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SIMPLE TWO VARIABLE REGRESSION

AGENDA:
A. Causal inference and non-experimental research
B. Least squares principle
C. Regression examples:
1. “Stories’
2. Strategies for investigating models
3. Plots
4. Interpretation of results
D. Reading: Agresti and Finlay Statistical Methodsin the Social Sciences, 3™

edition, Chapter 9.

CAUSAL INFERENCE IN NON-EXPERIMENTAL RESEARCH:

A.
B.

Reprinted from Class 8 notes.
It is often said that natural science differs from social inquiry because, among other
things, investigators working in the former can literally manipulate variables to
observe the effects on various phenomena. Hence, a chemist can administer
varying amounts of a compound to rats to see what effect it has on, say, the
number of lymphocytes.
Moreover, so the conventional wisdom continues, the laboratory scientist can hold
all relevant factors constant, so that if thereis a change in cell counts, the
difference can unambiguously be attributed to the compound. The researcher, it is
believed, can make a reasonably valid causal inference. The inference about
causality derives its strength from the experimenter's ability to eliminate aternative
explanations for any observed changes.
Now compare this situation with that facing the social scientist who wants to know
if changesin AFDC payments affect “socially undesirable’ behavior. It is possible,
as we have aready demonstrated, to compare areas having differing payment
levels. Or, aswe just did, we can examine the association between variation in one
variable (AFDC payments) and out-of-wedlock births,
The problem comes in interpreting the results. Since we are dealing with
"observational" data--we have not manipulated anything nor have we controlled
for possible aternative causal factors, it is difficult to interpret our results,
especialy the regression coefficient, as a'"causal" parameter.
1. Why? Suppose, for the moment, our data had confirmed Murray's
argument: states with the highest welfare benefits had the highest
proportion of out-of-wedlock births. (Thisis contrary to what we did find,
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but let's suspend our knowledge for amoment.) But consider this
possibility: those states having low AFDC payments also happen to be
populated by groups with strong and extended families and consequently
illegitimacy violates well established social norms. Suppose, in addition,
those places with more generous benefits do not contain as many such
groups. There are, in other words, three relationships: one between the
dependent variable (births) and AFDC payments; another between births
and family structure; and a third between the two independent variables,
AFDC payments and family structure. The question then arises: are the
differencesin illegitimacy due to @) AFDC payments; b) family structureand
socia norms; or c) both.

Figure 1 (next page) suggests alternative models.

"Hard scientists’ would try to answer the question by manipulating
variables. (They would move families at random to different states, thus
canceling out the association between welfare payments and family
structure.) In a sense they would be comparing apples with apples: the
states being compared would be the same in al relevant respects except for
AFDC payment level. If their illegitimacy rates differed, they investigators
could attribute the differences to the main independent variable.
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ALTERNATIVE MODELS OF OUT-OF-WEDLOCK BIRTHS

"Welfare generosity"lvIOdEI 1
AFDC payments >Birth
rate

Model 2
Family structure pBirth

social norms rate
"Welfare generosity"

"Welfare generosity” "Welfaré generosity” Birth
AFDC payments AFDC payments rate

AFDC payments

Model 3
Covarying factor

Figure 1: Alternative Causal Models

4.

But, of course, in the real world such manipulations are not possible;
families cannot be moved around to test hypotheses. (Actually socia
scientists and policy analysts have attempted to experiment on welfare
recipients.)

The only solution is to adjust whatever statistical measure of relation

between Y and X, b, for example, for the effects of other factors.

These considerations lead to two conclusions:

i We have to be careful about trandating statistical relationships, as
measured by the betas, into causal assertions of the form "X causes
(variation) inY."

il. We need methods to adjust the statistical measures, the b’s, to take
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F.

into account at least some possible confounding influences.
Thisisamatter we will deal with in the remainder of the course.

1. LEAST SQUARES PRINCIPLE:

A.
B.

Based on the last set of notes.

Suppose we have two estimates of b, and b,; for now it doesn't matter where they
came from. As example, suppose the estimates for an equation are 10.1 for b, and
.03 for b,. With these numbers we can obtain an estimated model (note the hats):

YAi = Go + Glx

where Y, isthe predicted valueof Y, and B, = 10.1 and B, = .03 arethe

estimated values of the parameters. That is,

“ Y, = 10.1 + .03X “

1. Here, if the X is 0, the estimated or predicted value of Y is
|| g =101 + (0) = 10.1 ||

2. If X is, say, 250, then the predicted valueis

“ Y, = 10.1 + .03(250) = 17.6

Residuals: A residual is the difference between a predicted value (predicted on the
basis of some model) and the corresponding observed value.
1. The formulais:

g = (Y, - Y) “

2. Suppose, to continue with the above case, a case had X = 0--in which case
we would predict itsvalueon Y to be 10.1 (see above)--but in fact its
actual or observed rate is 20. Then the error or residual for this caseis 10.1
-20=-9.9.

A geometrical interpretation.
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Dependent
variable
Y

Partition of Total Deviation

Regression line:

E(Y,) =B+ B\X
(Y, - Y)

Independent
X variable
i X
Figure 2: Partition of Deviation
1. There are three kinds of differencesin Figure 2.

