Zone 18 north
coordinate system and resampled to 10 m to match the FEMA R2 bathymetric dataset.
These two datasets were them merged with small data gaps filled using multiple iterations
of the GDAL utility program gdal nodatafill.py (http://www.gdal.org/gdal_fillnodata.html).
The final topobathy DEM was projected to geographic coordinates at 1/3 arc-second (ap-
proximately keeping the same 10 m resolution) and clipped to the study area boundary for

input into the hydrodynamic model.

3.3 Model Grids

Although the New York City DEM satisfies the bathymetry data requirements for nearshore
simulations, proper offshore bathymetry data is required to model the tsunamis far from
the shoreline. Accordingly, Grids A and B (Figure 2) are generated for low resolution mod-
eling over the ocean basin and continental shelf. The input data for the tsunami sources
is divided into two categories. The first category consists of Cosiesmic and CVV sources,

which were simulated in larger scale ocean-scale model runs, with results recorded on the
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boundaries of Grid A. The ocean-basin simulations in which this data were recorded was
performed with a 16 arc second spherical grid. Grid A was generated in order to keep the
nesting scale 4 or less (see section 3.4), and continue the simulation with a 4 arc second
grid. The grid sizes of the Grid A are 503.2 m in the north-south direction and 535.0 m in
east-west direction (Table 1). On the other hand, the SMF sources fall within the modeled
region and are initially modeled with a Cartesian grid using NHWAVE (Ma et al., 2012)
with 500 m resolution. The input data was in the form of initial conditions, in contrast
to the first category where the data is in form of boundary conditions. Therefore, it was
required to generate another grid larger than Grid A to allow space for model sponge lay-
ers (or damping regions) on the boundaries. Also, in order to directly use input data as
generated by NHWAVE, the grid sizes for Grid B were chosen to be 500 m.

Depth values for these grids were obtained from the 1 arc-minute ETOPO-1 database,
while nearshore bathymetry and topography were obtained from the CRM. The horizontal
datum and vertical datum are set to be WGS84 and MHW, similar to New York City DEM.
These grids are mapped from spherical coordinates into a Cartesian grid. This means that
there are some mapping errors considering the magnitude of these grids. For example, for
Grid A, the total difference between two different coordinate systems is 132 m comparing
the arc length (spherical) with the straight line (Cartesian). The average offset difference
for each grid point between two coordinates is 12 cm, which is negligible considering
a grid size of about 500 m. To minimize the error around the mapping area, the grid
is lined up close to theNew York City DEM. The total difference between spherical and
Cartesian coordinates for Grid B is 465 meters. The average offset difference between two

coordinates is 31 cm for each point of this gird. To make the error as small as possible for
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the western parts of the domain, this grid is also lined up with the mapping area. Therefore,
larger error values shows up in the eastern and southern parts of the domain, which is not
of concern because they fall within the sponge layer region.

Figure 2 shows the location of these grids, as well as the location of the SMF sources
simulated in this project. Further information about these grids are provided in Table 1.
Figure 3 shows the initial surface elevation of each SMF source mapped onto Grid B. The
results of the simulations using Grids A and B were recorded on the New York City DEM
boundaries in order to perform higher resolution modeling in nearshore regions. This

process is described in the next section of this document.

3.4 Nesting approach

In order to save computational time, an appropriate nesting approach is required to de-
crease the grid sizes from coarser grids offshore to finer grids nearshore. Accurate nesting
should insure that there would not be a loss of data on any of the boundaries on which cou-
pling is performed. The nesting scale represents the change in the grid size between two
levels of simulation. For example, if the 500 m grid results are used to perform a 125 m
simulation, the nesting scale is 4. Although the coupling capabilities of FUNWAVE-TVD
are such that large nesting scales could be used, a largest nesting scale of 4 has been used
in this study in order to avoid any loss of data. As described in previous sections of this
report, Grids A and B are used to generate data on New York City DEM boundaries. Both
of these grids have grid sizes of roughly 500 meters and larger. Next, using the recorded
data on the boundaries of New York City DEM, simulations with grid sizes of roughly

125.0 meters (about 4 arc-sec) are implemented on this grid to record proper data around
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Figure 2: Locations of the Grids used in this project and also the center of SMF sources
simulated here.
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the initial stage of SMF sources.
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four DEMs with resolution of 1 arc-sec (extracted from 1/3 arc-sec New York City DEM)
in the main region to resolve tsunami inundation inland (and near-shore) with 30 meter
(about one arc-sec) grid size. Grilli et al. (2014) have used the similar nesting approach
and confirmed the values chosen here. Figure 5 depicts the diagram for the nesting ap-
proach performed in this project. In addition, characteristics of each grid are defined in

Table 1. All of the runs in this document were performed in Cartesian coordinates.

