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TWO VARIABLE REGRESSION 

I. AGENDA:
A. Elements of the linear model
B. Interpretation of regression parameters
C. Causal inference from non-experimental research
D. Least squares principle
E. Reading: Agresti and Finlay Statistical Methods in the Social Sciences, 3rd

edition, Chapter 9. 

II. GEOMETRY OF LINES:
A. See the notes from the last class (Class 7)
B. To understand the linear model let's review some simple math.
C. The equation of a linear (straight line) relationship between two variables, Y and

X, is 

D. Interpretation:
1. a is the intercept, that is the value of Y when X equals zero. If the line is

graphed on an Y-X coordinate system (see below), then a is the point
where the line crosses the Y axis.

2. b, called the slope, is the amount of change in Y for a one-unit change in
X. It's measured in units of the dependent variable, Y, but its numerical
value depends on the measurement scale: if X is measured in dollars, then b
will equal some particular value, but if the scale is thousands of dollars, b
will have a different value.

3. The figure presented in Class 7 shows a picture of the graph of a linear
relationship. Notice that the graph is a straight line.

4. The linear relationship described by this graph is:

E. In other words, the intercept of this particular model is 2 and the slope is 2.0.
F. The numbers a and b are called regression parameters; note that they are constants

whereas X and Y are variables. The parameters show you how X affects or at least
is connected to Y.
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III. INTERPRETING THE REGRESSION MODEL:
A. The equation of a linear (straight line) relationship between two variables, Y and

X, is 

B. Interpretation of parameters:
1. ββ   is the regression constant or intercept, that is the value of Y when X0

equals zero. If the line is graphed on an Y-X coordinate system, then ββ  is0

the point where the line crosses the Y axis.
2. ββ , called the slope or regression parameter, is the amount of change in Y1

for a one-unit change in X. As noted above, be thoughtful when looking at
ββ  1

i. Its numerical value depends on the measurement scale: if X is
measured in dollars, then it will equal some particular value, but if
the scale is thousands of dollars, it will have a different value. 

3. Another way of viewing the model: how an individual's (unit's) score on Y
is affected by the independent variable, X.
i. The parameter ββ  is sometimes interpreted as a "causal" mechanism1

linking X to Y.
ii. But see the next section.
iii. A linear model, in brief, is a summary of what we think we know

about the dependent variable.
C. Example:

1. Suppose the estimated or observed regression equation turns out to be:

i. Here ββ  = 10.1.0

a) Sometimes the constant has no “real” or substantive
meaning, as when for example we are relating achievement
to age. (Age = 0 would be meaningless in most social
science studies.)

ii. The regression constant is ββ  = .03, which means that as X changes1

(increases) 1 unit (say, one year), Y increases .03 units of whatever
Y is measured on, say an achievement index.
a) This may or may not be a large change.
b) You have to ask two questions at least:

* What is the substantive meaning of a one-unit
increase or decrease in X.

* What is the substantive meaning of a ββ  unit change1
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in Y.
D. Mean value interpretation of Y:

1. The linear model is sometimes written (see Agresti and Finlay, Statistical
Methods, 3  edition, page 314) as;rd

i. This equation suggests that the average or expected value of Y
depends on a corresponding value of X. If $$  is positive, for1

example, then the expected value of the dependent variable will
increase with increases in X. 

ii. This interpretation leads to the next topic.

IV. THE STATISTICAL MODEL:
A. Social and political relationships are seldom "determinate" which means that we

have to add "error" to our conceptions of how one thing affects another. Also, we
frequently deal with samples, not the total population, so we need to think about
estimates versus parameters.

B. Sources of error:
1. Random fluctuations caused by hundreds of idiosyncratic factors,

presumably which "cancel" each other out.
2. Random measurement error

C. The systematic part:
1. Suppose we have a quantitative dependent variable, Y, and a quantitative

independent variable, X. In a previous example Y is "out-of-wedlock
births" and X is the "average monthly AFDC payments." A statistical
model describing the relationship is:

2. Interpretation:
i. The systematic part contains:

a) ββ , the intercept or constant which is the value of Y when X0

= 0
b) ββ , the slope or regression coefficient which shows how1

much Y changes for a one-unit change in X.
c) Suppose ββ  = 0? What does that mean?1

D. Error part:
1. εε  represents random error--that is, measurement error in Y (but hopefullyi

not X), random factors causing variation in Y, etc. εε  symbolizes the part ofi

the variation in Y (e.g., illegitimacy) that is not explained by the model.
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2. See Agresti and Finlay, Statistical Methods for Social Sciences, 3  editionrd

pages 314 to 319.
3. An important goal of the social sciences is to reduce the magnitude of the

εε 's and to ensure that they are really random. Doing so has the effect ofi

increasing the explanatory power of the model compared to the error
component.

E. What we need is some method for finding numerical values of ββ , and ββ  , when1

the data are scattered about as in the example.
1. Before looking at how parameters are estimated, however, let's interpret

regression parameters from another angle.

V. CAUSAL INFERENCE IN NON-EXPERIMENTAL RESEARCH:
A. It is often said that natural science differs from social inquiry because, among other

things, investigators working in the former can literally manipulate variables to
observe the effects on various phenomena. Hence, a chemist can administer
varying amounts of a compound to rats to see what effect it has on, say, the
number of lymphocytes.

