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Abstract

In this paper, we present a new two-layer model of Savage-Hutter type to study submarine avalanches. A layer com-
posed of fluidized granular material is assumed to flow within an upper layer composed of an inviscid fluid (e.g. water). The
model is derived in a system of local coordinates following a non-erodible bottom and takes into account its curvature. We
prove that the model verifies an entropy inequality, preserves water at rest for a sediment layer and their solutions can be
seen as particular solutions of incompressible Euler equations under hydrostatic assumptions. Buoyancy effects and the
centripetal acceleration of the grain movement due to the curvature of the bottom are considered in the definition of
the Coulomb term. We propose a two-step Roe type solver to discretize the presented model. It exactly preserves water
at rest and no movement of the sediment layer, when its angle is smaller than the angle of repose, and up to second order
all stationary solutions. Finally, some numerical tests are performed by simulating submarine and sub-aerial avalanches as
well as the generated tsunami.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Recent improvements in seabed and sub-surface mapping techniques as bathymetry measurements and seis-
mic imagery have revealed a large amount of slide scars and a wide diversity of related deposits on many of the
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world’s continental margins (e.g. [28,48]). Submarine avalanches or landslides are poorly studied compared to
their sub-aerial counterparts. This is, however, a key issue in geophysics. Indeed, submarine granular flows
driven by gravity participate in the evolution of the sea floor and in particular of the continental margins. They
also represent a threat to the submarine infrastructures, especially for the oil or port industry as well as to
many sea shore inhabitants due to the potential tsunamis that can be triggered by such landslides. In this
paper, we present a new two-layer Savage-Hutter type model, with application to sub-aerial/submarine ava-
lanches over variable topography and generated tsunami. The first layer is filled with a homogeneous inviscid
fluid with constant density and the second layer is made of a fluidized granular mass. The two fluids (i.e. water
and fluidized debris) are assumed to be immiscible. Important questions are (i) the rheological behavior of the
fluidized granular mass on a complex topography and (ii) the interaction between the two layers.

Numerical modeling of sub-aerial debris or snow avalanches has been extensively investigated during this
last decade with application to both laboratory experiments dealing with granular flows and geological events
[32,29,39,49,21,2,3,27,5,1,33]). Most of the models devoted to gravitational granular flows describe the behav-
ior of dry granular material following the pioneer work of Savage and Hutter (see [45]): a shallow water type
model (i.e. thin layer approximation for a continuum medium) is derived to describe granular flows over a
slopping plane based on Mohr—Coulomb considerations: a Coulomb friction is assumed to reflect the ava-
lanche/bottom interaction and the normal stress tensor is defined by a constitutive law relating the longitudi-
nal and the normal stresses through a proportionality factor K.

New Savage—Hutter models over a general bottom have been proposed by Bouchut et al. [6], that take into
account the curvature of the bottom. The authors introduce two new models: the first one is deduced under the
hypothesis of small variation of the curvature and the second one deals with a general bottom topography.
The new curvature terms introduced in the models are necessary for two reasons: they make it possible to pre-
serve water at rest solutions and to exactly verify an energy inequality. In this paper, we consider the first
hypothesis, i.e. a small variation of the curvature. The equations are derived in a local coordinate system
attached to the non-erodible topography and takes into account its curvature (see [6]), in particular the cen-
tripetal acceleration due to the bottom curvature.

A generalization to 2D aerial avalanches over surfaces with small lateral curvature has been carried out in
[49,41]. In [7], Bouchut and Westdickenberg generalized the previous models for small or for general slope
variation in two dimensions. The discretization of 2D aerial avalanches can be done, for example, by finite
volume by using kinetic schemes [31], by Roe type finite volume methods [11], or distribution schemes [43].

A two-layer shallow water type model with compressible effects has been introduced by Morales de Luna
[34]. He considered an upper compressible and a lower incompressible layer. The model is presented in local
coordinates, verifies an entropy dissipation inequality and gives an approximation of the free surface com-
pressible-incompressible Euler equations.

In most industrial applications and real debris flows, the fluid which is present in the granular material can-
not be neglected. Recent attempts have been developed to describe mixtures of grains and fluids in shallow
water two-phase or mixture models ([26,40,37,42]). Iverson and Denlinger [26] extended the SH model to study
avalanches of fluidized granular masses where the pores between the grains are assumed to be filled with a
fluid. In [42], Pudasaini et al. generalized the work [26] for a general channel on local coordinates. In both
works, a simplified system is considered, assuming that the velocity of the fluid within the pores is equal to
the velocity of the grains. The same hypothesis is used here: the fluidized mass is assumed to be a porous med-
ium composed of sand grains, filled with the fluid present in the upper layer (see [26]). The dissipation within
the granular medium is modeled by a Coulomb friction law taking into account the buoyancy effects over the
sand grains. The other key point concerns the definition of the stress tensor for the fluid and grain phases of
the second layer. From the vertical momentum equation and dimensional analysis, the vertical stress tensor of
the complete layer can be derived. However, it is necessary to know the stress tensor for each phase (i.e. fluid
and solid phases) in order to apply different constitutive relations for the fluid and solid phases separately.
Therefore, additional hypotheses have to be introduced (see [26]).

Finally, very few models have been proposed to deal with the interaction of a fluidized mass and the sur-
rounding fluid in which the avalanche propagates. One of the outcomes of the interaction between water and
debris is the generation of water waves and possible tsunami for particular configurations of the coastal topog-
raphy and of the submarine avalanche. Most of the models dedicated to the simulation of landslide generated
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tsunamis reduce the trigger mechanism to a vertical motion imposed as boundary condition in the water wave
propagation model (see, for example, [20]). Submarine landslides are actually modeled by partially or totally
submerged pistons, rigid bodies entering the water or initial water displacement (see, e.g. [44,35]). More
recently, submarine avalanche dynamics has been taken into account using depth-averaged or full Navier—
Stokes models describing the rheological behavior by a Coulomb friction law or by viscous dissipation
([22,23,30,19]). A similar attempt has been performed by Heinrich et al. [24] but without taking into account
the effects of the fluid on the landslide dynamics (i.e. the sea-bottom deformation induced by the landslide is
used as input data in the tsunami model). As a result, the momentum equation for the fluidized granular mate-
rial does not contain any coupling terms between the two layers which should appear in the pressure gradient
terms. Other systems, named active models, with a dynamic displacement of sea bed are used with a coupling
between a shallow water system and visco-elastic equations, see for instance [16,17]. The interested reader is
referred to [15,18] for references around Tsunamis and challenging modeling.

In this paper, we present a 1D model for submarine avalanches, which is a generalization of the Savage—
Hutter (SH) 1D model [45] for aerial avalanches and the model proposed by Heinrich et al. [24].

To discretize the model that we introduce in the paper, we propose a well-balanced finite volume method.
Firstly we begin by rewriting the model obtained in local coordinates to Cartesian coordinates. We can write
the model as a hyperbolic system with conservative terms, source terms and non-conservative terms. One of
the characteristics of the model is that as we consider the variations of the topography, the physical flux func-
tion depends on the variable x measured along the horizontal coordinate. This dependence of the flux with
respect to x makes difficult the derivation of an exact well-balanced method for water at rest (see [9,36]). More-
over, for the proposed model the water at rest solution should be understood as no movement of the water
column and no movement of the sediment layer when the angle of the sediment surface is smaller than the
angle of repose. In such situations, it is necessary to discretize properly the source terms due to the variations
of the bottom angle and the derivatives of the flux function with respect to the angle.

The more specific difficulty related to discretization of system comes from the Coulomb friction term. Its
discretization is important, to properly simulate the landslides and to preserve the stationary solutions corre-
sponding to water at rest and no movement of the sediment layer. We propose a two-step numerical scheme to
treat the Coulomb friction term. In the first step, a discretization of a term that can be interpreted as a redef-
inition of the Coulomb term for stationary solutions is considered. This term is only introduced in the unc-
entered component of the numerical scheme. In the second step, a semi-implicit treatment of the Coulomb
term at each cell is performed. We proof that the numerical scheme constructed in this way preserves the solu-
tions corresponding to water at rest and no movement of the sediment layer for angles smaller than the angle
of repose.

This paper is organized as follows: the model is derived in Section 2. Section 3 is devoted to study the model
properties. In Section 4, we present a well-balanced finite volume numerical scheme to discretize the model.
We prove that the numerical scheme exactly preserves water at rest and no movement of the sediment layer,
and up to second order all stationary solutions. Finally, in Section 5 a series of numerical tests are performed,
including the simulation of a tsunami generated by the motion of a sediment layer, following [24]. In
Appendix, we present the details related to the change of variable used in the incrompressible Euler equations
to write the equation in a local coordinate system attached to the bottom topography.

2. Derivation of the model

In this section, we present the derivation of a two-layer model of Savage-Hutter type to study submarine
avalanches and generated tsunamis. We denote with index 1 the upper layer, composed of a homogeneous
inviscid fluid of constant density p,. We also consider a grain layer of density p,, and porosity v, (see
Fig. 1). We consider that the pores in the grain layer are filled with the fluid of the upper layer. Then, the
density of layer 2 composed of the fluidized mass is defined as

pa = (1 —=g)p, + op. (1)

First, the system of equations describing the dynamics of the two-layer system is presented. Next, a change of
variables to local coordinates attached to the bottom (see Appendix) is performed and the boundary and
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Tﬂ S Water surface

X

Fig. 1. A fluid layer over a grain layer and a non-erodible bottom b.

kinematic conditions are set. The final model is derived based on a dimensional analysis and a vertical inte-
gration of the equations.

2.1. Starting system of equations

We consider the incompressible Euler equations. The unknowns are

u; and v; being the horizontal and vertical velocity components of each layer, respectively. Then, the incom-
pressible Euler equations can be written as
divii, =0, i=1,2, 2)
POV i+ p VNV, =—divP,+ pV(g-X), i=1,2, (3)

where we denote by P;, i = 1,2 the pressure tensor of each layer

Pi _ pi,xx p[,urz , i= 17 2
pi,zx piﬁzz
(with p, . = p;.,), by p;, i = 1,2 the densities of each layer, by X a point in Cartesian coordinates X = (x, z),
and g = (Oa _g)
In order to model the evolution of the granular layer using the Euler equations, following [26] we suppose

that the velocity of the fluid in the pores of the second layer and the grains are the same and P, can be decom-
posed as

Py =P+ P,

where P and P! are the pressure tensor of the solid phase (grains) and the fluid phase, "respectively.