4 Results

This section describes the data recorded for each inundation simulation and its organiza-
tion as ArcGIS rasters for subsequent map development. The tsunami arrival time is an
essential piece of information for evacuation planners. The results are categorized into
onshore and offshore results. The onshore results depict the characteristics of the tsunami
on the land during inundation. Onshore tsunami effects are mainly demonstrated through

three parameters,
1. Maximum inundation depth
2. Maximum velocity
3. Maximum momentum flux

Yeh (2007) reported different forces created by a tsunami on structures and concluded
that, having the three mentioned quantities, one can calculate good estimates of forces on
onshore structures resulting from tsunamis. Moreover, tsunamis can affect ship navigation;

therefore, in order to cover maritime planning and navigational issues during a tsunami,
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Figure 5: The sequence of grid nesting. The figure on the top left depicts the Grid A and
B as well as the location of the New York City DEM. The figure on the right show the 1
arc-sec grids described in Table 1.

three other parameters are recorded and depicted offshore in this project. These three

offshore parameters include,
1. Maximum vorticity
2. Maximum velocity
3. Maximum recorded water surface elevation

All six variables are recorded for each of the modeling domains introduced in Table 1 for
all of the tsunami sources discussed in previous sections. Appropriate rasters are generated
which are compatible with ArcGIS and other GIS software for mapping purposes. Finally,
the inundation line, which is calculated from the envelope of tsunami inundation extent

for each source, will be presented.
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4.1 Arrival time

Tsunami arrival time plays an important role in evacuation planning during the occurrence
of an event. It is vital to report the arrival time of each tsunami relative to the time of initial
detection of an event. Here, the arrival time of the tsunami is based on the time that the
first tsunami bore passes the shoreline. Table 2 reports tsunami arrival times for several
places located in New York City DEM. For each location, arrival times of all different
tsunami sources have been reported. The arrival time for each city in Table 2 is a value for
that particular location with about a 5 minute error margin. Since tsunami propagation in
the ocean is constrained by bathymetry, the propagation of tsunamis toward the study area
is quite similar for all of the different sources.

The southeastern part of the domain (e.g. Westhampton Beach, NY) is the first spot
that would face the tsunami. However, within 35 to 50 minutes difference, the west part
of Long Island facing the Atlantic Ocean (e.g. Long Beach, NY) will be affected by
the tsunami as well. Because of the bathymetric features close to the study area such
as Hudson River Canyon, the most energetic part of the waves impact the southern parts
of Long Island. Within 20 to 40 minutes lag in comparison to the southern parts of the
Long Island, tsunami would reach New York City coastlines (e.g. Manhattan, NY). The
areas in the Long Island sound are insignificantly impacted by the tsunamis studied here,
and will be affected by tsunamis about an hour after the tsunami reaches New York City
(e.g. Stony Brook, NY). Figure 6 demonstrates the location of gauges where the recorded
surface elevation was used to assess tsunami arrival time for all of the sources (Table 2).

SMEF sources are clearly the closest source to the location of study, and will reach the
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entire domain within 1 to 2 hours. The tsunami induced by Puerto Rico Trench (PRT)
will affect theNew York City greater area between 4 to 5 hours after the earthquake. The
Lisbon historic event and the Cumbre Vieja Volcanic collapse (CVV) sources have similar

transoceanic travel time, and will influence the domain 8 to 9 hours after the incident.

