## DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 816

# **INFERENCE FOR REGRESSION**

#### I. AGENDA:

- A. "R-square measure of goodness of fit"
- B. Tests and confidence intervals for regression parameters.
- C. Reading: Agresti and Finlay *Statistical Methods in the Social Sciences*, 3<sup>rd</sup> edition, Chapter 9 pages 326 to 333.
- II. SUMMARY ASSESSING GOODNESS OF FIT WITH R<sup>2</sup>:
  - A. See the notes for Class 10 for definition of  $R^2$
  - B. Recall that R<sup>2</sup> can be defined as the portion of the total sum of squares (TSS) "explained" or attributable to the regression model (RegSS).

$$R^{2} = RegSS/TSS$$
$$= \frac{\sum_{i=1}^{N} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}$$

- C. Properties:
  - 1.  $R^2$  varies between 0 and 1.0.
    - i. A value of 0 means no linear correlation.
      - 1) The variables may be associated; but not linearly.
    - ii. A value of 1.0 suggests "perfect" linear correlation.
      - 1) The regression constant,  $\beta_1$  nay be positive or negative.
      - 2) In Figure 1, for example,  $R^2 = 1,0$  for both sets of data, although one is a negative relationship and the other positive.



**Figure 1: R<sup>2</sup> And Perfect Linearity** 

D. Although this is a very commonly reported measure, it by itself is not entirely satisfactory. Like OLS in general, it is sensitive to "outlying" values, as is illustrated in Figure 2.



**Figure 2: R<sup>2</sup> Can Be Affected by Outliers** 

| /Uapp 816                          | (                                                                                            | <u>lass 11 - Infer</u>                                | ence for Re                  | gression     |                 | Page 3 |
|------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|--------------|-----------------|--------|
| 1                                  | thereby c<br>will be la                                                                      | ample, the one<br>reating the imp<br>rge, which is in | ression of a<br>this case ve | positive rel | ationship. More | -      |
| 2                                  |                                                                                              |                                                       |                              |              |                 |        |
|                                    | It is possible, as the definition indicates, to interpret $R^2$ as the "percent of variation |                                                       |                              |              |                 |        |
| ir                                 | in Y explained by X." But don't take this notion too literally.                              |                                                       |                              |              |                 |        |
| 1                                  | 1. Hence, values of .8 or .9 suggest a tight "fit" while those closer to 0                   |                                                       |                              |              |                 |        |
|                                    | suggest a weak (linear) relationship.                                                        |                                                       |                              |              |                 |        |
| F. E                               | Example:                                                                                     |                                                       |                              |              |                 |        |
|                                    | 1. Here once again is the results from of the mortality and air pollution                    |                                                       |                              |              |                 |        |
| -                                  | analysis:                                                                                    | e uguin is the r                                      |                              |              | ing and an poin |        |
|                                    |                                                                                              |                                                       |                              |              |                 |        |
| Mortality                          | = 919 + 0.412                                                                                | 2 SO2                                                 |                              |              |                 |        |
| 50                                 |                                                                                              |                                                       | •                            |              |                 |        |
| 59 cases 1                         | used 1 cases o                                                                               | contain missir                                        | g values                     |              |                 |        |
| Predictor                          | Coef                                                                                         | StDev                                                 | Т                            | Р            |                 |        |
| Constant                           | 918.671                                                                                      | 9.853                                                 | 93.24                        | 0.000        |                 |        |
| SO2                                | 0.4117                                                                                       | 0.1181                                                | 3.49                         | 0.001        |                 |        |
|                                    |                                                                                              |                                                       |                              |              |                 |        |
| S = 57.17                          | R-Sq =                                                                                       | 17.6% R-S                                             | q(adj) = 1                   | .6.1%        |                 |        |
|                                    | R-Sq =                                                                                       | 17.6% R-S                                             | q(adj) = 1                   | 6.1%         |                 |        |
|                                    | -                                                                                            | 17.6% R-S                                             | q(adj) = 1<br>MS             | 6.1%<br>F    | Ρ               |        |
| Analysis o<br>Source<br>Regression | of Variance<br>DF<br>n 1                                                                     | 55<br>39698                                           | <u>м</u> з<br>39698          |              | Р<br>0.001      |        |
| Analysis of Source                 | of Variance<br>DF<br>n 1                                                                     | SS                                                    | MS                           | F            | =               |        |

2.  $R^2 = .176$  suggests a modest relationship between mortality and air pollution.

#### III. TEST OF SIGNIFICANCE:

A. Refer to the notes for Class 10. There is no need to repeat them here.

### IV. NEXT TIME:

- A. Correlation
- B. Transformations
- C. Multiple regression.

Go to Notes page Go to Statistics page