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MULTIPLE REGRESSION ASSUMPTIONS AND “DIAGNOSIS”

METHODS
AGENDA:
A. Assumptions
B. Examining the models and looking for improvements
C. Reading: Agresti and Finlay Statistical Methodsin the Social Sciences, 3"
edition:

1. Chapters 11 and 12 for assumptions.
2. Pages 534 to 541 for diagnostic techniques

Il. ASSUMPTIONS:
A. The linear model underlying regression analysisis.

|| Y, =By + B X + g

B. OLSisused to obtain estimates of the parameters and to test hypotheses.
C. In order for the estimation and inference procedures to be "valid" certain
conditions have to be met.
1. No "specification” error:
I The relationship between X and Y islinear.
ii. No relevant independent variable has been excluded. If one has
been omitted, its effects will "show up" in the error term.
iii. No irrelevant independent has been included. If so, error variance
will betoo large.
2. No measurement error.
I X and'Y are accurately measured. Measurement error in'Y will
"inflate" the error variance if it is random.

3. Assumptions about the error term, ¢

I Expected value of the errorsis zero:



D.

il. Constant variation in errors across values of X (homoscedasticity).
1) Example: the variation in errors among in countries with
low GNPs (or GDPs) should be the same as in those having
higher levels.
iii. The independent variable, X, is not correlated with the error term.
Thisisimportant! We will discuss this assumption in more detail.
V. There is no autocor relation; that is, the error at timet = 1 is not
related to the error at timet = 2. Again, we will come back to this
point.

V. In order to test for significance we also assume the errors are

normally distributed:

e ~ N(0,09)

“Colinearity”: the correlations among the independent variables are not too

large.

I If one independent variable is highly correlated with another, they
essentially provide the same information (if any) about the
dependent variable.

ii. If two independent variables are perfectly correlated, the estimation
procedures break down and we cannot obtain estimators.

iii. If there are large inter-correlations, say, greater than .6 or .7, then
the estimators may be unstable--vary greatly from sample to
sample--and may be hard to interpret.

Later we will see how to investigate these assumptions using “ simulation”
procedures.

1. SOME TECHNIQUES AND TOOLS:

We can use various techniques to explore how well the observed models “agrees
with” the assumptions and to look for improvement in fits.

In order to evaluate a model’ s fit and attempt to assess the reasonabl eness of
assumptions we' |l do these things:

A.

B.

1.

Plot Y versus each independent variable to look for

I Departures from alinear

ii. Outliersand “leverage” (“influentid”) points

iii. Possible transformation of Y and/or X

Plots of residuals

I Stem-and-leaf displays to check for normality and large residuals
ii. Residuals versus fitted or predicted values of Y

iii. Residuals versus each X.

Partial regression plots:



i In effect we will regress' Y on al the independent variables except
one and obtain “adjusted residuals,” EYXM. This symbol means the

residual--the difference between observed and predicted values of
Y --using the model that contains all the X’ s except X,. | also use
the symbol Y, or something similar.

il We'll then regress X, on the other X’s and obtain the residual,
whichis denoted &, .

iii. We will then plot and adjust the first set of residuals--the ones
denoted above as EYXM. against the second set, denoted Ex X -

V. The resulting plot is called a partia regression plot.
4. The correlation matrix of the independent variables to look for large inter-
correlations among them or multicolinearity.

IV. EXAMPLE:
A. Let’s use the data pertaining to air quality and mortality that were described in
1. The data are for approximately 60 American cities
2. For now we will use just three of the variables:

i Y : age-adjusted mortality per 100,000 population.

ii. X,: sulfur dioxide potential

ii. X,: Median years of education

B. The plots of mortality against X, and X, provide agreat deal of information, as we
have seen before.
1. The first plot (next page) displays mortality versus sulfur dioxide with the
estimated least square line added.

i It suggests that there is strong relationship between mortality and
pollution, but that the relationship might be dightly non-linear, a
point we'll take up later.

ii. We aso see a couple of points that lie considerably above and
below the estimated line. We can explore those later.

iii. Perhaps because of those points and because most of the datalie
below 120, it appears that the variation among the residuals
narrows as X increases. Again, we'll keep an eye on it.

2. A plot of mortality on the other X gives similar kinds of information.
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C.

Now lets obtain the multiple relation of mortality on X, and X,.
1. Here are the results. Since we' ve been over this material | only summarize
them.

The regression equation is
Mrtality = 1274 + 0.314 SO2 - 31.9 Educat

59 cases used 1 cases contain m ssing val ues

Pr edi ct or Coef St Dev T P
Const ant 1273. 99 90. 51 14. 08 0. 000
SC2 0. 3138 0.1083 2.90 0. 005
Educat -31.914 8. 091 -3.94 0. 000
S = 51.02 R-Sq = . 355

i Note that | have changed the R? to a proportion.
il. Note the partial regression coefficient of mortality on education



contralling for sulfur dioxide, Gszlxl = -.31.9. We'll come

acrossit in aminute.
iii. Similarly note the partial regression coefficient of Y on X,
controlling for education.

2. The residuals and fitted values for this model were stored so we can plot
them in various ways to check assumptions about the error term and the
model specification.