(Y,- Y )isthedifference between the ith unit's scoreon Y and

the grand (overall) mean. This difference when combined with all
the other corresponding differences measures the total variation in

Y.

a) When al of these differences are combined by first squaring
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and then summing them the result is the total sum of
squares (TSS), an important measure of variationinY. The
formulais:

TSS = §Nj(\(i - Y)?
i=1

( Y, - Y )isthedifference between the predicted Y and the

grand mean. It, in a sense, represents how much we know about Y
given our knowledge of X. In other words, if we knew nothing we
would "predict” that atypical unit would have a score equal to the
grand mean. But with our model of X'simpact on Y, we know
more than this; in fact we know that as X increases one unit (one
dollar in this example) the value of Y will increase .03 units. Thus, a
portion of the total variationin Y is"explained" by our knowledge
of X which is summarized mathematically in the equation:

N —
RegSS = 3 (Y; - Y)?
i=1

a) “RegSS’ means “regression sum of squares’ or the part of
the total sum of squares that can be attributed to the
regression model and hence is explained (by X).

Findly, & = (Y, - Y,) representserror in prediction. It is, stated

in other words, the difference between what we think Y should be

and what it actually is. This error together with all of the others

represents the portion of variationin'Y that is not accounted for by

X.

a) Note that we can aso sum the estimated errors or sum the
observed values of Y minus the predicted values.

N N R
ResSS = S2 =Y e = Y (Y, - V)’
i=1 i=1

b) S is often called the residual or error or “unexplained”
(by X) sum of sguares.
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E.

F.

C) This term represents the portion of the total variationin'Y
that cannot be attributed to X.
Note this important relationship.
1. We will refer to it often

TSS = RegSS + ResSS
Explained SS + Unexplained SS

2. That is, the total variation in'Y can be partitioned or divided into two
components, an explained and an unexplained part.

3. It is natural to determine what proportion or percent of thetota is
explained by X. Wewill, in fact, do so often with the measure R?.

The Least Squares Principle:

1. We pick as estimators of 3, and 3, those particular values that minimize the
sum of squared residuals (S?) for a batch of N observations under study.
That is, thinking of 3, and 3, as population parameters, we choose
estimates of them in such away that the quantity isaminimum.

2. The principle of least squares leads to computing for mulas used to obtain
estimates of the parameters from a set of data. These formulas are describe
by Agresti and Finlay and will be discussed later. For now we will rely on
MINITAB to compute the numerical estimates.

V. REGRESSION IN PRACTICE - SOME EXAMPLES:

A.

The data for these examples comes from the “Data Story Library” at Carneige

Méllon University.

1. We can use them to illustrate regression analysis with MINITAB, the
interpretation of parameter estimates, possible adjustments that will have to
be made, and similar topics.

@ge and height story: |
} uoted Trom the Library:

I Description: Mean heights of a group of children in Kalama, an
Egyptian village that is the site of a study of nutrition in developing
countries. The data were obtained by measuring the heights of all
161 children in the village each month over severa years.

il. Number of cases: 12

iii. Variable Names: (c1) Age in months; (c2) Mean height in
centimeters for children at this age.

2. Hereisaplot.
i Notice that the relationship appears to be linear.
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Height by Age
Simple Plot
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Figure 3: Simple Plot

ii. Now here the results from the regression anaysis

The regression equation is
C2 =64.9 + 0.635 C1

Pr edi ct or Coef St Dev T P
Const ant 64. 9283 0.5084 127. 71 0. 000
C1 0. 63497 0. 02140 29. 66 0. 000
S = 0. 2560 R-Sq = 98. 9% R-Sq(adj) = 98.8%

Anal ysi s of Variance

Sour ce DF SS 1Y) F P
Regr essi on 1 57. 655 57. 655 879. 99 0. 000
Resi dual Error 10 0. 655 0. 066

Tot al 11 58. 310
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iii. For now we will ignore most of these results. But notice that

a) the estimated constant is 64.96 centimeters. (Does this
make “ substantive” sense?)

b) the estimated regression coefficient is .635, which means
that an extra month translates (on average) into an
additional .635 centimeters of height.

* How much would a boy be expected to grow after 3
months.

C) The R? means that about 98.9 percent of the variation in
height is “explained” by age. We, of course, now know that
thisrefersto statistical explanation. These data do not tell
us why children grow to certain heights; only that as they
get older, they grow.

d) The“T” and “p” are used to test the hypothesis that in the
population from which the data were drawn, the regression
parameters equal zero.

* That is, the hypothesis pertaining to the regression
coefficientisH,: b, = 0.
1) The t-value (29.66) and its attained
probability (.000) suggest that this
hypothesisis not tenable given the data.

