# DEPARTMENT OF POLITICAL SCIENCE <br> AND <br> INTERNATIONAL RELATIONS <br> Posc/Uapp 816 

## Assignment 8 MULTIVARIATE RELATIONSHIPS

Name $\qquad$
(Printed)
Student Number $\qquad$
(Social Security Number)
E-mail $\qquad$

The purpose of the questions in this assignment is to make sure everyone understands standardized variables and the concept of "statistical controls."

1. Suppose you wanted to explain cross-national variation in test scores, a topic on everyone's mind. Consider a couple of hypotheses. Scores are related to how much stress a society places on education, to its level of well-being, and/or to student work habits. Here are some data that might allow us to investigate these ideas, however superficially. ${ }^{1}$ The data are for 13 countries that participated in the "International Assessment of Educational Progress."
A. The variables are:
i. Average percent correct on mathematics test for 9 year old students, 1991.
ii. Average days in a school year.
iii. Percent of students with two or more hours of homework daily.
iv. Percent of students who report watching TV 5 hours or more a day.
v. GNP per capita (dollars), 1991
vi. Infant mortality rate, number of deaths of children under 1 year of age per 1,000 live births, 1994.
${ }^{1}$ Source: National Center for Educational Statistics, Digest of Educational Statistics 1994; and Bureau of the Census, Statistical Abstract of the United States.

| Country | Percent correct | School days | Homework | Percent watching TV | GNP per capita | Infant mortality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Korea | 74.8 | 222 | 22 | 9 | 8639 | 21.7 |
| Hungary | 68.2 | 177 | 25 | 16 | 5727 | 12.5 |
| Taiwan | 68.1 | 222 | 31 | 8 | 9068 | 5.7 |
| Russia | 65.9 | 198 | 31 | 18 | 8639 | 27.0 |
| Israel | 64.4 | 215 | 35 | 24 | 13950 | 8.6 |
| Spain | 61.9 | 188 | 29 | 17 | 13370 | 6.9 |
| Ireland | 60.0 | 173 | 18 | 23 | NA | NA |
| Canada | 59.9 | 188 | 13 | 22 | 20840 | 6.9 |
| U.S. | 58.4 | 178 | 20 | 26 | 22550 | 8.1 |
| Slovenia | 55.8 | 190 | 15 | 8 | NA | 10.4 |
| Italy | 67.8 | 204 | 17 | 9 | 19630 | 7.6 |
| England | 59.5 | 192 | 9 | 23 | 17400 | 7.2 |
| Portugal | 55.5 | 172 | 20 | 20 | 6251 | 9.5 |

B. Try building a model for these data. First obtain a correlation matrix so that you can anticipate results and problems.
i. Enter the correlation coefficients here.

|  | Percent <br> correct | School <br> days | Homework | TV | GNP | Infant <br> mortality |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| School <br> days |  |  |  |  |  |  |
| Homework |  |  |  |  |  |  |
| TV |  |  |  |  |  |  |
| GNP |  |  |  |  |  |  |
| Infant mortality |  |  |  |  |  |  |

C. Now, regress percent correct on number of school days.
i. The estimated model is: $\qquad$
ii. What is TSS? $\qquad$ $\mathrm{R}^{2}$ ? $\qquad$
iii. Standard deviation about regression is $\qquad$
iv. Observed F for the model is $\qquad$ with $\qquad$ degrees of freedom.
v. Would you accept or reject the null hypothesis that days of schooling affects test scores? Why? Report what ever statistics are necessary and verbally state the substantive meaning of the significance test.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
D. Try adding the student behavior variable, "percent reporting watching more than 5 hours of TV." That is, obtain the multiple regression of scores on school days and percent watching more than 5 hours.
i. What is the estimated model? $\qquad$
ii. Explain the meaning of the coefficient linking "percent watching" to scores.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iii. What is the TSS? $\qquad$ Now what is $\mathrm{R}^{2}$ ? $\qquad$
iv. Test the model as a whole for significance. That is, test they hypothesis that $\beta_{1}=\beta_{2}=0$. Use the $F$ test results. What is your conclusion? Is the model as a whole significant? Report both the relevant test statistics and explain them briefly.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
E. Assuming that television doesn't add much to the model, drop it and add the well being variable, infant mortality.
i. Now what is the estimated model? $\qquad$
ii. What is the TSS? $\qquad$ Now what is $\mathrm{R}^{2}$ ? $\qquad$
iii. Test the model as a whole for significance. That is, test they hypothesis that $\beta_{1}=\beta_{2}=0$. Use the $F$ test results. What is your conclusion? Is the model as a whole significant? Report both the relevant test statistics and explain them briefly.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iv. Does the infant mortality "add" anything "significant" to the model? That is, is the increase in explained variation (or decrease in unexplained variation) statistically significant?
2. Try answering this question from Agresti and Finlay, Statistical Methods for Social Sciences, $3^{\text {rd }}$ edition, page 380. "The percentage of women who get breast cancer is higher now than at the beginning of this century. Suppose that cancer incidence tends to increase with age, and suppose that women tend to live longer lives now than earlier in this century. Explain why a comparison of breast cancer rates now with the beginning of this century could show different results from these if we controlled for the age of the woman." Use diagrams of the sort shown in class to help you explain.

Go to Assignment page
Go to Statistics page