Location SMF1 SMF2 SMF3 SMF4 PR LIS CVV! CVV?
Manhattan, NY 105 105 190 165 350 595 600 570
Sea Gate, NY 115 120 135 140 325 565 575 545
Long Beach, NY 95 100 115 120 305 540 550 520
Westhampton Beach, NY 55 60 80 85 265 495 505 480
Stony Brook, NY 190 125 220 220 395 635 640 600

Table 2: Arrival time in minutes after tsunami initiation for different locations and sources
in New York City DEM based on the location of the gauges. CVV! and CVV? refer to 80
km? and 450 km? slide volumes respectively.

4.2 Raster Data

One of the most important results of this work is the inundation map corresponding to each
tsunami source. In order to facilitate the GIS work, appropriate rasters which are compat-
ible with any GIS software such as ArcGIS are created for all of the grids mentioned in
Table 1. As an example, Figure 7 depicts the inundation depth for the CVV 80 km? slide
for the New York City DEM grid with 1 and 4 arc-second resolutions. In this figure the
domains in which 1 Arc-second resolution runs have been performed are displayed as well.

Figures 8-16 show the maximum inundation depth for the 1 Arc-second domains
shown in Figure 7. These figures provide a comparison for different sources studied in
this project. This includes the envelope inundation map for SMF and coseismic sources as

well as both CVV sources. The inundation depth for SMF sources are similar to each other,
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Figure 6: Recorded surface elevation for gauges located in different locations in New
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Beach (Black), and Stony Brook (Orange).
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however, the inundation depth values for SMF1 is larger for the most part in comparison
to the other SMF sources. This is probably because of the fact that the SMF1 is the closest
SMEF source to the location of study. Also, the PRT event is the dominant coseismic source
by far, and its inundation pattern is similar to SMF sources with some differences espe-
cially behind the barriers. Since coseismic sources have larger wavelengths, they are able
to penetrate behind the barriers with less attenuation in comparison to SMF sources. Fig-
ures 8-16 show that the CVV 450 km? source is clearly the dominant source for the area
studied here, and represents worst case scenario by far in comparison to other sources.
However, because its return period is estimated to be beyond 10000 years, it is excluded
from inundation line calculations at this point. The 80 km?® slide CVV has a similar in-
undation pattern to Puerto Rico source and SMF1. Except for some few locations SMF1
source is the dominant source among all other sources, excluding the CVV 450 km? slide
source.

The other important criteria required to be reported for inundated area, is the maximum
momentum flux. Figure 17 is an example of the maximum momentum flux which is
extracted from NY _larc_2 domain for the SMF1 tsunami. Maximum-recorded velocity is
another essential quantity required to be reported for inundated area. Maximum velocity
is also an important factor for navigational issues during a tsunami. Therefore, for better
realizations of maximum velocity maps, two different maps are acquired for maximum
velocity on land (basically inundated area) and maximum velocity offshore, which are
shown in Figure 18. Finally, the other important variable for navigational problems during
a tsunami, which is the maximum vorticity is also reported with the similar method as

the other gridded values. Figure 19 depicts the maximum vorticity in around Manhattan,

24



73°40'0"W

| Inundation Depth (m)
B <o5m
[Jos-20m
Bl -oom

41°20'0"N

41°0'0"N-{§

Hoa e
NEW. YOR

iNGE LN

73°40'0"W

73°20'0"W

41°0'0"N

73°20'0"W 72°40'0"W

Figure 7: CVV 80 km? slide Inundation Map for the New York City DEM with 4
arc-second resolution. Red squares depicts the 1 arc-second resolution domains

25



[ (7 =7 7
ALl 2l [« irend Haledon,_ | 2] [ ¢ véni
L lenatly (S ] % Tenatly (% |
|1 Inundation Depth (m) ) ; ) B /
i I oz - Enalewood |C i o

[ Jos-20m / ( b pl U

B -oonm 2 /' Hrd i

.‘; f

= o Lea/m

(A) (B)
Haledon, 5 ,‘ ‘.' ('an| Haledon é“ | / ‘ (’Yf;lnl
Brosaw 3y gl Tenatly i | Brosaw! = Tenatly ! ¢ B
1 ) 1 1 2  Jeaad
=S f
R . =
I )

&

m

(C) (D)
Figure 8: Inundation depth for NY _larc_1 domain, A) SMF Envelope, B) Coseismic

Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY _larc_1
domain boundaries.