C. [Alcohol and tobacco story |
1. From the Library:

i Abstract: Data from a British government survey of household
spending may be used to examine the relationship between
household spending on tobacco products and a coholic beverages.
A plot of spending on acohol vs. spending on tobacco in the 11
regions of Great Britain shows an overall positive linear relationship
with Northern Ireland as an outlier.

ii. These dataillustrate the effect of a single influential observation on
regression results. In asimple regression of alcohol spending on
tobacco spending, tobacco spending does not appear to be a
significant predictor of tobacco spending. However, including a
dummy variable that takes the value 1 for Northern Ireland and O
for al other regions resultsin significant coefficients for both
tobacco spending and the dummy variable, and a high R-squared.

iii. Variables:

a) (c1) Average weekly household spending on alcoholic
beverages in pounds

b) (c2) Average weekly household spending on tobacco
products in pounds
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2. Hereisaplot of al 11 regions:

Expenditures for Alcohol By Expenditures for Tobacco
Full Data
6.5 — °
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Figure 4: Alcohol and Tobacco Expenditures

a) Except for the point denoted “outlier” most of the
observations lie on a straight line.
i Here are the results of the regression analysis
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The regression equation is
Al cohol = 4.35 + 0.302 Tobacco

Pr edi ct or Coef St Dev T P

Const ant 4.351 1. 607 2.71 0. 024

Tobacco 0. 3019 0. 4388 0. 69 0. 509

S = 0.8196 R-Sq = 5. 0% R-Sq(adj) = 0.0%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 0. 3181 0. 3181 0. 47 0. 509
Resi dual Error 9 6. 0461 0.6718

Tot al 10 6. 3643

The estimated regression coefficient, .302, means that for every one pound
increase in spending on tobacco, there is a.302 pound increase in spending
for acohol.

i What thistells usis that expenditures for one are positively (but
weakly) related to spending for the other.

But the R? = .05 or 5 percent suggests that a linear model does not fit the

datavery well.

i Moreover, the observed t and attained probability suggest that if
these data constituted a sample from some population, there would
be little evidence that b, is not zero. (Value of zero indicates no
linear relationship.)

But we have observed that one value lies off the “beaten path” or isan

outlier. What happens when it is removed; that is, treated asamissing

value.

i Here' sthe regression analysis
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Reduced Dat a

Pr edi ct or
Const ant
ReducedT

S = 0. 4460

Sour ce

Regr essi on
Resi dual Error
Tot al

The regression equation is
ReducedA = 2.04 + 1.01 ReducedT

10 cases used 1 cases contain mssing val ues

Coef
2.041
1. 0059

R-Sq = 61.5% R Sg(adj) = 56.7%

Anal ysi s of Variance

DF
1
8
9

St Dev T P
1.001 2.04 0. 076
0. 2813 3.58 0. 007

SS M5 F P
2.5434 2.5434 12.78 0. 007
1.5915 0. 1989
4.1348

6.

1.

2.

il. We now see that with the one case removed the estimated
coefficient is 1.001, more than 3 times larger.

a)
b)

It's also “statistically significant.”
Moreover the R? is now .615.

Our conclusion is that spending for the two products are closely related: a
pound for a pound.

D. Attitudes toward government and public officials story.

These data come from a different study, namely the “ 1991 Race and
Politics Survey” and are available at the Data Analysis and Documentation
Site we went to for assignment 2.

The variables are;

i “Thermometer 1" President Bush 0-10

a)

b)

These next questions are about some of the political leaders
and groups that arein the newsthese days. I'll read a
name and ask you to rate that person or group on a
thermometer that runs from zero (0) to ten (10). The higher
the number, the warmer or more favorable you feel

toward that person or group. The lower the number, the
colder or less favorable you fedl. If you feel neither warm
nor cold toward them, rate that person or group afive.

The first person is President Bush. How would you rate
him on a scale from 0 to 10?

ii. “Thermometer 2" Jesse Jackson 0-10

a)

How about Jesse Jackson? (How would you rate him on a
scale from 0 to 107?)
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“Thermometer 3" The Federal Government
a) (How about) The Federal Government? (How would you
rate it on ascale from 0 to 107?)

V. Age of respondent in years
V. Education level
a) What is the highest grade or year of school you completed?
1 Eighth grade or lower
2 Some high school
3 High school graduate (or GED)
4 Some college
5 College graduate
6 Some graduate work or graduate degree
8 DK
9 RF/MD
Vi. Race: What race or ethnic group do you consider yourself?
1 Black, African-American, Negro
2 Native American, Alaskan native
3 Latino, Mexican-American, Hispanic,
4 Filipino
5 Asan, Pecific Iander
6 White, Caucasian
7 Other (SPECIFY) (See Appendix E)
8 VOLUNTEERED: Jewish
3. WEe'll have to manipulate these data in order to use the them in the analysis.
I In particular we will treat the thermometer questions as
(quantitative) dependent variables that we want to “explain” by
education and age.
a) Later we'll add race.
ii. We need to change the “missing data” codes to the one used in
MINITAB, “*.”
iii. WEe'll use just two categories of ethnicity.
iv. Note that the data file contains more than 2,000 cases, which
presents both opportunities and a few problems.
V. Note finally, that to be correct technically, the data should be
“weighted.” But that’s a nicety we will skip.
V. NEXT TIME:
A. Measures of fit
B. Tests of significance

IGo to Notes page
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