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DEPARTMENT OF POLITICAL SCIENCE
AND

INTERNATIONAL RELATIONS
Posc/Uapp 816

MULTIPLE REGRESSION ASSUMPTIONS AND “DIAGNOSIS”
METHODS 

I. AGENDA:
A. Assumptions
B. Examining the models and looking for improvements
C. Reading: Agresti and Finlay Statistical Methods in the Social Sciences, 3rd

edition:
1. Chapters 11 and 12 for assumptions.
2. Pages 534 to 541 for diagnostic techniques

II. ASSUMPTIONS:
A. The linear model underlying regression analysis is: 

 
   
 

B. OLS is used to obtain estimates of the parameters and to test hypotheses. 
C. In order for the estimation and inference procedures to be "valid" certain

conditions have to be met. 
1. No "specification" error: 

i. The relationship between X and Y is linear. 
ii. No relevant independent variable has been excluded. If one has

been omitted, its effects will "show up" in the error term. 
iii. No irrelevant independent has been included. If so, error variance

will be too large. 
2. No measurement error. 

i. X and Y are accurately measured. Measurement error in Y will
"inflate" the error variance if it is random. 

3. Assumptions about the error term, 

i. Expected value of the errors is zero:
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ii. Constant variation in errors across values of X (homoscedasticity).
1) Example:  the variation in errors among in countries with

low GNPs (or GDPs) should be the same as in those having
higher levels. 

iii. The independent variable, X, is not correlated with the error term.
This is important! We will discuss this assumption in more detail.

iv. There is no autocorrelation; that is, the error at time t = 1 is not
related to the error at time t = 2. Again, we will come back to this
point. 

v. In order to test for significance we also assume the errors are
normally distributed: 

 
4. “Colinearity”: the correlations among the independent variables are not too

large.
i. If one independent variable is highly correlated with another, they

essentially provide the same information (if any)  about the
dependent variable.

ii. If two independent variables are perfectly correlated, the estimation
procedures break down and we cannot obtain estimators.

iii. If there are large inter-correlations, say, greater than .6 or .7, then
the estimators may be unstable--vary greatly from sample to
sample--and may be hard to interpret.

D. Later we will see how to investigate these assumptions using “simulation”
procedures.

III. SOME TECHNIQUES AND TOOLS:
A. We can use various techniques to explore how well the observed models “agrees

with” the assumptions and to look for improvement in fits.
B. In order to evaluate a model’s fit and attempt to assess the reasonableness of

assumptions we’ll do these things:
1. Plot Y versus each independent variable to look for

i. Departures from a linear
ii. Outliers and “leverage” (“influential”) points
iii. Possible transformation of Y and/or X

2. Plots of residuals
i. Stem-and-leaf displays to check for normality and large residuals
ii. Residuals versus fitted or predicted values of Y
iii. Residuals versus each X.

3. Partial regression plots:
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i. In effect we will regress Y on all the independent variables except
one and obtain “adjusted residuals,” This symbol means the

residual--the difference between observed and predicted values of
Y--using the model that contains all the X’s except X . I also usek

the symbol or something similar.

ii. We’ll then regress  X  on the other X’s and obtain the residual,k

which is denoted 

iii. We will then plot and adjust the first set of residuals--the ones
denoted above as against the second set, denoted 

iv. The resulting plot is called a partial regression plot.
4. The correlation matrix of the independent variables to look for large inter-

correlations among them or multicolinearity.

IV. EXAMPLE:
A. Let’s use the data pertaining to air quality and mortality that were described in

Class 13.
1. The data are for approximately 60 American cities
2. For now we will use just three of the variables:

i. Y: age-adjusted mortality per 100,000 population.
ii. X : sulfur dioxide potential1

iii. X : Median years of education2

B. The plots of mortality against X  and X  provide a great deal of information, as we1  2

have seen before.
1. The first plot (next page) displays mortality versus sulfur dioxide with the

estimated least square line added.
i. It suggests that there is strong relationship between mortality and

pollution, but that the relationship might be slightly non-linear, a
point we’ll take up later.

ii. We also see a couple of points that lie considerably above and
below the estimated line. We can explore those later.

iii. Perhaps because of those points and because most of the data lie
below 120, it appears that the variation among the residuals
narrows as X increases. Again, we’ll keep an eye on it.

2. A plot of mortality on the other X gives similar kinds of information.

class13.PDF
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The regression equation is
Mortality = 1274 + 0.314 SO2 - 31.9 Educat

59 cases used 1 cases contain missing values

Predictor        Coef       StDev          T        P
Constant      1273.99       90.51      14.08    0.000
SO2            0.3138      0.1083       2.90    0.005
Educat        -31.914       8.091      -3.94    0.000

S = 51.02       R-Sq = .355

C. Now lets obtain the multiple relation of mortality on X  and X .1  2

1. Here are the results. Since we’ve been over this material I only summarize
them.

i. Note that I have changed the R  to a proportion.2

ii. Note the partial regression coefficient of mortality on education



$̂$YX2|X1
'' &&.31.9.
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Residuals for mortality on sulfur and education
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controlling for sulfur dioxide, We’ll come

across it in a minute.
iii. Similarly note the partial regression coefficient of Y on X1

controlling for education.
2. The residuals and fitted values for this model were stored so we can plot

them in various ways to check assumptions about the error term and the
model specification.