Next, a change of variables is performed to Egs. (2) and (3). Local variables over a non-erodible bottom
defined by z = b(x) are considered. X denotes the arc’s length of the bottom and Z is measured orthogonally
to the bottom (see Fig. 1).

! In a binary mixture model, the pressure tensor of the mixture is exactly given by

2 2 74

_ L ; 7,
P=P+P - p,(7,~ V)@ (V, V), where 7, = 2’2)27
a=1 a=1 1:].07

is the barycentric velocity. This reduces to P = P* + P if the fluid and solid velocities are the same.
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In what follows we denote by 4, and 4, the thickness of the fluid and grain layers, respectively, measured
orthogonally to the bottom (see Fig. 1), by S = & + A, the free water surface.

The details of this change of variables are given in the Appendix. The change of variables is valid when the
local radius of curvature of the bed is smaller than A, + A,. Egs. (2) and (3) are re-written in the new variables
as

@X(U,)—I—GZ(JW,) :07 = 1,2,
p:0:(JU,) + pdx (U2) + p,0(JW,U;) + p,ox (8 - X)
= —@X(P,XX) — az(JP,ZX) + plW,(@X(U,H) + az(JW,H)) + PiXZdXH- i= 1, 2, (4)
PO (IW ) + pdx (UW,) + p 0 (JW7) + Pz‘JaZ(g/?)
= —0x(Pixz) —0z2(JPizz) — p;Ui(Ox(U0) + 0z(JW0)) — Pixxdx0, i=1,2,
where we denote by U, i = 1,2, the velocity parallel to the bottom and by W;, i = 1,2, the velocity perpen-
dicular to the bottom, with i referring to layers 1 and 2. The pressure tensor P; is defined by

P cos sinf p cos —sinf B Pixx Pixz
"\ —sinf cos®) ‘\sin@ cos® ) \Pix Pizn)
Observe that as p; . = p, ., then Py = P, zx.
Moreover, let us recall that p, is the density of the fluid and that p, is defined by (1). 6 is the angle between
the tangent vector of the bottom and the horizontal (see Fig. 1), and J = 1 — Zdx0 is the Jacobian of the

change of variables (note, dy0 = 0x0, for a non-erodible bed, see Appendix). Observe that J # 0 if the local
radius of curvature of the bed is smaller than A; + A,.

2.2. Boundary and kinematic conditions

We denote by #° the unitary normal vector to the free water surface Z = S (S = h; + h,) with positive ver-
tical component, by 5" the unitary normal vector to the surface Z = &, and by 1° = (0, 1) the corresponding
unitary normal vector to the bottom (Z = 0).

The following kinematic conditions are considered:

0.8 + U10xS — W, =0, (5)
ath2+Ulaxh2— WIZO, i= 1,2 (6)

Finally, the following boundary conditions are imposed:

eOnZ==":

Pl . 11S =0. (7)
e On Z = hy:

0" - (Pr = Py =0, 8)

fric(U,, U

P = (" - Pay) = ( el ) 2)) i=1,2, ®)
where fric(U;, U,) is a friction term between both layers.
e OnZ=0:

Uu,w)y " =0=w =0, (10)

O (Py — PO
Pont’ =1’ (n” - Pa’) = ( 7 (Pa = PO an) ) (11)
0

Note that the Coulomb friction law in Eq. (11) takes into account the buoyancy effects due to the fact that the
grains are submerged within a fluid layer.
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Remark 1. Eq. (9) assumes no water exchange between the two layers. Nevertheless, there is a water exchange
between the fluid and the porous avalanche, so Eq. (9) constitutes a simplification of the problem. This
entrainment process has been studied first by Beaves and Joseph in [4].

Eq. (6) assumes that the second layer has constant porosity (volume fraction) since p, is constant, then
Yo = constant.

2.3. Dimensional analysis

Next, a dimensional analysis of the set of Egs. (4), the kinematic and boundary conditions is performed.
The non-dimensional variables (7) read

(X,Z,1) = (LX,HZ,(L/g)"7),
(U W) = (Lg) (U, eWy), i=1,2, 12)
h; :H}Tn i=1,2, (PtXXypiZZ) :gH(7~DiXX,7~)iZZ), i=1,2,

PfXZ = gH,u,-P,yz, = 1,27
where y; = 1, i, = tan(dy), dy being the angle of repose in the Coulomb term (see [45]). By L and H we denote,
respectively, the characteristic lengths tangential and normal to a representative basal direction of the domain.
We suppose a shallow domain, so ¢ = H/L is supposed to be small. Note that the Savage—Hutter model has
been shown to reproduce experimental granular collapse over horizontal plane for aspect ratio € < 0.5 [32].
Using the above change of variables, the system of equations (4) is re-written as (we omit the tildes)

O (Uy) +0,(JW) =0, i=1,02, (13)

JO,(p,U;) + p,UioxU; + p JW,0,U; + p,Ox (b + ZcosO + PiXX) t

i

= —1;07(JPixz) + p;W:eU;dx 0 + 0x 0P pyzpiie, i=1,2, (14)
S{J@,(pl-W,-) + p,-U,-@X(W,-) + pl-W,@Z(W,«) + ax(Pixz) — aXHPiXX — Pizzdxe} —+ leaz(b + cos HZ)
= —Jaz(Pizz) - p,-deXH, = 1,2 (15)

The kinematic conditions (5) and (6) are re-written as
0S4+ U0xS—W =0, 0h+UOxh,—W;=0, i=1,2. (16)

Finally, the boundary conditions (7)—(11) are now given as

e Z=25:0nZ =S5, we have i = (—&dxS, 1)/¢5 with ¢ = 1/1 + £2(0xS)>, then from (7) we obtain
—saXS'PU(X + NlPIZX = O, (17)
—SaxSﬂlpl)g + PIZZ =0. (18)

e Z =hy: On Z = hy, we have 52 = (—edyhs, 1)/ ¢ with ¢ = /1 + 2(dyh,)*, then from (8) and (9) we
obtain

Pizz = Pazz + O(e), (19)

—&PuxOxhy + Pz = — (1" Pinf™) (edyhy) + fric(U,, U»), i=1,2, (20)

—ep; PizxOxhy + Pizz = (2 Pi™) i=1,2. (21)
e Z =0: On Z =0, we have #° = (0, 1), then from (10) and (11) we obtain

W, =0, (22)

0

U
o Poxz = —(Pazz — Plzz)ﬁ tan(dy). (23)
2
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2.4. Constitutive laws

We suppose that dyf = O(e). Then, from (15) we obtain

az(Plzz) = —p; COS 0 + O(S), (24)
az(Pzzz) = —p,COos 0 + O(C) (25)

If we integrate (24) from Z > 0 to S, we have up to order ¢,
Pizz = pi(S — Z) cos 0, (26)

therefore, Py, (hy) = p,h cos 0. Using this last expression, the relations given in (19) and integrating (25) from
Z > 0 to S, we have, up to first order

,P;ZZ + szz = Pazz = pihicos 0+ P, COS 0(/’12 — Z). (27>

The last equation defines the total pressure, P,z,, perpendicular to the base. The constitutive relation for
both the grains and the fluid, i.e. P, and P, is required to close the model.

The same problem appears if we study a grain—fluid mixture aerial avalanche. See, for example, [26,41]. In
order to obtain an expression for the normal stress of both phases, they suppose that both are linear in Z.
Moreover, they suppose that the component of the stress tensor of the fluid phase normal to the basal surface
is proportional to the pressure of a fluid layer, without the solid phase.

We adapt this hypothesis to our case, taking account of the fact that the fluidized layer has an upper layer
of fluid. Concretely, we suppose

P (Z) = Jipyhi cos 0 + Aapihycos O(hy — Z), (28)
where 4, and 4, are two parameters. Moreover, by (27), we have
322(Z) = prhicos O(1 — 2y) + cos 0(hy — Z)(py — Z2py).- (29)

The study of the stress transition conditions at a singular surface between two mixtures, which do not have the
same number of components, is a very difficult subject. Hypothesis (28) can be seen as a first trial, in the con-
text of this paper. Some earlier papers looking at the problem of interfacial transition conditions with different
number of constituents have been included in the references. For example, Hutter et al. [25] studied the tran-
sition conditions, with application to glaciers where the upper layer is ice and the under layer is a sediment-ice
mixture (see also [47,50,51]).

Remark 2. Comparisons with experiments are necessary to define 4; and 1,. Nevertheless, we can make some
possible choices.
The first simplification is to consider 4; = 4;. In this case, the component of the stress tensor of the fluid
phase normal to the base is proportional to the pressure of a fluid, without the solid phase in the second layer.
Nevertheless, we prefer at this moment to retain two different parameters. Because the role of 4; could be
different of that of 1,. Observe that if we evaluate (28) and (29) for Z = h,, we obtain

Pl (hy) = JipihicosO,  P5,,(hy) = pihicosO(1 — Ay).

Note that 4; controls the distribution of the pressure at the interface into the two phases of the second layer.

We have imposed continuity of the component of the stress tensor normal to the base across the interface of
the first and second layers (Eq. (8)), and we observe that it is verified independently of the definition of 4. If
we want to include an additional condition, for example, the continuity of the pressure of the fluid phase of the
second layer with the first layer of fluid, then we obtain that 1; = 1. Depending on the material of the second
layer, we can also suppose that the fluid that fills the pores of the second layer is nearly isolated of the fluid of
the first layer, in this case we can consider 4; ~ 0.

Independently of the additional hypothesis that we can use to set the distribution of the pressure at the
interface between the solid and fluid phases, we have still the parameter A, at our disposal, in order to impose a
similar hypothesis to that introduced by Iverson and Delinger, but only for the second layer.
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Another possible choice is to fix A1 = 4 = 5, where , is the porosity of the second layer. We obtain in
this case

szz = (1= o) (prhi + py(ha — Z)) cos 0, szz = Yop,(h1 + hy — Z) cos 0.