26



Inundation Depth (m)

B <o5m
[ Jos-20m
= -)2.0"‘ =3

T

Highlands

(C) D)

Figure 9: Inundation depth for NY _larc_2 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_2
domain boundaries.

27



Dix _ SNTFQLIK
Hills”

Wyandanch

1slandiz

Middle
Island

Coram

L Lindenhiist

cacdi® -

Wyandanch s

SNTEEQLIK

~TEd

Srntht.

1slandi

Bol

Holbigok |

hemia

Coram

Middle
Island

Inundation Depth (m)

B <05

05-20m

B -2om

=Ery

Centerpo

Narthport

Dix  SNTEOQLIK
Hilks

Wyandanch

1Slandiz

TRy IillE T
_ G Northport
ortx

Huntington

Holbraok Dix

Hills

Bohemia,

Terryville

Holbro ok

(©)

D)

Figure 10: Inundation depth for NY _larc_3 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_3

domain boundaries.

28



Terryville
Middle
Island

Selden =
Coram

Riysrhead

$ It

HolbrG ok
East—
ohfmia Fatchogue™
¢ ol i
bavfille Ble
-

Selden

Terryville

Middle
Island

Coram

tount.; - seund- - Laurel Mount Sound S Laurel
». Sinai’ Beach Aquebogue Sinai Beach Aqueboague
Terryville Terryville Riverhead
Middle Middle
1sland Island
Selden Selden 7
Coram Coram
T p— TS ST
L Holbrook H olbro ok 27 SNt
)
T
hfmia ohfmia F -
g 4
savfille | Eiie savfille Blie
e Point I Foint
> e
i [
Inundation Depth (m)
.o
[Jos-20m
B -on
Mount Sound P Laurel . | “UMount,; Sound 4P Laurel
Sinai Beach A ebiie 3 Sinai Beach Aquebogue
Riverhead

D)

(©)

Figure 11: Inundation depth for NY _larc_4 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_4
domain boundaries.

29



Inundation Depth (m)

. osn
[Jos-20m
B -2om

Mount, . Sound- -
- ST Beach
oo
|- Terryvills

Middie

Laurel

(&1
IS Laurel” |, Mount Sound
Aqueboaue | g Sinai Eeach
Riverhead T&Syville
L g Middle
H -

Selden {—
Coram

~Holbraok

Slandic

Bohemia

SKdSIE sayville  Epie
' Paint

Selden =
Coram

HolbrG ok

- landic

East
Bohemia Fatchogue

e

Mot Sound
Sinan Beach
ool |
22 Terryvills
Middie

Selden

Coram

7 HolBFG ok
SERTE

Eohemia P

©  Blue B
Foint

)
y P Mount, Sound
e | . Sindi” Beach
o
= Terryville
Middle
1
Selden =
Coram
ass

Holbrook

 landic

Eohemia

D)

Figure 12: Inundation depth for NY _larc_5 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_5

domain boundaries.

30



Inundation Depth (m)

. osn
[Jos-20m f
B -2om

Northy
Centerport

Northport
Centerport

Huntington

Mot
Sinfpi

ony

Erook

Sea

hiff

syn

Bellm

Noith

Bohemia 4

wolle g
i Poin|

~ EET

Ligilgrhist

Ol 3o

. Holbr
Islandic |

Bohemia -

Uthpo rtis

Fairf

New

anaan

Northport
Centerport.

Huntingt on

1l
| Bellmore

Noith

SET

D
s

L Wyandal

e By
7\ Poin|

3 52

y A e
o L nh::&

D)

Figure 13: Inundation depth for NY _larc_6 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_6

domain boundaries.

31




Pierm ot

hite
arkill

Inundation Depth (m)

N <o5m
[Jos-20m
B -2om

>

Tuckahos

J
Alpirie

Bromcile

EE T

ki e
= Ypnkers/
£
Bayvitle

Broncie’

ROk

-
ERE e EIRiEEEn
s foura
wn Prem ot vn Fierm it
I Invinaton
Sparkill kil ES
1 &
Palisa gy

Alpirie Tuckange

Eastchester
Tuckahos
kil Bronci:
nkers/

~Broncuille

nkers]
Mt Vernon —{ panad By Mt vérnon
& freiham o Lattingl
E ;
%5 rnar naton)
Jzre e
5 g 4
: e s
2 aziona
e g H
stk Salisbul

Figure 14: Inundation depth for NY _larc_7 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_7
domain boundaries.