B. Moreover, so the conventional wisdom continues, the laboratory scientist can hold
all relevant factors constant, so that if there is a change in cell counts, the
difference can unambiguously be attributed to the compound. The researcher, it is
believed, can make a reasonably valid causal inference. The inference about
causality derives its strength from the experimenter's ability to eliminate alternative
explanations for any observed changes.

C. Now compare this situation with that facing the social scientist who wants to know
if changes in AFDC payments affect "deviant" or undesirable behavior. It is
possible, as we have already demonstrated, to compare areas having differing
payment levels. Or, as we just did, we can examine the association between
variation in one variable (AFDC payments) and out-of-wedlock births.

D. The problem comes in interpreting the results. Since we are dealing with
"observational" data--we have not manipulated anything nor have we control for
possible alternative causal factors, it is difficult to interpret our results, especially
the regression coefficient, as a "causal" parameter.
1. Why? Suppose, for the moment, our data had confirmed Murray's

argument: states with the highest welfare benefits had the highest
proportion of out-of-wedlock births. (This is contrary to what we did find,
but let's suspend our knowledge for a moment.) But consider this
possibility: those states having low AFDC payments also happen to be
populated by groups with strong and extended families and consequently
illegitimacy violates well established social norms. Suppose, in addition,
those places with more generous benefits do not contain as many such
groups. There are, in other words, three  relationships: one between the
dependent variable (births) and AFDC payments; another between births
and family structure; and a third between the two independent variables,
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Figure 2: Alternative Causal Models

AFDC payments and family structure. The question then arises: are the
differences in illegitimacy due to a) AFDC payments; b) family structureand
social norms; or c) both.

2. Figure 2 suggests alternative models.
3.  "Hard scientists" would try to answer the question by manipulating

variables. (They would move families at random to different states, thus
cancelling out the association between welfare payments and family
structure.) In a sense they would be comparing apples with apples: the
states being compared would be the same in all relevant respects except for
AFDC payment level. If their illegitimacy rates differed, they investigators
could attribute the differences to the main independent variable.
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4. But, of course, in the real world such manipulations are not possible;
families cannot be moved around to test hypotheses. (Actually social
scientists and policy analysts have attempted to experiment on welfare
recipients.)

5. The only solution is to adjust whatever statistical measure of relation
between Y and X, ββ  for example, for the effects of other factors.11

6. These considerations lead to two conclusions:
i. We have to be careful about translating statistical relationships, as

measured by the betas, into causal assertions of the form "X causes
(variation) in Y."

ii. We need methods to adjust the statistical measures, the ββ’s, to take
into account at least some possible confounding influences.

E. This is a matter we will deal with in the remainder of the course.

VI. LEAST SQUARES PRINCIPLE:
A. Suppose we have two estimates of ββ  and ββ ; for now it doesn't matter where they00  11

came from. As example, suppose the estimates for an equation are 10.1 for ββ  and00

.03 for ββ . With these numbers we can obtain an estimated model (note the hats): 11

where is the predicted value of Y, and and  are the estimated values

of the parameters. For example,

1. Here, if the X is 0, the estimated or predicted value of Y is 

2. If X is, say, 250, then the predicted value is 

B. Residuals: A residual is the difference between a predicted value (predicted on the
basis of some model) and the corresponding observed value.
1. The formula is:
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Figure 2: Partition of Deviation

2. Suppose, to continue with the above case, a case had X = 0--in which case
we would predict its value on Y to be 10.1 (see above)--but in fact its
actual or observed illegitimacy rate is 20. Then the error or residual for this
county is 212 - 20 = 9.9.

3. A geometrical interpretation of residuals is shown in Figure 2.

4. Interpretation:
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i. (Y  - ) is the difference between the ith unit's score on Y andi

the grand (overall) mean. This difference when combined with all
the other corresponding differences measures the total variation in
Y.

ii. When all of these differences are combined by first squaring and
then summing them the result is the total sum of squares (TSS), an
important measure of variation in Y. The formula is:

iii. (  - ) is the difference between the predicted Y and the

grand mean. It, in a sense, represents how much we know about Y
given our knowledge of X. In other words, if we knew nothing we
would "predict" that a typical unit would have a score equal to the
grand mean. But with our model of X's impact on Y, we know
more than this; in fact we know that as X increases one unit (one
dollar in this example) the value of Y will increase .03 units. Thus, a
portion of the total variation in Y is "explained" by our knowledge
of X which is summarized mathematically in the equation:

iv. Finally, represents error in prediction. It is, stated in other

words, the difference between what we think Y should be and what
it actually is. This error together with all of the others represents
the portion of variation in Y that is not accounted for by X.

5. The Least Squares Principle:
i. We pick as estimators of $  and $  those particular values that0  1

minimize the sum of squared residuals for a batch of N observations
under study. That is, thinking of $  and $  as population0  1

parameters, we choose estimates of them in such a way that the
quantity is a minimum.
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6. Keep S  in mind because it comes up again and again.2

7. The principle of least squares leads to computing formulas used to obtain
estimates of the parameters from a set of data. These formulas are describe
by Agresti and Finlay and will be discussed later. For now we will rely on
MINITAB to compute the numerical estimates.

VII. NEXT TIME:
A. Examples of MINITAB regression
B. Measures of fit
C. Tests of significance
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