An interesting property of this choice is that P,z at height Z = h2 is proportional to the pressure that is obtained
in the absence of the fluid phase (with proportional constant (1 — ,)). Observe that P, depends on p,, the den-
sity of the solid phase, and not p,, the density of the mixture defined by (1). Analogously, szz is proportional to
the pressure (with proportional constant v,,) that is obtained in the absence of the solid phase. Moreover, if the
porosity of the second layer is zero, then P, = P5, which is automatically deduced from this definition.

Finally, the following relations are also considered (see, for example, [26,41]):
Pux = Pizzs  Pux = KP5yy, ngx = szzv

where K measures the anisotropy or normal stress effects in the solid phase. The definition of K can be done in
different ways. For example, Heinrich et al. in [24] consider K = 1, other definitions of K can be found in [26].
The effects related to the definition of K in numerical modelling of experimental and natural flows are studied
in [41,38].

Remark 3. The value K = 1 corresponds to isotropic conditions, K # 1 makes ‘overburden pressures’ different
from the normal stresses parallel to the basal surface. In soil mechanics, K corresponds to the earth pressure
coefficient, see [41]. For non-Newtonian rheology K may also be different from unity.

Using the previous relations, the following expression for P,yy is derived
Paxx = KPyyzy + Pagy = hicos 0py (2 + K(1 = &) + (hy — Z) cos 0(22py + K(py — Aapy)). (30)

Now, replacing (26) and (30) in (14), and using the incompressibility equation (13), we obtain up to second
order

o(pUy) + pléfo + 0,0(U W) + p10x (b4 Scos0)e = —11,07(Pixz) (31)

and

1
0i(p2U2) + p20x U3 + p207(Us W) + p2dx (b + Zcosl +p— [hicosOp, (41 + K(1 = 1y))
2

+(h2 = Z) cos 0(/2p, + K(p, — /12,01))]> ¢ = —107(Poxz).- (32)

2.5. Integration process

In this section, Egs. (31), (32) and (13) are depth-averaged in the direction normal to the topography. Let us
introduce the following notation: we denote by U,, i = 1, 2 the velocities of each layer averaged perpendicular
to the basal surface

1 /3 - 1 [
U =— / U,(X,2)dz, U,=— / Uy(X,Z)dZ.
h Jn, ha Jo

h 2

We also denote
_ 1 N _ 1 hy
Ul=— | Ui(X,2)dz, U;=— / U3(X,2Z)dz.
hi Ji, hy Jo

Assuming that dy0 = O(e), then J = 1 — Zdy0 is reduced to J =1 up to second order. Therefore, (13)
reduces to

Ox(Uy) +0,(Wy) =0, (33)

Ox(U,) + 0z(W,) =0. (34)
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(I.1) If Eq. (33) is integrated from Z = &, to Z = S, we obtain
0=20x(mU,) — U(S)0xS + W1(S) + Uy (h2)dxhy — W (hy).
Now, using the kinematic conditions (16), the following equation is derived:
Oy + 0x(mU;) = 0.
(I.2) Analogously, by integrating (34) between Z = 0 and Z = h,, we obtain
0 = Ox(hyUy) — Uy (hy)Oxhy + Wa(hy) — W5 (0)
and, using the kinematic condition (16) and the boundary condition (22), the following equation is derived:
O,hy + Oy (hU,) = 0.
(I.3) Let us now proceed with Eq. (31), integrating it from Z = h, to Z = S. We obtain
p10:(hUY) + pi0x (h U7) — p,Ui(S)[0,(S) + U1 (S)0xS — Wi(S)] + py Uy (h2) [0k + Uy (ha)dxhy — Wy ()]
+p; (/hS (Ox (b + Scos 9))dZ) &= — (Prz(S) — Prxz(ha)). (35)
>

The expressions of Pyyz(S) and Py, (h,) are now derived using the boundary conditions and the constitutive
laws.

e Using (17) and (26) and the relation Pixy = Pz, the following expression is obtained:

1, Pizx () = —eP1yx (8)0xS = —eP122(S)0xS = 04 O(&?). (36)
e Using (20), we have

1 Pixz(hy) + edyhy(Pizz — Pixy) = fric(Uy, Uy) + O(&?).

Therefore, applying the constitutive law for the fluid layer, that is, Pixx = Pizz, the following equality is
derived:

,ulplxz(hz) = fric(Ul, Uz) + 0(62) (37)

Using the kinematic conditions (16), Eq. (35) and the expressions obtained for p,Pix(S) (36) and for
W Pixz(hy) (37), we obtain

. N
pla,(hl Ul) + plaX(hlU%) + P (/ ax(b + Scos 6)dZ>8 = fric(Ul, Uz) + 0(82).

hy
Now, evaluating the integral, we obtain

2

§ I/ no.
/ Ox (b + Scos0)dZ = hydyb + Oy (7‘ cos 9> + hy0x (cos Ohy) — 51 sin 0dy 0.
2

Finally, we obtain the equation
2 h%

_ — h . .
010,(h U;) + p,0x (h1 U? +s§1 Cos0> =¢p, <h1de+ sm@dxez— h0x (cos 6h2)> +fric(Uy,Us) + O(&%).

(I.4) Let us now integrate Eq. (32) from Z = 0 to Z = h,. As in the previous case, we use the kinematic con-
ditions (16) to obtain

— — h 1
020:(h2U3) + p20x (haU3) + p, </ Oy (b +Zcos0 +p—[h1 cosOp, (L +K(1 —21))
0 2

+(hy — Z) cos 0(42p, + K (p, — /12/’1))]>dz> ¢ = — iy (Paxz(h2) — Paxz(0)). (38)



E.D. Ferndndez-Nieto et al. | Journal of Computational Physics 227 (2008) 7720-7754 7729

Let us denote by

P1

;2 ’

where p, is the density of the fluid and p, is defined by (1).
We obtain

=

hy 1
/ Ox (b+Zcos(9+p [icosOp, (A + K(1 — A1) + (hy — Z) cos 0(Z2p, + K(p, izpl))])dZ
0

2 2

h hy .
= hzd)(b + l”hz(K(l — )vl) + i])@x(l’l] COS 0) + a)( <22 COS 0(1”/12 +K(l — }”/12))) — 52 S Od)(o

Replacing the last expression in (38), and dividing by p, we obtain the equation

- — W
Gr(thz) + 6X (th% + 852 COoS 9(1’/12 +K(1 — }”)Q)))

h o
= 78h2d)(b — 87‘1’!2(11 + K(l — )»1))6)((]’!1 COS 0) + 8?2 S 0(1)(9 — % (’szz(l’lz) — szz(())) (39)
2

Just as in the previous case, the boundary conditions and the constitutive laws are used to derive p,Paxz(h)
and f,Payz(0).

e Using (20), and P5y, = KP5,,. Poyy = Poyy We have
#2792)(2(1’[2) = frlC(Ul, U2) + #ZFOX}!Z,PZZZ( 1)

In [21] Gray introduced the assumption that the Coulomb term is of order y for some y € (0,1). That is,
W = tan(dy) = O(¢”). Under this assumption, we have

1Pz (hy) = fric(Uy, Uy) + O(e*7). (40)

e Using Eq. (23), we obtain
0

1Pz(0) = — (Pazg(0) — Pizs(0)) 22

|U0| tan(éo)

Now, using (26) and (27) we have
(P222(0) — P122(0)) = hycos 0(p, — py) + Ofe).

Therefore, assuming tan(dy) = O(¢"), we have
0

U,
1P2xz(0) = —(py — py)hy cos 03 tan(dy) + O(e'™).

U3

Nevertheless, it is possible to give another expression of the Coulomb term, by including the centripetal accel-
eration corresponding to the curvature of the bottom (see [26]).This effect can be easily included and it comes
from the derivation of P,z in (15), by including a term of order ¢. From (15), we obtain up to order ¢

62(73222) = —p,COos 0 — szngH
Then, integrating from Z = 0 to Z = h,, and taking into account that P,;;(h,) = Pizz(hy) = p,hy cos 0, we have
Paz2(0) = pyhycos O+ pyhycos O + pzhzﬁgdﬁ.

Finally, the following expression is derived for the Coulomb term:
0 . 0

U
tan(do) = —((p, — p1)hacos 0 + p,h, Udx0) v 2| tan(dg) + O(e'1).
2

1 Paxz(0) = —(P2z2(0) — P122(0)) |ZO|

(41)
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Finally, substituting (40) and (41) in (39), we derive the conservation of momentum equation for the second
layer

. 2
6,(h2172) —+ 6X (th% —+ 8% COS 0(1’/12 +K(1 — V)»z)))

= —Shzdxb — 87‘}12(/11 +K(l — il))aX(hl COS 9) — pifl'iC(Ul, Uz)
2

0 2

— (1 = r)hy cos 0 + h,U3dx0) %§| tan(dg) + s% sin 0d 0 + O(e'*).
2

Remark 4. Another expression of the Coulomb friction term can be obtained including new terms from Eq.
(15). Concretely, in (15) there is another term depending on P, zz. If we include this term we have, up to order
85

az<7)222) = —p, COS 0 + (szzz — szé)ng (42)
and we also have, up to order &,
Pzzz(hz) = PIZZ(hZ) = pyhicos 0. (43)

Then, a new expression for P,,, up to order ¢, can be obtained integrating the ordinary differential equation
(42) with the initial condition (43):

hy
Przz(Z) = (/ (pacos 0 — p,0x0U? (&) exp(—adﬂf)di) exp(edy0Z) + p hy cos 0.
4

By supposing a constant profile of the velocity we obtain
exp((—hy + Z)edy0) — 1
—&dxe

Using the Taylor expansion of the exponential we have

Pazz(Z) = (p, cos 0 + p,dyx0U?) + pyhy cos 0.

hycos 0

P122(0) = pyhy cos 0 + pyhycos 0 + pzhdeQ(U§ — & > + O((SdX9)2)~

Finally, coming to the original variables, the following expression is derived for the Coulomb term:
0

1P2iz(0) = —(Pazs(0) — Plzz<0>>|g§| tan(do)

—,  ghycosO\\ U’
== (g(p2 — py)hycos 0+ p2h2dX9<U§ — g%)) |7§‘ tan (). (44)
2

2.6. Final system of equations

Reverting to the original non-stretched variables, see (12), neglecting the terms of order ¢'*7, and by sup-
posing a constant profile of the velocities we obtain the following system:
0:h + aX(hIU]) =0,
3,(mU,) + 0y (hﬂ% + ¢ cos 0) = —ghydxb + gsin 00" — gh,0x (cos Ohy) + Lfric(U, Us),
Oihy + 0y (h,Us) = 0, (45)
08, Us) + 0y (T3 + g cos 0rz + K(1 = r42)) )

= —ghydych — rghy(A1 + K (1 — 11))0x (hy cos 0) — Lfric(U, Us) + g2 sin 0d 6 + 7,
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where by 7, we denote the Coulomb friction term. We observe that this term must be understood as

If |7| 2 0.=7T=—(g(1 —r)hycos 0+ hzﬁgd)(@)%; tan(dy), (46)
If |T| <o, = U,=0, (47)
where o, = g(1 — r)h, cos 0. Recall that
-
P2

where p, is the density of the fluid and p, is defined in (1).