32



FAAREIELD 0 L FAAREPELD

AN ES T ; v AV ESTCHESTER
Inundation Depth (m) % 3
: Y g\ 4
[ <osm 5 2 Trum bl
5 [ Jos-20m E v
Bediol B -2om

bl =i . JEridg

MR Canaan

P
Fatrfield

Tty Bayville Terryvi
BN Northport
= ort
Huntington (¢ Huntington
Station St Sea " “Glen \ Station
X St Head
FAARENELD 4 1 FAARFIELD

W ESTCHESTEF

Trum bull Trum bull

Stratford _e9S

walton wilton

Lo Lo

Canaan = SN Canaan /

Mount, i S S ount..
Sinai ! e

Sinai

Bayville

Nérthport
% Centerport

Huntingt on
Station

(©)

Sea
litf

Figure 15: Inundation depth for NY _larc_8 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_8
domain boundaries.

33



EN Oxfoldy2"® AV EN Oxfordy—=""
: N ot <X Mot
: Seymour Hamdeny, A28 Nonhford ; S ey mour Hamdery, A2 NGrkford
= AD' s AS
i {‘Ansonia ywdbaiTidge 80 i Ansonia s bdsTidge L
Branford Branford
“Guiltdrd n ~ “Guilfdrd
~ Branfopd "\, o Eranford A
; e T S ey T > Sy S Bl s ey K
Trum bull & Trum bull S
P rifioengrt
| < I
=141 Inundation Depth (m)
B <o5m
[Jos-20m
B -2on
TAVEN oyt e TAVEN =
; Seymour Hamder NSNS NoTthford. B Seymour Hamder i < Northford
3, - e 3, P >, £
= AD 3 5 AS 23
g Ansonia: walodbTidge 2 & Ansonia. s bdbnidge =2
Branford. % Branford
> - Guiltdrd > ’)Q;f ¥ b
- Branford R, SBrant ofs)
> IR BT g s 3 - e = Crar T Wz
Trum bull o2 Efi Trumbull A
& ’, o 2 P
Stratford 5 = 4 = Stratford
o rig
=14

)

(D

(©)

Figure 16: Inundation depth for NY _larc_9 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts NY_larc_9
domain boundaries.

34



NY, during CVV80 tsunami. All of the rasters in this project have the Mean High Water
(MHW) datum and have ASCII format. In each raster file, the grid size (number of row
and columns), the latitude and longitude coordinates corresponding to the southern and
western boundaries of the domain, and cell size that defines the resolution of the simulation
are included. Also, no data value for each raster is defined as well to limit the information
to the inundated areas or other areas of interest. More information about the raster data is

provided in Appendix A.
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4.3 Inundation line

Tsunami inundation line is the main result of this project. The inundation line demon-
strates the envelope of the onshore maximum inundation extent of all tsunamis studied
in this work. We extracted the inundation line from inundation depth data. For each lo-
cation an envelope inundation depth map was generated from all of the tsunami sources.
Then, the zero contour of that map represents the inundation line, which is the extent
of tsunami inundation inland. As mentioned in the previous section, the 450 km3 CVV
source is excluded from the inundation line calculations, and its inundation line is sepa-
rately demonstrated as the low probability worst case scenario (shown in blue (Figure 20)).
The main inundation line is the envelope for all of the other cases studied here (shown in
red (Figure 20)). The inundation line for 4 arc-sec and 1 arc-sec domains were very close
to each other for all of the sources. For most areas, the SMF1 source (which is the closest
SMEF source to the mapping location) was the dominant source controlling the inundation
line; however, in a few locations the inundation line representing the 80 km?® CVV source
was the dominant tsunami source. It must be noted again that the 450 km® CVV source
would have been the dominant source by far if it was not excluded from the inundation
line calculations. Also, it should be noted that the inundations line in the overlapping areas
between different domains were almost identical for most of the cases, which is result of
a well performed nesting process. The inundation lines are saved as a shape file (.shp)
in order to simplify the inundation map generation process. More information about file

formats and names is provided in Appendix A.
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Figure 20: Tsunami inundation line for New York City DEM area based on tsunami
sources simulated in this project. The blue boxes show the location of the inundation
maps discussed in Section 5.
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S Map Construction

