Physical modelling of landslide generated tsunamis around a conical island: <u>Recent developments</u>

A. Romano¹, M. Di Risio², M.G. Molfetta³, <u>G. Bellotti⁴</u>, D. Pasquali², C. Cecioni⁴, P. Sammarco⁵, L. Damiani³, P. De Girolamo¹

¹ Sapienza Università di Roma, ² Università dell'Aquila, ³ Politecnico di Bari, ⁴ Roma Tre University, ⁵ Università di Roma Tor Vergata

Index of the presentation

- Brief description of the experimental layout
- New experiments with moveable wave gauges
 - k-f analysis for the analysis of the trapped waves
 - Ongoing research using EOF analysis
- New experiments with motor controlled submerged landslides

The conical island: a small simplified Stromboli

The physical model represents a truncated conical island (base radius 4.45 m). The slope of the island's flanks is 1:3 (1 vertical, 3 horizontal). A flat slope (0.5 m wide) allows the model to slide along the flank and to enter the water. The physical model roughly reproduces the small volcanic island Stromboli (South Tyrrenian Sea, Italy) in a Froude law scale (1:1000).

The run-up gauges

A movable arm to change the position of wave gauges

13 wave gauges are installed on a <u>rotating arm</u>, which is placed at the island center. An electric engine, remotely-controlled rotates it along an angular sector of **180°**, with steps of **5°**.

A movable arm to change the position of wave gauges

 θ = Angle between the path of the landslide and the rotating arm

Each experiment is repeated 37 times. After each test the arm has been rotated by 5° .

The arm position has been carefully measured by a theodolite.

Once the repeatibility of the experiments is ensured, more than **500** punctual free surface elevation time series are available

Animation of the results

Crest and trough elevation, first and second waves

Crest and trough elevation, third and fourth waves

Wavenumber-frequency (k-f) analysis of the results

Wavenumber-frequency (k-f) analysis of the results

The 1D k-f, applied to the run-up time series, shows that the waves propagate along the shore as a **0**th-order edge waves packet or Stokes edge waves (*Ursell, 1952*).

Estimate of the wave phase celerity

The experimental phase wave celerity of the first three waves that form the packet (c^*_{1w} , c^*_{2w} , c^*_{3w}) has been calculated as from the zero-crossing analysis, while the theoretical one has been obtained (c) by the edge waves dispersion relation.

Estimate of the wave group celerity

The theoretical group wave celerity, as from the edge waves theory for the 0-th mode, is in very good agreement with the experimental one.

The new tests with submerged landslides

Landslide motion (controlled by the motor)

The landslide laws of motion has been obtained by the analytical solutions by Watts (1998) and Pelinovsky & Poplavsky (1996). The initial acceleration has been varied parametrically.

Results for submerged landslide: wave run-up features

Run-up time series ($a_0 = 0.8 \text{ m/s}^2$) along the shoreline of the island.

Results for submerged landslide: near field waves

Ŧ

Free surface elevation time series in the near field $(a_0 = 0.8 \text{ m/s}^2)$ evaluated at different positions along the landslide path.

Results for submerged landslide: near field waves

Conclusions and references

Movable arm experiments:

Romano A., M. Di Risio, G. Bellotti, M. G. Molfetta, L. Damiani, P. De Girolamo (2016). Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation. Landslides, pp. 1-15. *Benchmark data available for distribution*

k-f analysis:

Romano A., Bellotti G., Di Risio M. (2013). Wavenumber–frequency analysis of the landslidegenerated tsunamis at a conical island. Coastal Engineering, vol. 81, pp. 32-43.

EOF analysis:

Wavenumber-frequency analysis of the landslide-generated tsunamis at a conical island. <u>Part</u> <u>II: EOF and modal analysis</u> (in preparation)

Submerged landslides:

Tsunamis generated by submerged landslides at a conical island: experimental and numerical analysis (in preparation)