Remark 5. Heinrich et al. [24] proposed a two-layer model to study some type of tsunami produced by
submarine avalanches. One of the characteristics of this model is that the equations for the first and second
layers are described in different coordinates.

The equations corresponding to the sediment layer are defined in local coordinates over a bottom with a
constant slope. The equations corresponding to the fluid layer are defined in Cartesian coordinates.

Moreover they consider an uncoupled model, in the sense that the equations for the sediment layer do not
depend on the height nor on the velocity of the fluid layer.

Concretely, if x is the Cartesian horizontal coordinate and X (x) the corresponding local coordinate over a
non-erodible bottom, we denote by H;(x) and H,(x) the heights of the fluid and the sediment layer in the
vertical direction H;(x) = ;1 (X (x)) cos 0(X (x)), Ha(x) = hy(X(x)) cos (X (x)), and if the horizontal velocity
for the fluid layer is denoted by u;, the model proposed by Heinrich et al. can be written as

OHy + ax(Hlul) =0,

— 2
0(Hiu) + 0u(Hudd + g 3) = —gHid (b + M),

h (48)
duhs + Ox (hUs) = 0,

0/(haUs) + 0y (U2 +g(1 — )2 cos 0) = —g(1 — r)hydyb + T

They proposed to solve this system in the following way: Firstly, the height of the sediment layer is computed
in local coordinates by using the third and fourth equations of (48). Then, the bottom, obtained as the sum of
the fixed bottom plus the sediment layer, is recalculated in Cartesian coordinates. And finally, the evolution of
the fluid layer is computed by using the first and second equations of (48).

Therefore, the main difference with the model proposed here is that, in our case, the complete model is
described in local coordinates and the two layers are fully coupled by the pressure terms.

It is easy to see that the model proposed by Heinrich et al. could be obtained from the one presented here by
assuming the rigid lid hypothesis in the derivation of the equations for the sediment layer. Indeed, rewriting
the term

—Vth(il + K(l — il))ax(hl COS 9)

in the last equation (45), under the rigid lid assumption
b+ (hy + hy) cos 0 = cst,

the following equation for the momentum conservation of the second layer is obtained:

_ — I ;
at(thz) + 6X (th% +g32 COSO()»zr-i-K(l — 121") — V(j.l —|—K(1 — /Ll))))
, 1. n o ,
=—gh,(1 —r(4 +K(1 = 41)))dxb —p—frlc(Ul, U,) +g3 sin 0dy0(1 —r(A4 + K(1 — 1))+ 7,
2

(49)
where actually the coupled term disappears. Compare (49) with the last equation of (48).
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3. Properties of the model

In this section, we study the properties of the proposed model. We fix the friction term between the layers

fric(U,, U,) to
fric(U,, U,y) = —Kin - (U — Uy)  with K, = p,Kin|U| — U,

K, being a positive constant. In this case, the model reduces to
Oy + 0x(mU;) =0,
0,(mU,y) + 0y (h17f+gcos 9@)

— —ghdyb + gsin 0d 0" — gh 0y (cos 0hy) — Kin| Uy — Us|(Uy — U),
Ohy + 0y (haU,) = 0,
3, (haUs) + 0y (U2 + g cos 02 A,)

= —ghydyb — rghy A0y (hy c0s 0) — rKin| Uy — Us|(Uy — Uy) + g2 sin 0dy0 + T,

where we denoted

A1:}v1+K(1—}v1)7 /12:!’124*[((1—}"/12).

Remark 6. Observe that for K = 1 we obtain A; = 1 and A, = 1. Then, in this case the system is independent
of the parameters A; and ;.
The coefficient K is defined according to the motion of the second layer (see [41])

P {Kw if a)@ >0,
Kps 1f 0xU> <0
with
Kact/pas = 2 sec? q’)(l F(1- cos? ¢ sec’ 50)1/2) —1
¢ being the internal friction angle.
The following result can be proved.

Theorem 1. System (50) has the following properties:

(1) it admits an entropy dissipation inequality,

rARE 4 Ak

+ gb(rAihy + hy) + gcos B 3

(VAlhIU% + th%
0, — 5

+ gcos Hr/llh]]’lz)

T U2
+ aX (l"/llhlUl (71+gb -+ cos 0(h1 +l’12)> + thz (Tz—i—gb + gcos 0(1"/1/11 + A2h2)>>
< —rKw|Uy — Us|(Uy — Uy )(Uy — A1 Uy)
—, gh,cosl - ; .
—g| (1 =r)hycos 0+ hdy 0| U, - |U,| tan(dy) t&5 Ux(1 — A,) sin 00x0. (51)

(1) it preserves the steady state corresponding to water at rest over a stationary sediment, that is, a stationary
solution verifying

U =0, U,=0, (52)
b+ (hy + hy) cos 0 = cst, (53)
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[(Ay — #A41)0, (b + hycos 0) + (1 — A,) (6 b — = sin 00 0>| < (1 —r)tan(dp), (54)

(iii) for constant slope dx0 = 0 and K = 1, the system (50) gives an exact solution to the free surface Euler sys-
tem with hydrostatic assumption.

Proof. To prove (i) we first obtain an equation for U; by combining the first and second of Egs. (50)

2
Also using the third and fourth of Egs. (50), we obtain

- U,? Kin = =
at(U1)+aX<—l+gb+gC059(h1+h2)) =T Ui = Ua|(Ur = Ua). (55)

- U
0,(U,) + 0y (22 + gcos O(rArhy + Ashy) + gb>

— 0
= —g<cos 0(1 —r) + 6X0<U§ _ 8hycos )) U tan(J,)
2 U]

Kin = — — - /’l
—”E|U1—Uz\(Uz—Ul)—gEZ(l—Az)axcose. (56)

Now, by multiplying the equation on (50) by Ule + gb + gcos O(h; + hy) and (55) by hU;, we obtain

U hy _ (U2
6,( 12 + gbh, + gcos 0 ) + ax(hlUl <2l+gb + gcosO(h —i—hz)))
:—Kin|U1—U2|U1(U1—Uz)—gCOStha,]’n. (57)
Analogously, multiplying the third equation on (50) by % +gcosO(rAihy + Axhy) 4 gb and (56) by hyU,, we
obtain

U & (U
at< 22 + gbh, + g cos 0.4, 2) +6x<th2 (72+gcos9(r/11h1 + Az2ha) +gb>)

= —gcosOr/llh]@,(hz) —I”Km|U1 — 02‘02(02 — U])

gh, cos 0
2

2
—g<(1 —}")hZCOSQ-i-/’lzaXQ(Ug — >)|U2|tan(50) ﬁ(1 — Ay)U,0x cos 0. (58)

Finally, if Eq. (57) is multiplied by rA4; and added to (58), we obtain (51).
To proof (ii), it is easy to verify that the three first equations are trivially satisfied. To verify the last
equation, taking into account (53), we deduce

T =gh cosH((/h —1rA1)0,(b+ hycos0) + (1 — Ay) <6xb - % sin 96x9>> (59)
and applying (54), we have

|7) < ghy(1 —r)cosOtan(dy) = o.

and then U, = 0.
The proof of (iv) is easy, taking into account that P = (h(¢,X) + ha(¢,X) — Z)gcos0. O

Remark 7. Inequality (51) is just the energy conservation for smooth solutions, supposing K, = 0, dp = 0 and
(1 — A,)0,6 = 0 (that is, 4, = 1 or 6 constant).

Remark 8. Observe that inequality (54) is independent of 4, 4, and 0,0 when K = 1. For K = 1 (54) reduces to
|0x(b + hy cos 0)| < tan(dy).
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As the equation of the interface between the fluid and the sediment material is defined by & + 4, cos 0, the pre-
vious condition implies that the slope of the interface is smaller than .

In the case K # 1, (54) relates the values of K to the curvature of the bottom, the parameters 1;, 4, and the
ratio between the densities of the fluid and the granular material, r (see Fig. 2).

Observe that for stationary solutions verifying U, = 0, then 0y U, = 0. Then, if we consider for this case
K = (Kact + Kpas)/2, we have

K =1+ tan’ ¢. (60)

By another way, we can study the profiles verifying the equality in (54). We consider a domain [0, L] and we
impose the value of the interface at x = L, then for dy, K, 1;, 4, and r fixed we have the equation

ocos 00,4 + (o +£)d, cos 0)h, = (1 — r) tan(do) — (ot + B)d,b,
(hycos+b)|,_, =4

with o = A, — rA;, f = 1 — A,. The solution is
hy(x) = (1(x) —I(L) 4 cos 0"/ (4 — b(L))) cos 01

where

I(x) = / <M cos 0P/ _ (1+ ﬁ) sin 6 cos 01/3/(2@) dx.
0 o o

In Fig. 2, we present two examples of the profiles that we obtain for two different bottom topographies for
different values of K. From K =1 to K = 2, they correspond to definition (60) with ¢ from 0 to 45 degrees.
In both examples, we have set 4, = 4, =, ¥, = 0.2, §y = 28 degrees and r = 0.2.

