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MULTIPLE REGRESSION 

I. AGENDA:
A. Standardized regression coefficients
B. Multiple regression model.
C. Reading: Agresti and Finlay Statistical Methods in the Social Sciences, 3rd

edition, Chapter 10 and Chapter 11, 383 to 394.

II. STANDARDIZED VARIABLES AND COEFFICIENTS:

A. We have noted several times that the magnitude of ββ , or its estimator reflects1

the units in which X, the independent variable is measured.
B. Suppose, for example, we had this equation:

1. Furthermore, suppose X  is measured in thousands of dollars and X  is1        2

measured in just dollars.

2. Note that although is considerably larger than , both variables

have the same impact on Y, since a "one-unit" change in X  (when the2

other variable is held constant, see below) has effectively  the same effect
as "one-unit" change in X . (Changing X  one unit of course amounts to a1   2

dollar change; but because this dollar change is multiplied by 1000 the

effect on Y is 1000, the same as the effect of . Why?

3. In essence, the regression coefficient ββ  is measured in units that are units1

of Y divided by the units of X.
C. For this reason and because many measures in the social and policy sciences are

often non-intuitive (e.g., attitude scales) coefficients are frequently difficult to
compare.
1. Hence, it sometimes useful to rescale all of the variables so that they have a

"dimensionless" or common or standard unit of measurement.
2. Standardizing variables, as mentioned in previous classes, provides a means
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where F̂F))s are the sample standard deviations
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for doing so.
D. Deviation scores:

1. Transform each X and each Y into deviation scores as follows: 

2. The regression of y on x will lead to an equation in which the constant is
zero. This is sometimes called regression through the origin.

E. Standardized regression coefficient:
1. The regression coefficient, remember, is measured in units of the original

variables.
2. The correlation coefficient can be interpreted as a standardized slope or

regression coefficient: it is a slope whose value does not depend on units of
measurement. It is, so to speak, scale free.

3. The standardization is achieved by adjusting the unstandardized regression
coefficient ββ  by the standard deviations of X and Y. This leads to a1

coefficient that can be thought of as the value one would get for the slope
of the regression of Y on X if the standard deviations of X and Y were
equal.

4. How does one make the standard deviations of X and Y equal? By
"standardizing" each variable according to the formula"

i. In other words, one can standardize X and Y to get x  and y  and'  '

then regress y  on x . The resulting equation will yield a slope which'  '

is equal to the value of r between X and Y.
5. In more complex situations where there are several variables and equations,

the standardized regression coefficients are sometimes called path
coefficients. 

F. Another way to get the standardized coefficient, a way that might be useful later, is
to adjust the estimated slope by the sample standard deviations:



r ''
F̂FX

F̂FY

$̂$1
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                % for  Standardized         Standardized
       County    Perot     Y      Density     X
      ________________________________________________  
      Atlantic   17.6    0.00890    154.4  -0.56493
      Bergen     12.9   -0.96683   1359.8   0.55881
      Burlington 20.4    0.59018    189.6  -0.53211
      Camden     17.6    0.00890    873.0   0.10499
      Cape May   20.1    0.52790    143.9  -0.57472
      Cumberland 19.0    0.29954    109.0  -0.60725
      Essex       9.7   -1.63116   2379.8   1.50971
      Glousest   23.1    1.15071    273.6  -0.45380
      Hudson      7.9   -2.00484   4571.1   3.55255
      Hunterdon  23.6    1.25451     96.7  -0.61872
      Mercer     15.5   -0.42707    557.0  -0.18960
      Middlesex  15.8   -0.36479    834.5   0.06910
      Monmouth   17.1   -0.09490    452.6  -0.28693
      Morris     15.5   -0.42707    346.8  -0.38556
      Ocean      19.3    0.36182    262.9  -0.46378
      Passaic    13.0   -0.94607    945.8   0.17286
      Salem      26.0    1.75276     74.6  -0.63932
      Somerset   17.4   -0.03262    304.5  -0.42500
      Sussex     22.0    0.92235     97.0  -0.61844
      Union      11.4   -1.27824   1842.6   1.00890
      Warren     23.8    1.29603     98.8  -0.61676

Table: Raw and Standardized Scores 

G. Here is an example:
1. The data are the percent of the county that voted for H. Ross Perot in 1992

in New Jersey (Y) and the county’s population per square mile (X).

H. Regressing a standardized Y on a standardized X produces standardized regression
coefficients. (In some articles they are called beta coefficients or path coefficients,
but since this usage can be confusing, I will not use it.)

