DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 816

Regression Methods Continued

I. A SUBSTANTIVE EXAMPLE:

- A. Air quality data revisited:
 - 1. Recall that the air quality data showed a possibly curvilinear relationship between mortality and sulfur dioxide.
 - 2. The implicit arrow points down the X axis so I transformed X by taking the square root.
 - 3. Here is the plot:

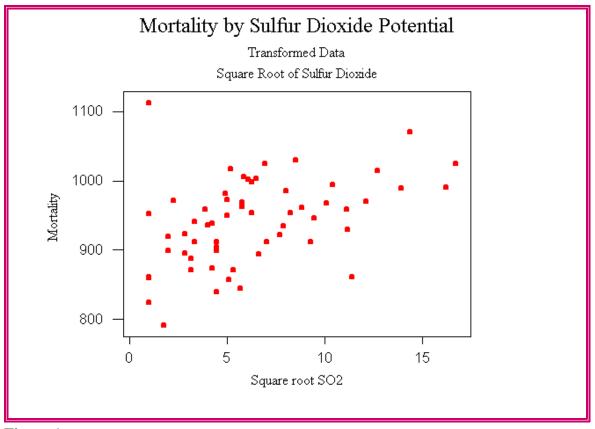
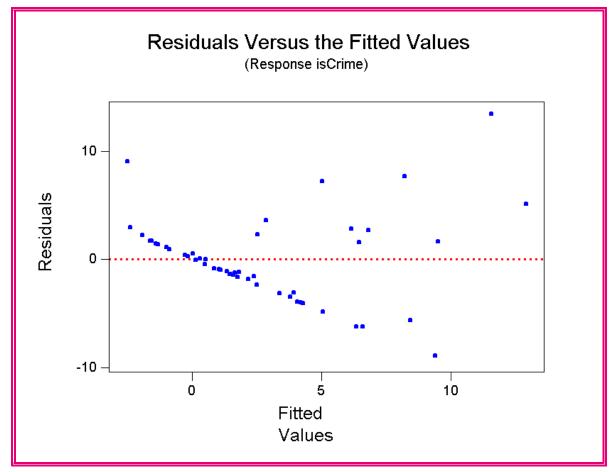
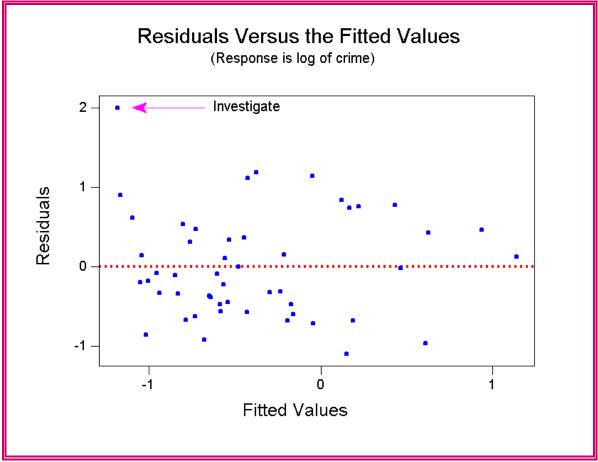



Figure 1

- 4. Now the relationship seems more linear.
- B. Example of the Boston crime data.
 - 1. We saw that the crime variable was badly skewed to the lower end of the

scale and its relationship with poverty was perhaps not linear.

- 2. This skewness can affect regression.
 - i. Let's examine a sample (N = 50) cases from the full file.
 - ii. One way to see this is plot residuals against fitted or predicted values as we discussed last time.


Figure 2

iii. Something is obviously wrong. The regression analysis shows

3. The re	gression analys	is shows			
-	ion equation 4.27 + 0.592				
Predictor	Coef	StDev	т	P	
Constant	-4.271	1.246	-3.43	0.001	
sampoor	0.59162	0.09293	6.37	0.000	
s = 4.051	R-Sq = 4	15.8% R-S	q(adj) = 4	4.6%	

sc/Uapp 8	16		Class 17 -	Continued		Page			
		i. On	the surface thes	e results indi	cate a good fit.				
		ii. But we know from the plot of errors that something is wrong.							
C.	A va	ariable that is skewed toward the lower end of the scale can be transformed by							
		ng down the ladder powers.							
		I. In this example I converted Y to log Y (that is, log to base 10 of per capit							
	1.								
	crime rate).2. The regression shows that a linear model is more appropriate for the								
	2.	U		a linear mod	el 18 more appropr	iate for the			
		transformed	d variable.						
samlogo Predict		1.65 + 0.11 Coef	.4 sampoor StDev	т	P				
Constan	it	-1.6528	0.2193	-7.54	0.000				
sampoor	•	0.11356	0.01561	7.28	0.000				
s = 0.7	226	R-Sq = 5	52.4% R-S	q(adj) = 5	1.5%				

- i. Note that the R^2 has increased.
- 3. The pattern of residuals versus fitted (predicted) values seems more satisfactory.
 - i. See the figure on the next page.

D.

Having analyzed a sample and found a reasonable model we can now apply it to the full data set.

```
The regression equation is
logcrime = - 1.38 + 0.0824 Poor
Predictor
                 Coef
                             StDev
                                            т
                                                      Ρ
             -1.38146
                                       -20.84
                                                  0.000
Constant
                           0.06630
             0.082392
                                                 0.000
Poor
                          0.004564
                                        18.05
S = 0.7325
                R-Sq = 39.3\%
                                 R-Sq(adj) = 39.1%
Analysis of Variance
Source
                  DF
                               SS
                                           MS
                                                      F
                                                                Ρ
Regression
                   1
                           174.82
                                       174.82
                                                 325.83
                                                            0.000
Residual Error
                 504
                           270.42
                                         0.54
Total
                 505
                           445.24
```

- 1. These results suggest, as we have found before, that percent classified as poor is closely tied to the (log) crime rate.
 - i. Note that R^2 has increased from about .2 for the raw data to about .4 for the transformed variable.

II. NEXT TIME:

A. Even more on multiple regression.

Go to Notes page

Go to Statistics page