The final results of this project are inundation maps that can be used for emergency plan-
ning. The inundation line shape files (.shp) provide the main resource for constructing
these maps. These shape files are mapped over USGS and ESRI topographic maps to
construct the inundation map. In addition to the inundated area and the inundation line, in-
formation regarding the map construction is provided on each map. The tsunami sources
used to obtain these maps are mentioned in these maps. Also, the process of map con-
struction is briefly described on the map. Figures 21-32 show the draft inundation maps
for the “Manhattan, NY”, “Brooklyn, NY”, and “Staten Island, NY” in 1:40000 scale,
as well as “Long Beach, NY”, “Jones Beach, NY”, “Fire Island, NY”, “Bay Port, NY”,
“Westhampton Beach, NY”, “Port Jefferson, NY”, “Stony Brook, NY”, “Queens, NY”,
and “Huntington, NY” in 1:50000 scale. The location of these maps are shown in Fig-
ure 20. The basemaps for these figures are the USGS topographic maps obtained from
(http://basemap.nationalmap.gov/ArcGIS/rest/services/USGSTopo/MapServer).

It must be noted that the south parts of the Long Island are subject to most impact of
the tsunamis studied and modeled in this project (e.g. Westhampton Beach). The barrier
islands got completely inundated for most of the sources simulated in this project. On
the other hand, for the areas that are not directly hit by tsunamis (e.g. Manhattan) the
inundation is not as comprehensive as southern parts of Long Island. Tsunamis barely
impacted the areas inside the Long Island Sound, and the inundation line for most of those

areas fit the MHW line (e.g. Stony Brook).
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Figure 21: Inundation map for emergency planning for Manhattan, NY in 1:40,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
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Figure 22: Inundation map for emergency planning for Brooklyn, NY in 1:40,000 scale.
The inundated area is shown in red, and the thick red line represents the inundation line
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Figure 23: Inundation map for emergency planning for Long Beach, NY at 1:50,000
scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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Figure 24: Inundation map for emergency planning for Jones Beach, NY at 1:50,000
scale. The inundated area is covered in red, and the thick red line represents the

inundation line for this particular area.
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Figure 25: Inundation map for emergency planning for Fire Island, NY at 1:50,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
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Figure 26: Inundation map for emergency planning for Bay Port, NY at 1:50,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
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Figure 27: Inundation map for emergency planning for Westhampton Beach, NY at

1:50,000 scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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Figure 28: Inundation map for emergency planning for Port Jefferson, NY at 1:50,000
scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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Figure 29: Inundation map for emergency planning for Stony Brook, NY at 1:50,000
scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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03, Center for Applied Coastal Research, University of Delaware.

Figure 30: Inundation map for emergency planning for Huntington, NY at 1:50,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
for this particular area.
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Figure 31: Inundation map for emergency planning for Queens, NY at 1:50,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
for this particular area.

51



Map for Planning State of New York
National Tsunami Hazarad Mitigation Program (NTHMP)

Center ) Uniy Staten Island Staten Island
esow

15w

v e Tesew Tesew

METHOD OF PREPARATION TSUNAMI INUNDATION MA MAP EXPLANATION
The inur m}m ‘mappi lo:‘mm#ew Vork(’?rn'y‘;; funded by the M D M P /\/\/
National Tsunami Hazard Miligation Program  Here, 2 Tsunami Inundation Line
ecuih For compreherse iomaten shou e mapprs, P m;'.?." FOR EMERGENCY PLANNING
memrefemmamummmpmmm below.
Soven for i wrk, o ican State of New York )
S e o o ook ek Tsunami Inundated Area
ST S T £ D e Staten Island
cahauake ocaied on Azors Giralar it boundar. Soh of these PURPOSE OF THIS MAP
Gumors \'r:."'vm"“.'.'.é’ (W) gﬂu&":a‘:n in Canary m-nm s August, 2015

i Seale 1:40,000 1o identiy thei tsunami hazard. This map is not a legal document and

A muliiuid 3D Navier-Stokes solver (THETIS) was used to model this e 1:40, oes not meet disclosure requirements for real estate transactions nor
‘source. Finally, four different locations are studied on the US east coast e St S s {'-:'. ::Za e muhnmlme mb-wmm;: i :M been
:m:::::n ﬁ\:‘m‘lldg:uml These landslide sources are all o ame s s, rough using avai scier forms e

e o & PRt ¢ g s a— T i s, i s

ner ————Gometers
Natoral Geopryseal FDan cmmuesc) for ’wmm;: n sunam rovde any uther tormaton abaut e 1o perods of the evems
undation mapping. For ocean basin tsunami propagation, the depth nere.