Fig. 2(a) corresponds to a bottom with constant slope equal to 15 degrees, where L = 2 m and the interface
at x = L is 4 = 2. In this example, we observe that the interfaces obtained for K > 1 are over the interface
corresponding to K = 1.

The bottom of Fig. 2(b) is defined by 5(x) = — In(cos(x)), moreover L = 1.5 and 4 = 3.5. In this example,
we observe that by the influence of the curvature of the bottom the interfaces corresponding to K > 1 are
under the interface obtained for K = 1.

2 T T T T T T T T T B =
= | | aemmE
181 — Bottom === ) Kt imime==
= K=1 - 3rammmS
161 — K=1.5 and K=2 siChe 1 L= K=1.01
R4 - =
14} N 1 2.51 K=1.1
- "‘
12} Rt . K=1.2
Lt 2F
-
11,27 1 K=1.5 and K=2
o8k 151
0.6 1 1k
0.4
0.5
0.2
0 L L L L L L L L L 0 L L
0 02 04 06 08 1 12 14 16 18 2 0 0.5 1 15
(a) Bottom with constant slope (b) Bottom with curvature

Fig. 2. Stationary interface profiles depending on the values of K.
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4. Numerical scheme: rewriting the model

In this section, we describe the numerical scheme that we propose to discretize model (45). We propose a
well-balanced finite volume method that exactly preserves the solutions corresponding to water at rest and no
movement of the sediment layer verifying (52)—(54); and up to second order all stationary solutions. In Section
4.1, we introduce the numerical scheme, and we study its properties.

However, before defining the numerical scheme we begin by rewriting the proposed model in Cartesian
coordinates.

We remark that model (45) is written in local coordinates over a non-erodible bottom. In order to solve the
problem of defining a proper mesh for an arbitrary topography, we propose to rewrite model (45) in Cartesian
coordinates. To do this, the following rule is used: for a given function f(X(x)),

0 )
as 6x:c0506X:>6—§:cos06—£. (61)
Introducing the notation
h _
i = - ) ':H[Ui; .:1727
cosf o !
Egs. (45) can be written as
0,H| 4+ 0.(Q, cos ) =0,
— 2
0,(0,) + 0.(H,U? cos 0 + g% cos’ 0)
2 .
= —gH, cos0d.b + g% sin 0 cos? Od,0 — gH | cos 00, (H, cos® 0) + r"zgsl(‘)/’f]m ,
0,H, 4 0.(Q, cos 0) = 0, (62)
0,(0,) + 0, (Hzag cos O + g4, HT% cos’ 0)
= —gH,cos 0db + gHé sin 0 cos? 00,0 — rA,gH, cos 00, (H cos* 0) — % +-L,
where 7 is defined by
If |7|>0.=7=—(g(1—r)Hycos* 0+ H,cos0U;d,(sin 6))82 tan dy, (63)
2
If |7T|<o.=0,=0, (64)

where . = g(1 — r)H, cos? 0 tan(dy).
4.1. Well-balanced finite volume method

In this subsection, we present the finite volume method that we use to discretize system (62). There are sev-
eral difficulties related to the discretization of this system: As we describe below, we can rewrite (62) under the
structure of a hyperbolic system with a conservative term a non-conservative product and two types of source
terms (see Eq. (65)), where

(i) the flux function does not only depend on the vector of unknowns, but also on 0(x);

(ii) the coupling term is a non-conservative product B(#W)d,W. In general, it is not well defined nor as a dis-
tribution and the choice of a family of paths is necessary (see [14]);

(iii) the source terms G, and G, are defined as functions of the fixed topography. Their numerical discreti-
zation can be treated by following the ideas given in [12] or [13]in the framework of a system of balance
laws or by rewriting the system for an extended variable and an extra equation in such a way that the
source terms are written in the form of non-conservative products (see [36]);

(iv) the source term corresponding to the Coulomb term presents a different difficulty. We propose a two-step
method combining a well-balanced discretization of the Coulomb term and the numerical treatment intro-
duced by Mangeney et al. in [31]. The numerical method constructed in this way is exactly well-balanced for
the solutions corresponding to water at rest and no movement of the sediment layer given by (52)—(54).
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We can rewrite model (62) under the form of a hyperbolic system with a conservative product, a non-con-
servative term and source terms

OW +0,F(0,W) =G (x, W)+ Gy(x, W) +B(W)o,W + T, (65)
where
H, 0, cosH 0
o
o B Hll cos@+g cos 0 _ | —gH,cos 0d.b
W = H2 5 F(O, W) = Q2 COSG ) Gl - 0 )
0, Q—g cos 0+ g/, Hé cos’ 0 —gH, cos 0d,b
0 0 0 0
—gh (4 on 00, ( —gH cos’ 0
G, — gl (B4 z)cos (cos? 0) B = 0 0 —gH, cos 0 ’
0 0 0 0
—gL (2 4 2rA,H,) cos 00, (cos? ) —rA1gH,cos30 0 0 0
0
r_ 0
n 0
T /cos0

Note that the terms 0,(H, cos’ 0) and 0,(H; cos® 0) of the second and fourth equations on (62) contribute to
(65) in the definition of the non-conservative term B(#)0, W and in the definition of G,.

Remark 9. Observe also that G, can be written in terms of ax(cos3 0); nevertheless, we propose to define G in
terms of cos 00, (cos® 0), motivated by the discretization that we proposed. The purpose is that we want to
obtain an exactly well-balanced numerical scheme for water at rest

U, =U,=0, b+H,cos’?8=cst, H,cos*6=cst,
that is defined in terms of cos? 6.

Remark 10. System (65) can be written in non-conservative form
oW+ A0, Wo.w =S(0,W),
where S(0, W) = G; + G, — 0pF + T. And where A(0, W) defines the transport matrix of the system

0 cos 0 0 0
—U?cos O +gH,cos’0 2U, cos0 gH  cos* 0 0
A0, W) = 1 0 1 l0 1 0 cos 0 ’ (66)
rA gH, cos® 0 0 —U20050+A2gH200530 2U,cos 0

where U; = 0, /H represents the averaged velocity of the ith layer, and » = Z !

This matrix is similar to the one obtained in the well-known two-layer shallow water system (see [36], for
example). Unfortunately no explicit expressions of the eigenvectors of the system can be obtained. The
characteristic equation of the system is

(A2 = 2U A+ U} — gH, cos? 0) (2> — 2U»A + U3 — g/AyH, cos® 0) = rA,g*H H, cos* 0. (67)

It is not easy to verify the genuinely nonlinear character of the 4 characteristic fields, as the eigenvalues and
eigenvectors cannot be written explicitly in a simple manner. Nevertheless, this fact is easily proved in the case
r = 0 as, in this case, the system reduces to a decoupled system of shallow water and Savage—Hutter equations.
In this case, the eigenvalues are those corresponding to each layer separately. Then, a continuity argument
ensures the genuinely nonlinear character of the four characteristic fields when r is close to zero.

In the case » = 1, in [46] the authors give an approximation of the eigenvalues for the two-layer shallow
water equations. The case » ~ 1 is the situation arising for two fluids with different densities in many
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oceanographical flows. In the context of submarine avalanches, we suppose two different materials, then we
are closer to the case r =~ 0.
Although, following [46], we can also give an approximation of the eigenvalues for » ~ 1. We obtain
I _H\H, +UxH,
ext Hl + A2H2

AHy + UsH A\ HiH A5 cos* 0 U —U,)’
iiir:t%ul 2117 + Uy Ly g(l—rl) 141,/ cos 1— A( 1 2) . (69)
Hy + AH, Ay) (Hy+ A2H>) g(1 —rah)(Hy + A2H») cos? 0

+ (g(H, + /12H2))% cos 6, (68)

=

From Eq. (69), we can observe that the internal eigenvalues may become complex. This situation occurs
when they verify, approximately, the following inequality:

(U = U, S
g(1— rﬁ—;)(Hl + AyH;) cos? 6

(70)

In this case, the system loses its hyperbolic character. These situations are related with the appearance of shear
instabilities that may lead, in real flows, to intense mixing of the two layers. While, in practice, this mixture par-
tially dissipates the energy, in numerical experiments these interface disturbances grow and overwhelm the solu-
tion. Clearly, we cannot expect to simulate these phenomena with a two-immiscible-layer model. Therefore,
inequality (70) in fact gives the range of validity of a model based on equations (65). In this work, only the case
where the matrix A(0, W) has real eigenvalues is considered, i.e. the system is supposed to be strictly hyperbolic.

As the source terms modeling the friction between the two layers are discretized semi-implicitly, they do not
appear in the finite volume discretization, therefore, they are supposed to be zero in this section.

For the discretization of the system, computing cells /; = [x;_/2,X;:1,2] are considered. For simplicity, we
suppose that these cells have a constant size Ax. Let us define x;,; = i/Ax and by x; = (i — 1/2)Ax, the center
of the cell 7;. Let At be the constant time step and define " = nAt.

We denote by W7 the approximation of the cell averages of the exact solution provided by the numerical
scheme

, 1 Xit1/2 .
/4= e W (x,#")dx. (71)

Xi-1/2

The source terms G, and G, are discretized following the ideas introduced in [13,36]. The discretization of
B(W)0, W firstly requires to interpret this term as a Borel measure (see [14]), depending on the choice of a fam-
ily of paths linking given states. Here, the family of segments are considered as in [36].

The dependence of the flux function on 0(x) makes it difficult to obtain the desired exact well-balanced
property for water at rest (see [9]). Following the same ideas that have been exposed in Remark 9, we propose
to consider the flux function F(0, W) as a function of cos 0 and cos? . More precisely,

Qo
QZ HZ
ot g5ap
Oy
0? 2
o+ gAFop

F(0,W) = F(cos0,cos” 0, W) with F(a, B, W)=

Finally, as mentioned before, the discretization of the source term 7(W) corresponding to the Coulomb
friction term is critical to properly simulate the landslides and to preserve the stationary solutions correspond-
ing to water at rest and no movement of the sediment layer verifying (52)—(54). We propose a two-step numer-
ical scheme to treat the Coulomb friction term.