I. Here are some characteristics of standardized variables and coefficients.
1. Standardized variables have a mean of 0 and standard deviation of 1.0. You

can verify this yourself, both by looking at the formula for standardization
or, less satisfactorily, calculating the mean and standard deviation of this



rPerot,density '' $̂$((

Perot,density '' .804

ŷ '' 0.00 %% .804x1

or

ŷ '' .804x1

Yi = $$0 + $$1X1 + $$2X2 + ... + $$KXK + ggi

Yi = $$0 + $$1X1 + $$2X2 + $$3X3 + $$4X4 + ggi

X̄
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sample.
i. Use this property to check your work.

2. In the two variable case the correlation coefficient between Y (e.g., percent
for Perot) and X (e.g., population density) equals the standardized
regression coefficient.
i. In this example:

1) The star (*) indicates a standardized coefficient

3. Standardizing (by subtracting ) removes the intercept or constant from

the equation. Hence, when using standardized variables, ββ  will be zero. In0

this instance, the predicted vote for Perot is thus:

where x and y are the standardized variables.

III. MULTIPLE REGRESSION MODEL:
A. There is a single dependent variable, Y, which is believed to be a linear function of

K independent variables.
1. In the example, K = 4 because there are four independent variables, X , X ,1  2

X , and X .  3   4

2. The general model is written as:

3. A model with k = 4 independent variables is:



Posc/Uapp 816 Class 12 - Inference for Regression Page 5

Figure 1: Structural Models

4. Interpretation:
i. Systematic part:

1) The regression parameters, ββ's, represent the effects of each
independent variable on Y when the other variables in the
model have been controlled. 

2) Thus, ββ , is the effect of X  when the other X's have been1      1

controlled.
3) The reason the word "controlled" appears is that the

independent variables themselves are interrelated. Changing
the value of, say, X , not only changes Y but might also1

affect X  which in turn impacts on Y. To see the "pure" or2

"uncontaminated" effect of X  on Y we need to hold the1

other X's constant.
ii. A path diagram may help explain. Consider the models in Figure 1.

 

5. Note: that multiple regression coefficients are often written with the
dependent variable, Y, an independent variable (X, for example) second,
and any variables that are being controlled after the dot. Thus, ββ  meansYZ.X

the regression coefficient between Y and Z, when the X has been
(statistically) held constant.

6. In the first part of Figure 1, Y depends on X , X  and X . Changing X  will1  2  3   1



Posc/Uapp 816 Class 12 - Inference for Regression Page 6

affect the value of Y, by affecting X  constant, which in turn affects X .2      3

Each of the coefficients is  non-zero.
7. Moreover, even if we hold a variable prior to one of the independent

variables constant (say, we hold X  constant), if we could change the value1

of the next independent down the line (X , say), we will affect Y,2

i. The first model then represents a direct “causal” sequence--
sometimes called “developmental sequence.”

ii. It this model holds, then all of its parameters are non-zero.
8. Now look at the second model (“spurious correlation”): the arrows (and

lack of arrows) mean that there is a direct (causal?) connection betweeen X
and Z and X and Y with X being the causal factor, but no direct connection
between Z and Y.
i. That is, in the second model if we hold X constant, changing Z has

no effect on Y.
ii. This situation means that the partial regression parameter, ββYZ|X

is zero. A zero value, in other words, indicates that although there
may be a “bi-variate” relationship between Z and Y, the partial or
controlled relationship is nil.

B. Thus, the regression procedure produces partial or controlled coefficients which
means, for instance,  that Y changes ββ  units for a one-unit change in X  when X1       3  1

and X  have been held constant.3

1. Note that direct linkages are indicated by arrows; an arrow represents the
presence of a non-zero coefficient.

IV. EXAMPLE: 
A. Here are some economic and social data:



$̂$0 = 27.7

$̂$1 = .728

$̂$2 = 1.46

$̂$3 = &&.422

$̂$4 = &&.00406
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PROJECTED POPULATION INCREASE

Nation X X X X Y

Birth Death Life per population
rate rate expectancy capita increase

1 2 3

GNP projected

4

Percent

Bolivia 42 16 51 510 53.2

Cuba 17 6 73 1050 14.9

Cyprus 29 9 74 3720 14.3

Egypt 37 10 57 700 39.3

Ghana 47 15 52 320 60.1

Jamaica 28 6 70 1300 21.7

Nigeria 48 17 50 760 71.6

South Africa 35 14 54 2450 40.1

South Korea 23 6 66 2010 21.1

Turkey 35 10 63 1230 36.9

B. One can ask some questions:
1. What explains variation in Y, projected population increase?
2. What are the "individual" effects of the independent variables?
3. Are any of them redundant?
4. How well does a linear model as a whole fit the data?
5. What policy implications, if any, does the model contain?