Values were obianed rom e 1 areminuts ETOPO-) database, whie Tsunami sources modeled for New York City
nearshore bathymetry and topography were obtained from NGDCs Source Location Arriva Time (hrs) MAP BASE

mmmmm which are ypcaty provided on a § arcascond

‘Submarine Mass Failure 1 n2AW 2N 10 Topographic base maps prepared by U.S. Geological Survey as part of

e used the FUNWAVETVD model fo simuiate tsunam noarshore | § the 7.5-minute Quadrangle Map Series (originally 124,000 scale).

propagalion and onshore inundation. FUNWAVE-TVD is a public g ‘Submarine Mass Failure 2 7146W,39.70N 15 Tsunami inundation line bnundlm may reflect updated_digital
.! M'Y

Gomai open-source cag that has bes used for moceing Bunama
‘Submarine Mass Failure 3 719w, 3841N 15 basemap.

sion rom 1 arc Tinte (apout ) in the ocean basin, down to 1 Submarine Mss Faiure & Tas0w 810N i DISCLAIMER

The National Tsunami Hazard Mitigation Program (NTHMP),
of Delaware (UD), and the unw-mty S o Isand (LR
representation or warranties regarding the accuracy of this

data was used to generate the inundation line from the extent of the
inundated area. The accuracy of the inundation line shown on this map
sevarsl factors such a3 the sccuracy of the models
here, as well as the accuracy of the bahymetry data. The
Inundation ine depicts he enveiope of he inundation hngs or i tne
tsunami sources studied, not one partcular source.
For futher questions about the map contact James T Kirby
(kirby@udel edu).

inundation map nor the data from which the map was derived. Neither
he NTHMP nor UD shall be fble under any cecumstances fo sny
direct, indirect, special, incidental or consequential damages
mpoﬂwmydumbytnyunrmmylmpmymmummw
arising from the use of this may

Reference:
Tehranirad, B., Kirby, J. T, cuum J. A, Shi, F. 2015, “Tsunami

CACR-15-
03, Center for Appied Coastal Researeh, Uniersty of Delaware.

Figure 32: Inundation map for emergency planning for Staten Island, NY at 1:40,000
scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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Appendix A Gridded Data Information

In order to facilitate GIS work used to report tsunami inundation simulation results, the
output data is saved in ESRI Arc ASCII grid format, which is compatible with GIS soft-
ware such as ArcGIS. For each file, the grid spacing could have two different values
(23.79,30.81) m, and (95.16,123.24) m) depending on the domain, and the coordinate
system is based on Geographic decimal degrees (Longitude and Latitude). Also, the ver-
tical datum of all rasters is mean high water (MHW), and the horizontal datum is World
Geodetic System of 1984 (WGS 84). The name of each file implies some information
about the file contents as well. The first part defines the type of data and could be one of
the following,

Inun . .. Onshore inundation depth

Inun_area ... Depicts the inundated area (inundation line)

Hmax. . . Maximum recorded offshore water surface elevation

Mfmx ...Maximum recorded onshore momentum flux

Uwet. .. Maximum recorded onshore velocity

Udry. .. Maximum recorded offshore velocity

vorm. . . Maximum recorded offshore vorticity

depth. .. depth

The rasters including inundation depth, maximum momentum flux, and maximum onshore
velocity (udry) are only meaningful onshore (for initially dry points, basically inundated

points), and by using the bathymetry data, nodata values have been defined for onshore



points in these rasters (nodata value=-9999). The reverse is performed for maximum vor-
ticity and maximum offshore velocity (uwet) rasters by setting the offshore values to -9999
to just consider the initially wet points in the domain. The second part of the raster name
defines the tsunami source used to obtain that data. This could be seven different sources

and are categorized as follows,

SMF1-4...Submarine Mass Failure 1-4
PR...Puerto Rico Trench
LIS...Lisbon Source

CVV...Cumbre Vieja Volcanic Collapse.