Let us suppose that the values W? are known. In order to advance in time, we proceed as follows:

o First step: We define W} = [H’[J.Q’{,l.H;iQ;JT as
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At -
Wi=Wwi- Ax (D}—?'jl/z + Df?%l/z)v (72)
where DF’7| n= DF, »(Wi,Wi,) are the generalized Roe flux difference computed using the family of
segments

D]—'iﬁl/z(Wl—, W) = %{(}'(cos 0:11/2, (cos’ 0)is1/20 Wir1) = F(cos 0112, (cos® 0)i11/2 W)
+ S3411/2(cos® 01 — €08 0;) + Sa41/2(cos 0,41 — cos 0;) — Sy i41/2(bi1 — by)
— 824112(c08” O — €08% 0;) — Bivyjp (Wi — W3))
+ Pi1ja(Air1p(Wisr — W) — Stisrya(bicy — bi)
+ (S3i41/2 — S2i41/2)(€08* Or41 — €08% 0;) + +S4141/2(c08 Oy — €08 0;) — Tiy1pAx) } .

(73)
The matrices appearing in the definition of the numerical scheme can be written as follows:
1 1,2 1,2
Ji+1/2 _Bi+1/2 0 Bi+1/2
Ai+1/2 = ’ Bi+1/2 = 9 (74)
2,1 2 2,1
_Bi+1/2 Ji+1/2 Bi+1/2 0
where
S B I 0 cos 011/
FI2 T <UL pc08 Oiayn + €11y 0 (0057 0),41 5y 2U 4172008 Oi 2 |
2o [ 0 cos i1
e i _U%,HI/Z 08 0172 + AZC%,M/z(COSZ 0)i+1/2 2Us 172008 012 |
B!’z = 0 0 B?’l = 0 0
i+1/2 I —¢}110(€0870), 1, O 172 —rM163,. (€087 0),,,, O
i 0
—gH ;1,08 0;1)
Stivip = N /0 l ; (75)
| —8H 5 ;11/2€080i11)2
i 0
—gH—l'}“/z (H—l'}“/z + 2H2,i+1/2) 08 0112
Srit1)2 = 0 ) (76)
—gge (H—Z'ifl/z +2rA\H i /2) cos 0112
r 0 0112
%H%Hl/z Ccos 9i+1/2 Qii+1/2/H1,i+1/2
S3iv1/2 = 0 s Saip = 0 ; (77)
2,i+1/2
3
_TgA2H§,i+1/2 cos 9i+1/2 Q§,i+1/2/H2‘i+1/2
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0
0
Ti+l/2 = 0 ) (78)
Ti+]/2/ Cos 9i+1/2
where
) i . ) Atociv12
Torp— Trinp+Topp Oyl > 55507 (79)
Terit,i+1/2 otherwise
with
Tlti+1/2 = _C;m/z COS 0;+1/2(1 — }")SGN(UZ,H]/z) tan(éo),
— sin 0,1 — sin 0; —
T27i+1/2 = 7H2,[+1/2 U;i+1/2 + SGN(UZH]/Q) tan(éo),
Ocirl)2 = (1 - I")C%_’Hl/z Ccos 6i+l/2 tan(éo),
biyi — b+ Hy g co8? 0 — Hyp, cos? 0,
Teritiv1/2 = C;M/z cos 012 ((/12 —rAy) s 21 Ar s =
bisi — b Hijiii)p cos? 01 — cos? 0,
1—4 : . 80
1) (P = (80)
In (73)—(80), we use the definitions
Ckl+1/2 = \/ng,f+1/2 COos 95+1/27 (81)
— HiiUpi + /Hp i Ug i
Ukiv12 = VHeUki & /iy =, (82)
VHei +/Heiv
and
Hie; +Hy; 0; 0; 20, 20,
Hk,i+l/2 :M’ k: 1727 CcOS 0i+1/2 :w7 (COS2 0)i+1/2 — cos + cos +1 ,
2 2 2
as well as the upwinded matrices
Piyp = ’Ci+1/2(SGN(DHl/Z))’Ci;ll/Z' (83)

Here, if D;;1/, is a diagonal matrix defined by the eigenvalues of the matrix A, />, K112 is the matrix whose col-
umns are the associated eigenvectors. Let usdenote by 4,12,/ = 1,...,4, the eigenvalues of matrix A, >, then

Sgn(;»l,fﬂ/z)
SGN(D,»+1/2) _ Sgn(}a‘,m/z)
Sgﬂ(%.iﬂ/z)
sgn(A4i11/2)
o Second step:We define
Wit =1y, 0 Hyy 050

and
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* * * . . or At
ptl O+ (T, +To)A if |05 > 5 (84)
’ 0 otherwhise
with
2 2
ch. + (c3,
T3 = (1) S > i12). 0505GN(0;) tan(ay),
" H;,i—12+H;.i 1/2 = Sin0;,1/2 —sin0;_y» «
T;, = — R (U ) P SGN(0;,) tan(d),
in which
. 2 2
cy . + c*i
o= (1— r)( 2 1/2) 3 ( Z'H/Z) cos 0, tan(dy) (85)
with

" _ H;, "‘H;m 0
Crivip = gf CO8 Uit1/2.

The definition of ngl proposed in Eq. (84) is based on the numerical treatment of Coulomb friction term
introduced by Mangeney et al. [31]. Observe that the definition of the Coulomb term, implies that if |7| < o,
then 0, = 0. A way to implicitely impose this definition in the numerical scheme is the one proposed by Eq.
(84).

Remark 11. Observe that

S3i41/2(cos? 0,41 — cos? 0;) + Su1/2(cos 01 — cos 0;)
Ax
is a second order approximation of 9yFd, 0|

Y=Xjt1/2"

This numerical scheme could be seen as a predictor—corrector numerical scheme for the Coulomb friction
term. In the first step, the term 7/, is only considered in the uncentered part of the numerical scheme. Note
that in the definition of 7.1/, (see (79)), a second order approximation of the Coulomb friction term is con-
sidered if |Q, ;11 /5| > Co’:}’:g Otherwise, we set 7 ;412 = Teriti+1/2, Which is also a second order approximation of
the value of the Coulomb friction term in order that all terms in the last equation of system (65) are balanced
taking into account U, = 0. This relation is critical in order to obtain a well-balanced numerical scheme for
the solutions corresponding to water at rest and no movement of the sediment in the model.

After this first step, a predicted value 0 ; is computed and then, following [31], the final value Q;jl is com-
puted using (84).

Concerning the stability requirements, we use the following CFL-condition:

At
D, , 0<i<MY—<,
max  {|[Dit12/ IS M} oSy
where 0 < y < 1, and M is the number of cells into which the space domain is decomposed.
We have the following result.

Theorem 2. The previous numerical scheme verifies the following properties:

(1) The numerical scheme preserves all the stationary solutions satisfying
U =U,=0,
b+ (H, + H,) cos® 0 = cst,
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and
2 H,y 2
[(Ay — rA1)0.(b+ Hycos™ 0) + (1 — Ay) axb+76xcos 0] < (1—r)tan(dy),
such as
(A = A7) (b(xis1) = b(x) + Ha(xi:1) 05 (0(xs11)) — Ha () cos(0(x,))

(- Ay) <b(xi+1) ) o) £ )

(i1) The numerical scheme preserves all stationary solutions up to order 2.

Proof. Using the definition of the Roe matrix A, ,, it is easy to prove that

(cos?(0(xiz1)) — cosz(O(x[)))> ‘ < (1—r)tan(dy)Ax.

7741

(86)

Ai1p(Wisy — W;) = F(cos 0112, (cos 9),-+1/2, Wiii) — F(cos 0412, (cos? 9),~+1/2, Wi)Bisr1p(Wi — W)).

(87)

Observe that the terms that are multiplied with P/, in (73) are equal to the centered components of DF ii+l P
defined by (88) except the Coulomb friction term T, ,,Ax. That is, using (87), we could rewrite the numerical

fluxes as

1
Df,ﬁl/z =3 {Ri1p £ Pii1pRoiiin},
where
Roivip = Rijiyn — Tip12Ax,
and Ry 11/, is defined by

Riji1/2 = F(cos 412, (cos? 0)i11/2 Win1) = F(cos 011, (cos® 0)i 412 W) + S3.11/2(cos? 0,41 — cos’ 0))

+ S441/2(c08 041 — €08 0,) — S1i512(bis1 — b;) — Sai1/2(cos” 0,41 — cos’ 6;)
= Bip(Wi — W3).

(88)

Let us prove (i). Observe that in this case the first and third components of R, ;,/, are equal to zero. The sec-

ond component of Ry ;i is equal to
2 2

Hl,i+1 2 1,i 2
5 o8 Oi1/2(c0s™0),,, ), — §— cos Oi1/2(c0s” 0), 5

Riiviph, =g

3
+ ZgHiM/2 €0s 0;41/2(c08> 0.1 — c0s> 0;) + gH ;12 €08 0,112 (bisy — by)
Hyivp (Hijg1
2 2
+gH\ ;112 €OS (9,‘+1/2(cos2 9)i+1/2(H2.,i+1 — Hj,).