C. Here are “estimates” of the coefficients:

i. The estimated model is thus:



Ŷ = 27.7 + .728X1 + 1.46X2 - .422X3 - .00406X4

$̂$1
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1. The first is the constant: it is the value of Y when all X's are zero.
i. The first regression parameter, , means that Y increases .728

units for a one-unit change in X  when X , X , and X  have been1  2  3   4

held constant.
ii. The second parameter is interpreted in a similar way: Y changes by

1.46 units for every one-unit change in X , assuming that X , X ,2    1  3

and X  have been held constant.4

iii. Note that partial regression coefficients are statistical method of
physically holding variables constant. In other words, observational
analysis limits our ability to manipulate variables so we compensate
by making statistical adjustments.

V. RANDOM COMPONENT:
A. The εε  in the model once again represents random error--that is, randomi

measurement error in Y (but not X's) and the idiosyncratic factors that affect the
dependent variable.
1. The observed Y scores are thus composed of the effects of the X' plus a

random error. The random error is not observed independently; it is
estimated from the residuals.

2. Ideally, these errors really are random: they have an expected value of
zero, a constant variance (their variation does not change with changes in
X's), they are independent of the X's, and they are serially uncorrelated.

3. We’ll investigate the error component in more detail shortly.

VI. ANOTHER EXAMPLE:
A. Here’s another quick example

1. We used these data in Class 7. The three variables are
i. Out-of-wedlock births per 1,000 live births.
ii. Average monthly Aid to Families With Dependent Children

payment.
iii. Percent of families living below poverty level.
iv. The data pertain to a sample of 19 states

2. Data are on the next page
3. We would expect that, if Murray and other social welfare critics are

correct, an increase in welfare spending would be associated with increases
in out-of-wedlock births.

class7.PDF
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Births AFDC Poverty

221 110 14.8

204 145 14.9

179 358  7.7

241 227  8.9

231 133 13.2

225 277  8.4

122 271  7.4

138 233  9.8

156 341  7.6

161 379  8.2

176 217  9.1

134 207  6.3

160 185 14.0

 92 277  9.8

147 318  7.7

203 107 13.1

133 109 11.1

191 214  9.2

138 366  6.3

B. Let’s see whether both AFDC payments and the poverty rate can explain variation
in the out-of-wedlock birth rate.
1. This turns out to provide an interesting example of some phenomena we

will be dealing with later.
C. The results from MINITAB follow.
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The regression equation is
Outofwed = 125 - 0.036 AFDC + 5.57 Poverty

Predictor       Coef       Stdev    t-ratio        p
Constant      124.58       87.99       1.42    0.176
AFDC         -0.0356      0.1677      -0.21    0.835
Poverty        5.569       5.370       1.04    0.315

s = 39.63       R-sq = 19.4%     R-sq(adj) = 9.3%

Analysis of Variance

SOURCE       DF          SS          MS         F        p
Regression    2        6039        3020      1.92    0.179
Error        16       25133        1571
Total        18       31173

SOURCE       DF      SEQ SS
AFDC          1        4350
Poverty       1        1689

D. Why are these results interesting?
1. There are a relatively small number of cases: N = 19; degrees of freedom

for error is 16.
2. The percent of variation explained by both variables is roughly 19.
3. But, the F-test for the model is 1.92, which is not “significant.”
4. Neither regression parameter is “significant.” In fact, their “attained”

probabilities are relatively high.
5. It turns out that if we serially regressed the independent variables on births

rate one at a time, we would discover that the “explained variation” is
about the same.

6. The problem we will see is (partly) “colinearity.”
E. In the meantime, interpret the parameters on your own.

1. Example: when the poverty rate is controlled, AFDC payments seems to
have no (linear) relationship with out-of-wedlock births: a one dollar
increase in AFDC payments is associated with 4 tenths of a percent
decrease in out-of-wedlock births and this coefficient is not significant.
i. But note that a $100 dollar increase in welfare “generosity” is

associated with about a 4 percent decrease in births, which seems
relatively important.

ii. We’ll investigate the situation further.
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VII. NEXT TIME:
A. More on multiple regression.
B. Dummy variables

Go to Notes page

Go to Statistics page
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