In each file, the grid sizes (mx,ny), the coordinates for south west corner of the domain,
and the grid size are included in the file heading as well as a nodata value through the

following format,

ncols 9397

nrows 12853

xllcorner -75.580046296295
yllcorner 37.679953703705
cellsize 9.2592589999999¢e-005

NODATA _value -9999



Beneath the file heading, the corresponding values to each point are written in the file
with the format that starts from the southwest edge of the domain, and writes each row
from western to eastern boundaries of the domain from south to north. This format is
different from FUNWAVE-TVD output format, and it is flipped upside down. There-
fore, the FUNWAVE-TVD outputs are flipped vertically to match with ESRI Arc ASCII
grid format here. The last part of the file name represents the name of the grid that the
raster is built for. The names for each grid can be found in table 1. Therefore, the raster
“Inun_SMF2 _oc_30_1.asc” refers to the inundation depth data for the SMF2 source for
the first New York City grid (NY_1) with the resolution of roughly 30 m ((dx,dy) =
(24.30,30.81) m (corresponding to 1 arc-sec in spherical coordinates)) described in the
main document (Table 1). Finally, the inundation lines are saved as shape files (.shp) for
each domain and have the same name format and projection with rasters. The combined
inundation line, which depicts the inundation line for the whole domain based on the finest
results available in any area, is presented as “final_inundation_line.shp” in the main folder
of the results. Figure 33 shows the way the data is organized. There exists a folder for each
domain (NY_1, NY_2 ) and each of them involve seven folders for each tsunami source
studied here. The raster data and inundation line shape file explained above are located in

these folders.
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Figure 33: Screen shot of the results folder



Appendix B Modeling inputs

A brief description of model inputs that were saved during the simulation process is pro-
vided here. These files provide sufficient data for researchers who are interested to model
the tsunamis on their own. In the main results folder, there exist a folder called “input”
(Figure 34). In this folder, three categories of input files exist. First, depth files for each
domain are provided. The file name represents the location of the bathymetry data, and
one could figure it out using Table 1. For example, if the file name is “NY_larc_1, it
is the bathymetry data for the NY_larc_1 domain defined previously in this report (Ta-
ble 1,Figure 8). Next, the coupling file for each simulation domain is provided for seven
sources studied in this work. Coupling files force the boundary conditions on the domain
based on recordings from coarser grids in order to simulate tsunamis with finer resolution.
Similar to the bathymetry files, names of coupling files show their domain, as well as their
source. For instance, the file “smf3_ac_larc_3.txt” is the coupling file for SMF3 source
for the NY_larc_3 domain (Figure 10, Table 1). The coupling files can be easily distin-
guished from bathymetry files because bathymetry files do not have a tsunami source label
included in their names.

General instructions for configuring input files for FUNWAVE-TVD may be found in
the program’s users manual (Shi et al., 2011), available at,

http://chinacat.coastal.udel.edu/papers/shi-etal-cacr-11-04-version2.1.pdf.
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Figure 34: Screen shot of the input folder
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Appendix C Inundation Mapping Guidelines

The development of inundation maps for tsunami hazard assessment and evacuation plan-

ning is governed by three documents and a related appendix. These include:

1. NTHMP Inundation Modeling Guidelines

Available at: http://nws.weather.gov/nthmp/modeling_guidelines.html

2. Mapping Guidelines Appendix A

Available at: http://nws.weather.gov/nthmp/documents/MnM _guide_appendix-final.docx

3. NTHMP Tsunami Evacuation Mapping Guidelines
Available at:

http://nws.weather.gov/nthmp/documents/NTHMPTsunamiEvacuationMappingGuidelines.pdf

4. NTHMP Guidelines for Establishing Tsunami Areas of Inundation for Non-Modeled
or Low-Hazard Areas
Available at:
http://nws.weather.gov/nthmp/documents/Inundationareaguidelinesforlowhazardareas-

Final092611.docx