+g +2H, /2) cos 0;1/2(cos” 0. — cos” 0;)

We can write

2 2
Lit+

ng 08 0;4.1/2(cos? 0);01)2 — g% c0s 0;,1/2(cos’ 0);11/, = gc0s O:1/2H 1 112 (cos? 0);i1p(Hiin — Hup),

and then obtain
[Ri 12}, = gcos 91‘+1/21‘11,i+1/2{(0052 9),'+]/2(H2,i+1 +Hy 1 — (Hyy+Hyy))

+g(H 41 + Haiv1)2)(c0s” 0,41 — cos® 0;) + by — bi}~
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Thanks to the definition of (cos®6),,, n= (cos? 0; + cos® 0;,1)/2, we can use in the previous equation the fol-
lowing rule (discrete version of the derivative of a product),

a—+c b+d

ab — cd = > (b—d)+(a—c) 3

Va,b,c,d € R, (89)
to obtain

[Rii41/2), = gcos 9i+1/2H1,i+1/2{(bi+1 + H 141008 041 + Ha 1 008% 0;11) — (b + Hy, cos® 0; + H, ; cos” 0i)}~

For (i) we have constant free surface, b + H, cos® 0 + H, cos* 0 = cst, then the second component of R ;.1 is
equal to zero.
The fourth component of Ry ; ./, is equal to

[Riit1/2]y = g€08 Oip1pH 2412 (AZ(bi+l — b;) + Ay(cos? 0)i1)0(Haip1 — Hay)

+A2H 141 )5(c08” 01 — c0s® 0;) + r Ay (H  11/2(cos” 0,41 — cos® 0;) + (cos” 0); 12 (Huir — Hlﬁ,-)))
H3ip1p
+ (1= 4y) (g I 2 cos 0;1/2(c0S> 011 — cOS” 0;) + gH 5 ;1 5 €08 O1y1 /2 (bigy — bi)>~

Using (89) and b + H, cos? 0 4+ H, cos? 0 = cst, we obtain
[Ryi1/2)y = g €08 Oy jpHo i1 2 (Ay — rAy) (bisy — bi + Ha i cos’ 0,41 — H,, cos’ 0;)

Hy,;
+ (1 — Az)g COS 91'+1/2H2J‘+1/2 <ZT+1/2 (COS2 9#1 B 0052 0,) + b,‘+1 — b,) . (90)
Finally, we conclude that the three first components of R, ./, are zero.

For the fourth component, observe that [R, /], exactly coincides with (7 ci;41/2Ax/ cos0;11/,), where
T writ,iv1/2 18 defined by (80). Moreover, by hypothesis the given stationary solution verifies 05 ; = 0, and by (79)
we obtain

Tcrit,i+1/2

Ti - .
[Tis12l, cos 01 s

Then,
Raiv12)s = [Rijvrj2ls — [Tis12JaAx =0, = Ryi11p =0.
So, DF},, ), = Ri1/2- Additionally, in the second step we have H{' = H},, O1}' = O}, H3!' = H},. More-

L2 1,2
over, by (72) we deduce

0 = At Riiip+Riip
M Ax 2
At

T 2Ax ((AZ — rAy)gH 111/ €08 Oy o { (Bis1 + Ha1 €08 01.1) — (b 4 Hyjc08” 0;) }

+(Ay — Ayr)gH ;€08 0,y o { (bi + Ho,i cos® 0;) — (bi_y + Ha;—y cos® 91-_1)})

H,;
+ (1 — A;)gcos 9i+1/2H2,i+1/2< 2’4“/2 (cos® 041 — cos” 0;) + by — bi)

Hy;
+ (1 — A3)g cos 0,-1/2H21,-1/2( 2’4 12 (cos? 0; — cos? 0,_1) + b; — b,-l).

Then, by (86)

Hjji1/2c080;41, +Hy 17208 0,12 tan O-:,iAt

05,1 < Ar(1 = r)g ; (00) = 2
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where o, is defined by (85). Then, by (84) we obtain ngl = 0. Finally, we conclude that the stationary solu-
tions verifying (52)—(54) satisfying (86) are exactly preserved.
To prove (ii), it is enough to observe that any stationary solution verifies

OwFOW + 0yF,0 — Gy — Gy — B(W)o,W — T = 0. (91)

Moreover, D]:?-:H/Z = %{Rl_ﬁl/z + Pii12Ro 412} and Ry ;.5 is a second order approximation of (91). Finally,
in the second step a second order approximation of 7 is added to R;; so finally we have another second order
approximation of (91) and we can conclude that W' = W” + O(Ax?). O

5. Numerical tests

In the following numerical tests, the parameters are set to, K = 1, K, = 0, and the ratio of densities » = 0.2.

Different situations of wet/dry fronts appear in the numerical tests. We use here the numerical treatment
proposed by Castro et al. [10]. It basically consists in a local redefinition of the topography in the inter-cells
corresponding to wet/dry transitions in order to avoid the generation of spurious pressure forces.

5.1. Submarine landslide

The numerical test presented here is devoted to the simulation of a submarine landslide into a rectangular
channel of 10 m length. The topography is given by a straight line whose slope is set equal to 0.2 (i.e. slope angle
0 = 11.31°). The Coulomb friction angle is set equal to dy = 25°. Finally, the CFL parameter is set to 0.8.

As initial conditions, we set U;(x) = Uy(x) =0, n,(x) = b(x) + (H(x) + Ha(x)) cos® 0 is constant and
equals 2.7 (see Fig. 3(a)) and

1/cosf, if 7<x<8,
-/

0, otherwise.
Free boundary conditions are imposed at both channel ends.

Fig. 3 shows the evolution of the submarine landslide from the initial condition until the mass stops on the
slope and forms a deposit (see Fig. 3(f)) for Ax = 0.05.

As a consequence of the submarine landslide, some water waves are generated at the free surface (see Fig.
3(b) and (c)). They travel along the channel and go away as shown in Fig. 3(d)—(f).

In Fig. 4, we compare the final stationary interface that we obtain for four different meshes with Ax = 1/20,
Ax =1/40, Ax=1/80 and Ax =1/320. Only some small differences near the “wet/dry” fronts can be
observed, due to the numerical treatment of the wet/dry fronts. This effect is also present if we study, for exam-
ple, the bilayer shallow water equations (see [10]).

5.2. Landslide impinging a lake

In this subsection, two numerical experiments are presented. They simulate the waves caused in a lake by an
avalanche of a granular material that slides along a plane of constant slope and that falls on it.

In both of them, a rectangular channel of 10 m length long is considered. The topography is given by

b(x):{l 5, 1f0<)'c<5,

0, otherwise.
With this definition, the bed curvature is infinite at x = 5, because the slopes are discontinuous. In this point,
the change of variables is not justified. Nevertheless, the resulting integrated system has a solution, which can
be approximated numerically. The solution of the system is the limit of the solutions obtained using a regu-
larization of the bottom.

From a numerical point of view, the bed at this point can be seen as approximated by a parabola, because
we use the middle point formula to approximate the derivatives (see Remark 11).

The CFL parameter is set equal to 0.8, and Ax = 0.05. As initial condition we set
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Fig. 3. Submarine landslide (Ax = 0.05): water surface and landslide evolution (horizontal x (m), vertical z (m)).
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Fig. 4. Submarine landslide: stationary landslide configuration for Ax = 1/20, Ax = 1/40, Ax = 1/80 and Ax = 1/320.
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(0.7 — b(x))/cos? 6, if 1.5 <x < 2.5,
0, otherwise
and

(0.4 —b(x))/cos?0, If3<x<5
0.4, otherwise.

)

mm:{

This initial condition simulates that, initially, the granular material is not submerged, and it is placed at
[1.5,2.5], while the water layer is placed at x > 4 (see Figs. 5(a) and 7(a)). Free boundary conditions are im-
posed at both channel ends.

In the first experiment considered here, the Coulomb friction angle is set equal to dy = 10°, while the angle
of the plane is equal to 11.31°. Therefore, all the granular material will slide down the plane and will deposit at
the basin of the lake as it is shown in Fig. 5(b)—(e). The stationary state for the granular layer is shown (see

- Water fllee sun‘éce 0.9 - Water f‘ree sur‘face
0.9r — Granular layer 1 9r — Granular layer 1
0.8l — Bottom topography | 0.8 = Bottom topography |
0.7f B 0.7} ]
0.6 b 0.6 1
0.5r B 0.5} ]
04F O\ "mmmm e e e e e e e 0.4+ N s e e e e e e ]
0.3 R 0.3f ]
0.2F B 0.2t 1
0.1} 1 0.1} g
0 L L L L 0 L L L L
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
(a)0.0s. (b) 0.5s.
1 T T T 1 T T T
-. Water free surface 09 -. Water free surface
0.9 — Granular layer ) =T — Granular layer 1
0.8f — Bottom topography - 0.8F — Bottom topography -
0.7f B 0.7t B
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04F NG mmmmmmm REETSIRE 04F N e e 1
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0 I I I I . . . . 0 I I I I . . . .
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
(c)3.0s (d)4.0s
1 T . . 1 . . T
0ok - Water free surface | 0.9k - Water free surface |
: — Granular layer . — Granular layer
0.8F — Bottom topography - 0.8} — Bottom topography -
0.7f 1 0.7F R
0.6 R 0.6 ]
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(e)4.5s (f) Stationary state s

Fig. 5. Landslide impinging a lake (experiment 1): water surface and landslide evolution (horizontal x (m), vertical z (m)).
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Fig. 6. Landslide
Ax =1/320.
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Fig. 7. Landslide impinging a lake (experiment 2): water surface and landslide evolution. (horizontal x (m), vertical z (m)).
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Fig. 5(f)). When the landslide contacts the water, a wave at the free surface of the lake is generated and prop-
agates in the same direction of the landslide as it is shown in Fig. 5(b) and (c). Figs. 5(d) and 5(e) show the
generation and propagation of a shock at the interface of the granular material and the water, traveling in the
opposite direction of the landslide propagation. Observe that the granular deposit is located at the bottom of
the lake forming a smooth pile whose form is determined by the Coulomb angle and the flow history (see Fig.
5()).

In Fig. 6, we compare the stationary interface that we obtain for Ax = 1/20, Ax = 1/40, Ax = 1/80 and
Ax = 1/320. As in previous test the convergence to a stationary profile is achieved.

In the second experiment, the Coulomb angle is set equal to o = 25°. The evolution of the landslide is dif-
ferent from the previous one. The main difference is the length of the avalanche: in this case, the granular
material is not deposited in the basin of the lake as it is shown in Fig. 7(b)—(f). As in the previous case, when
the landslide contacts the water, a wave at the free surface of the lake is generated and propagated in the same
direction of the landslide as it is shown in Fig. 7(b)—(d), with a wave amplitude that is smaller than in the pre-
vious experiment. Finally, the steady state for the granular material is shown in Fig. 7(f).