D. Residuals:
1. A simple stem-and-leaf display indicates that the residuals are normally

distributed.
i. There are as we might have guessed from looking at the bivariate

plots a couple of “deviant” cases. But they seem more or less
symmetrically distributed above and below 0.

2. Plots of residuals: if the model has been correctly specified--errors not
correlated with any independent variables, constant variance of errors, and
so forth, a plot of residuals against X’s or fitted values should look
something like this.
i. Also see Agresti and Finlay, Statistical Methods, 3  edition forrd

other examples.



(Ŷi && Yi)
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3. There should be no discernible pattern such as this one

i. This suggest non-constant error variation.
4. Standardized residuals:

i. Instead of plotting raw residuals, which are defined as it

is sometimes convenient, if not better, to plot standardized
residuals, which are residuals divided by the standard error about



(Ŷi && Yi)
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the regression line, s in my notation and S in MINITAB:

1) Remember that MSRes is the mean square residual and its
square root is the standard error (deviation), s, about the
regression line.

5. Residuals versus fitted values.
i. It’s also common to plot residuals versus fitted values.
ii. Most regression programs allow you to store predicted (fitted)

values and residuals.
1) MINITAB labels them “FIT” with a number and “RES” 

with a number.
iii. An example follows.

1) In this instance I just plotted the standardized residuals.

iv. Note that the residuals cluster around 0.



Y1,2...(k && 1)...K '' Y[.k]
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v. Note also that the error variation may not be constant; it seems to
shrink as X increases.
1) We can transform one or more of the variable to see if

doing so improves the fit, a point we will discuss later.
6. It is also common to plot residuals versus each independent variable.

i. We can demonstrate this in class if time permits.
E. Partial residual plots.

1. Suppose we are interested in the effects of a particular variable, say X .k

2. One approach to studying its influence on Y is to regress Y on all the
independent variables except this one and obtain residuals. The residuals
represent "what's left" after the other independent variables have "done
their work."
i. For now call these partial or adjusted residuals.

3. A partial residual plot is a plot of these residuals against each independent
variable.

4. One can also regress the independent variable of interest against the other
independent variables and obtain residuals. These are partial independent
variable residuals.

5. A partial regression plot is plot of the partial residuals against the partial
independent variable residuals.

6. One can in fact follow this procedure for all the independent variables.
F. Here is the idea stated a bit more formally.

1. Note that I am using slightly different notation than that present previously
so as to make clear what is being regressed on whay.
i. Denote residuals obtained when Y is regressed on all X's except Xk

as

ii. This is meant to correspond to the presented above.

1) The idea is that we are isolating independent variable k to
see what its partial effects are.

2. Next, denote the residuals obtained from regressing X  on all of the otherk

X's as

3. The plot of Y  versus X  is a partial regression plot and the regression[.k]  [.k]

of Y  on X  has these properties:[.k]  [.k]

i. The OLS estimator of the regression coefficient   is the

same as the one obtained from regressing Y on all of the X's; that
is, it is the same as obtained from the full model estimate.

ii. The constant of this regression will be 0.



ĝgYX[2]
'' Y[2]

X[.k]
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The regression equation is
RESI3 = - 0.00 - 31.9 RESI5

59 cases used 1 cases contain missing values

Predictor        Coef       StDev          T        P
Constant       -0.000       6.584      -0.00    1.000
RESI5         -31.914       8.019      -3.98    0.000

S = 50.57       R-Sq = 21.7%     R-Sq(adj) = 20.4%

iii. Residuals from this partial regression will be the usual residuals
obtained from regressing Y on all of the X's.

iv. The influence of individual data values on the beta's are easier to
see.

v. Moreover, complicating factors such as leverage values,
colinearities, and heteroscedasticity are easier to see.

4. Here’s the example from the air quality example.
i. Recall that Y is mortality, X  sulfur dioxide, X  is median1   2

education.
ii. Hence there are K = 2 independent variables.
iii. I first regressed Y on sulfur to let it “explain’ all of the variation in

mortality that it could.
1) That is, I am interested in isolating the controlled effect of

X2

2) I obtained and stored the residuals, 

iv. Next, I regressed X  on X  and obtained residuals2  1

1) These residuals are what’s left of X  after X  has explained2  1

all of the variation in it that it can.
v. In effect, both Y and X  have been adjusted for the effects of sulfur.2

vi. If there were more independent variables in the model, I would
include them in these regression procedures.

vii. The point is purify Y and education of the effects of sulfur and any
other factors and then see if and how they are related.

viii. The partial regression plot is on the next page.
1) We can see that after sulfur dioxide has been taken into

account (in both Y and X), there remains a substantial
negative correlation.

2) The slope of the line that fits these data is 

a) Note that the estimated slope or regression
coefficient is -31.94, the value shown previously

ix. Following it is the results of the partial regression analysis
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V. NEXT TIME:
A. Still more on multiple regression.
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