D. Residuds:

1. A simple stem-and-leaf display indicates that the residuals are normally
distributed.

i There are as we might have guessed from looking at the bivariate
plots a couple of “deviant” cases. But they seem more or less
symmetrically distributed above and below O.

Residual s for nortality on sul fur and education
1 -13
1 -1
3 -0 99
5 -0 66
10 -0 55544
24 -0 33333222222222
(6) -0 111000
29 0 000001
23 0 222222333
14 0 4444555555
4 0 67
2 08
1 1
1 1
1 14
2. Plots of residuals: if the model has been correctly specified--errors not

correlated with any independent variables, constant variance of errors, and

so forth, a plot of residuals against X’ s or fitted values should ook

something like this.

i. Also see Agresti and Finlay, Statistical Methods, 3 edition for
other examples.



There should be no discernible pattern such as this one
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I This suggest non-constant error variation.
Standardized residuals:

I Instead of plotting raw residuals, which are defined as (\?i -Y)it

IS sometimes convenient, if not better, to plot standardized
residuas, which are residuals divided by the standard error about



the regression line, sin my notation and Sin MINITAB:

i -Y) _ (Y- Y)

VMSRes S

1) Remember that M SRes is the mean square residual and its
square root is the standard error (deviation), s, about the
regression line.

5. Residuals versus fitted values.
i It's also common to plot residuals versus fitted values.
ii. Most regression programs allow you to store predicted (fitted)
values and residuals.

1) MINITAB labels them “FIT” with anumber and “RES’

with a number.
iii. An example follows.
1) In thisinstance | just plotted the standardized residuals.

Standardized Residual
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iv. Note that the residuals cluster around O.



E.
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V. Note also that the error variation may not be constant; it seemsto
shrink as X increases.
1) We can transform one or more of the variable to see if
doing so improves the fit, a point we will discuss later.
It is aso common to plot residuals versus each independent variable.
i We can demonstrate thisin class if time permits.
Partial resdua plots.

Suppose we are interested in the effects of a particular variable, say X,.
One approach to studying itsinfluenceon Y isto regress Y on dl the
independent variables except this one and obtain residuas. The residuas
represent "what's left" after the other independent variables have "done
their work."

i For now call these partial or adjusted residuals.

A partial residual plotisaplot of these residuals against each independent
variable.

One can also regress the independent variable of interest against the other
independent variables and obtain residuals. These are partial independent
variableresiduals.

A partial regression plot is plot of the partial residuals against the partia
independent variable residuals.

One can in fact follow this procedure for all the independent variables.

Here is the idea stated a bit more formally.

1.

Note that | am using dightly different notation than that present previously

S0 as to make clear what is being regressed on whay.

i Denote residuals obtained when Y is regressed on all X's except X,
as

|| Yiok-1.k = YK

i, Thisis meant to correspond to the EYXM. presented above.

1) Theideaisthat we are isolating independent variable k to
see what its partial effects are.
Next, denote the residuas obtained from regressing X, on all of the other
X'sas X\
The plot of Y, versus X, isapartial regression plot and the regression
of Y, on X, has these properties:
I. The OLS estimator of the regression coefficient BY X isthe

same as the one obtained from regressing Y on all of the X's; that
is, itisthe same as vak|x1... obtained from the full mode! estimate.

il. The constant of this regression will be 0.



Residuals from this partial regression will be the usual residuals
obtained from regressing Y on al of the X's.
The influence of individual data values on the betas are easier to

see.
Moreover, complicating factors such as leverage values,
colinearities, and heteroscedasticity are easier to see.

4, Here' s the example from the air quality example.

Vi.

Vii.

viil.

Recdll that Y is mortality, X, sulfur dioxide, X, is median

education.

Hence there are K = 2 independent variables.

| first regressed Y on sulfur to let it “explain’ al of the variation in

mortality that it could.

1) That is, | am interested in isolating the controlled effect of
X,

2) | obtained and stored the resduals, e, = Yy

Next, | regressed X, on X, and obtained residuals X,

1) These residuals are what’ s left of X, after X, has explained
all of the variationin it that it can.

In effect, both Y and X, have been adjusted for the effects of sulfur.

If there were more independent variables in the model, | would

include them in these regression procedures.

The point is purify Y and education of the effects of sulfur and any

other factors and then see if and how they are related.

The partial regression plot is on the next page.

1) We can see that after sulfur dioxide has been taken into
account (in both Y and X), there remains a substantial
negative correlation.

2) The dope of the line that fits these dataiis

The regression equation is
0.00 - 31.9 RESIS5

RESI 3 = -

59 cases used 1 cases contain m ssing val ues

Pr edi ct or Coef St Dev T P
Const ant -0. 000 6. 584 -0.00 1. 000
RESI 5 -31.914 8.019 -3.98 0. 000
S = 50.57 R-Sq = 21. 7% R-Sg(adj) = 20.4%
a) Note that the estimated slope or regression
coefficient is -31.94, the value shown previously
IX. Following it is the results of the partia regression analysis
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V. NEXT TIME:

A. Still more on multiple regression.

[GoTo NGtes page]
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