In Fig. 8, we show the stationary profiles of the landslide for different values of d,. In Fig. 8(a), the results
correspond to dy equal 10, 11.31 (the angle of the bottom in [0, 5]), 12° and 13°. In the case of 13°, we obtain
that the rock layer is not completely submerged. For previous values we always obtain that this layer is com-
pletely submerged.

In Fig. 8(b), we show the stationary profiles of the landslide for §, equal 15°, 20° and 25°. In all cases, we
have a profile that is partially submerged.

Using the friction angle 6 = 15°, a layer of quasi-constant thickness of material remains on the sub-aerial as
well as on the submarine part of the plane once the flow stops. This deposit seems to be in agreement with the
experimental results of Cassar et al. [§8] (Fig. 3). Indeed, they show that the minimum deposit thickness for
which a flow is possible commonly called A, is unchanged when the flow occurs either in water or in air.

5.3. Tsunami generation experiment

This numerical example is inspired by that presented in the paper of Heinrich et al. (see [24]), and the objec-
tive is to understand the main mechanisms of water wave generation and propagation produced by submarine
landslides. To do this, a 30 km long domain is considered, where a simplified topography is considered given
by b(x) = 2500 — H(x) where

15+ -1.2
155 | 13
-16F N\ s s s - Water free surface
—14r = bottom
-1.65} _ Water free surface — interfaces for 15, 20, and 25 degrees
= bottom 15t
1.7+ — interfaces for 10, 11.31, 12 and 13 degrees
—1.75} =16+ NN T T e
—18r 17}
-1.85
-1.8 +
-19}
-1.95 -9
15
-2 L _ L L L s L L L
2 3 4 5 6 7 8 1 15 2 25 3 3.5 4 4.5 5 5.5 6
(a) Stationary landslide profiles for §; equals to 10, 11.31  (b) Statinary landslide profiles for ép equal to 15, 20 and
(angle of the plane), 12 and 13 degrees 25 degrees

Fig. 8. Landslide impinging a lake: comparison of stationary landslide profiles for different values of J.
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H) = 10 4 490 exp(—6.1429 - 107*(10,000 — x)), if x < 10,000,
2500 — 2000 exp(—1.5050 - 10~*(x — 10,000)), otherwise.

As initial condition we imposed U;(x) =0, i = 1,2,

Hj(x) max (H(x) - (500—#%),0), and H,(x) = Hx) Hj(x).

~ cos? 0 1.8-10* ~ cos20

Fig. 9(a) shows the initial condition. The Coulomb friction angle is set to oy = 12° (as in [24]). The CFL con-
dition is equal to 0.8. We use a mesh composed of 500 cells. Free boundary conditions are imposed at x = 0
and x = 30,000. With these data, the experiment evolves during 600 s.

Fig. 10 shows the generation and propagation of the tsunami wave. Observe that water ahead of the front
face of the slide is pushed away, creating a positive wave in the slide direction that represents most of the tsu-
nami energy. Over the landslide water is sucked, which creates a large trough splitting into two waves, one
wave propagating shorewards and the other offshore. Later, the shoreward-propagating wave is followed
by a positive wave, responsible for coastal inundation to which attention will be focused. Note that the second
positive wave is of about 10 m height when approaching the coastal line (see Fig. 10(f)).

Finally, Fig. 9(b) shows the final position of the landslide. The results that we obtain are similar to those
described by Heinrich et al. in [24].

6. Conclusions

In this paper, we have introduced a new model to study submarine avalanches and generated tsunamis. The
presented model is a two-layer shallow water model including a Coulomb friction type term for the grain layer
(Savage—Hutter model for the second layer). It is presented in local coordinates, by taking into account the
curvature of a non-erodible bottom over which the avalanche and the tsunami flow. Some of the properties
of the model are the rank of the stationary solutions verifies exactly a dissipation entropy inequality, and
the solutions of the model are solutions of Euler equations with hydrostatic pressure. The final system can
be re-written as a hyperbolic system with non-conservative products. We compare the model with that pro-
posed by Heinrich et al., which is an uncoupled model, that mixes local coordinates for the evolution of
the grain layer with non-local coordinates for the evolution of the fluid layer. We see how the momentum
equation for the grain layer of the Heinrich model is obtained under the assumption that the water surface
is flat (rigid lid assumption). This model does not verify the properties of our model.

We also present a numerical solver of finite volume type, based on a Roe method for hyperbolic systems
with non-conservative products. With a special treatment of the Coulomb term, splitting the discretization
of this term into an upwind explicit treatment and a second step to introduce an implicit centered discretiza-
tion. This allows us to obtain a well-balanced solver for a wide rank of stationary solutions, when the angle of
the slope of the grain layer is smaller than the corresponding angle of repose.

The resulting model has been able to simulate sub-aerial and submarine avalanches and the
generated tsunami by taking into account the interaction between the flowing mass and the surrounding water.
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Appendix. Change of variable

In this Appendix, we perform the change of variable of Euler equations, from Cartesian coordinates
X = (x,z) to local coordinates (X,Z) (see Fig. 11). We consider that the coordinate Z gives the position of
an interior point X to the bed, measured in the normal direction to the bed. Thus

0<Z<S(t,x) with S(t,x) =hi(t,X) + ha(2,X). (92)
Then, the relation between the Cartesian coordinates X and the coordinates (¥, Z) related to the bed is
X = (& — Zsin 0(%), b(x) + Z cos 0(x)), (93)

where (¥, b(X)) is a point of the bed. X is the x-Cartesian coordinate of the point (X,0) (see Fig. 11). We also
consider a local variable X (x) measuring the arc length along the bed. We will denote by V; and divy the gra-
dient and divergence operators in Cartesian coordinates.

We consider the equations of conservation of mass and momentum in (x,z) Cartesian coordinates as

follows:
- u —
7o ("), w0 o
v
0(pV) 4 pVVV = =V - P+ pVy(Z - X), (95)

where g = (0, —g), g being the constant acceleration of gravity. Moreover, by P we denote the matrix of
constraints,

p_ <pxx pxz)
pzx pZZ
(Wlth pxz = pzx)‘
From (93), we have

Voo B Jcos —sinf J=1—7d.0
@A =\ Jsing  cosf )’ N o

Therefore,

Water surface

e

hi
layer 1 .
% Landslide surface

//%ter interface)

Fig. 11. Local coordinates.
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V(X Z)—1< cos 0 sin@)
KT g\ —Jsin0 Jcosh )’

The following result will be used in this Appendix

Lemma. Using the classical chain rule, we have

divie ) (IV3 (X, 2)V) = Jdivy V,  J = det(VxX), (96)
and

ViP = (Vi(X,2) VP or (ViP)' = (VuyP) Vi(X,2). (97)

We will also use the following definitions:
U\ [ cosO sin0 7
w) \—sin0 cosf) °

7)_(cos@ sin@)P(COSQ —sin@)_(PXX sz)
~ \—sin0 cos0 sin0  cosO ) \Pxw P/

As Prz = Pxz then PXZ = PZX

and

Continuity equation (conservation of mass)

In an incompressible material, the velocity field 7 is solenoidal; so (94) holds. Multiplying (94) by J and
using (96), we have

. . - . cos 0 sinf \ - . U
0 =JdivgV =diviy ) (JVz(X,2)V) = diviyz sing Jeosd ) = divr ) )

Thus, we have the equation,
ox(U) + 0,(JW) = 0. (98)
This corresponds to the first equation of (4)

Conservation of momentum
In this section, we first find the equation for U and then for W.

Equation for U: We add the first component of Eq. (95) multiplied by cos 6 to the second component of Eq.
(95) multiplied by sin 6. Then, we obtain

o - cos0
pav+;@wavv>+mv2@-an<ﬁn9)

. cos 0 . R T —sin 0
= —divg (| P . + pWdivg(0V) + (Vz0) (P .
sin 0 cos 0

In order to apply rules (96) and (97), we rewrite this last equation as

. Uu S .1/[cosl
Jo,U Jdivy Jp(Vi(g-X
pro0 + prdivi (0 )+ ap(Tx@ (o)

. cos 0 . _ .. [ —sind
= —Jdivg [ P . + pJWdivg (0V) +J (Vg - 0)" P .
sin 0 cos 0

Then, using rules (96) and (97), we obtain



7752 E.D. Ferndndez-Nieto et al. | Journal of Computational Physics 227 (2008) 7720-7754

2

. U A
0,(JU) + pd Viz(g-X
p0,(JU) + pdivix 2 U +p(Vxz(g- X)) (0>

di ((1 0)( cos 0 sin@)P<cosﬂ)> © o < ouU )
= —di i
Y 2) 0o J —sinf cos6 sin 0 P Vx2) Jow

LV Q)T(l O)(cos@ sin0>P<—sin0)
) 0 J/\—sin0@ cos6 cosO /)

This corresponds to the second equation of (4).

Equation for W: Now, multiplying the first equation of (95) by (— sin 0) and the second one by (cos 0) and
adding them, we obtain

. = - —sinf
g+ paivg W7) + (v D)7 ()

——aivy(p( ")) - pvaive(o7) oo (P ) ).

In order to apply rules (96) and (97), we rewrite this last equation as

. Wu o oo/ —sinl
PO, (JW) + J pdivy +Jp(Vy(g-X))
Wo cos 0
— _Jdiv.( P —sin0 JUdivg (0V) —J(V30)'P cos?
N Vx cosf pIE AV X sinf )’

Then, using rules (96) and (97), we obtain

. wm AN YAL
PO, (JW) + pdiviy z) ( JW2> +p(Viz(g-X))" ( J)

:—div<Xz>(<1 0)( cos 0 sinH)P<—sin0>> —pUdiV(xz)< oU )
’ 0 J —sinf cos6 cos TA\JOW
/1 0 cosf sin0 cos 0
~ Vin?) (O J><—sin0 cos0>P<sin0>'
This corresponds to the third equation of (4).
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