
Mathematics in Industry Reports (MIIR) 1

Finding the Limits of Machine Learning in
Optimization

David A. Edwards1†,Binan Gu2,Katherine Johnston3,Maia

Wichman4,and Maxim Zyskin5

1 University of Delaware, Newark, DE, USA
2 New Jersey Institute of Technology, Newark, NJ, USA

3 University of Washington, Seattle, WA, USA
4 University of Nebraska, Lincoln, NE, USA

5 Oxford University, Oxford, UK

(Communicated to MIIR on September 7, 2022; in revised form September 26, 2022)

Study Group: 38th Mathematical Problems in Industry Workshop, Worcester Polytechnic

Institute, June 13–17, 2022

Communicated by: Burt Tilley, Worcester Polytechnic Institute

Industrial Partner: DEKA Research and Development Corportation, Manchester, NH

Presenter: Derek Kane

Team Members: Darcy Brunk, San Francisco State University; Derek Drumm, Worcester

Polytechnic Institute; David A. Edwards, University of Delaware; Pak-Wing Fok, University of

Delaware; Binan Gu, New Jersey Institute of Technology; Katherine Johnston, University of

Washington; Darsh Nathawani, University of Buffalo; Michael Smith, Worcester Polytechnic In-

stitute; Burt Tilley, Worcester Polytechnic Institute; Tobias Timofeyev, University of Vermont;

Maia Wichman, University of Nebraska, Lincoln; Erli Wind-Andersen, New Jersey Institute of

Technology; Zhongqiang Zhang, Worcester Polytechnic Institute; Maxim Zyskin, University of

Oxford.

Industrial Sector: Computing/Robotics

Key Words: Robotics; machine learning; gradient optimization; variational principles; super-

vised learning.

MSC2020 Codes: 70B15, 70E60, 68T07, 93B47, 93C85

† Corresponding Author: dedwards@udel.edu

2 Edwards et al.

Summary

The initial position and velocity of a robot is given, and the problem

posed is to make it stop at the origin in the shortest possible time, given

a maximum acceleration and speed. The robot can control its acceler-

ation vector, and hence the full optimization problem can be specified

as a Hamiltonian system where the solution will minimize the transit

time. This problem is discussed in both the one- and two-dimensional

cases. The key control parameter is the acceleration direction; reduc-

ing the problem to a one-dimensional optimization opens up several

areas of exploration. The direction can be optimized using a global

search algorithm, or can be updated periodically using a local search

algorithm with a penalty function. Numerical solutions are presented

in these cases, including when physical obstacles are included in the

penalty function. The one-dimensional optimization also allows the use

of reinforced learning to minimize the transit time.

1 Introduction

x(t)

v(t)

x

y

Figure 1.1. Schematic of robot movement.

We consider the problem of a robot (position x(t)) which moves with velocity v(t) (see

Fig. 1.1). The robot is given a simple problem: move to the origin and stop there.

We assume that:

(1) initially the robot has position x0 and velocity v0.

(2) the robot can accelerate instantaneously in any direction with a maximum accel-

eration of amax.

(3) the robot knows its position and velocity at any time.

Finding the Limits of Machine Learning in Optimization 3

(4) the only instructions the robot can execute are a change in a, the acceleration

vector.

The final consideration is the treatment of the speed, which is assumed to have a

maximum value. In reality, this is because its maximum acceleration is not enough to

overcome frictional forces at high speed. There are surprisingly many models for this,

though one useful one is [3, p. 60]

v̇ = a− νv, (1.1)

which has a steady state of vmax = amax/ν, as desired.

Treating the more physically realistic model (1.1) is beyond the scope of this manuscript.

Instead, for simplicity we use the standard frictionless model v̇ = a coupled to an imposed

maximum speed constraint |v| = vmax. Though easy enough to implement in software,

this form of the constraint wreaks havoc on analytical solutions.

This problem can be attacked various ways, as illustrated in this report. In Sec. 2,

we outline the governing equations for the problem. In Sec. 3, we implement a series of

numerical algorithms to guide the robot in the case of no obstacles, and generalize to

the case of obstacles in Sec. 4. In Sec. 5 we introduce machine and supervised learning

approaches, and in Sec. 6 we present some analytical solutions to the problem.

2 Governing Equations

2.1 The One-Dimensional Problem

x(t)

v(t)

x

y

Figure 2.1. Schematic of aligned robot movement.

We consider what at first might seem a very specialized case: one where the velocity

of the robot is aligned with its position vector (see Fig. 2.1). In this case, the system

reduces to a one-dimensional problem in the radius r = |x|. However, it will be shown in

4 Edwards et al.

Sec. 3.2 that even when starting with an arbitrary velocity, the robot will spend quite a

bit of time in this “one-dimensional” state.

We begin by considering the case where the robot is “some distance” from the origin

(this phrase will be formally defined later). Then the robot should apply maximum

acceleration towards the origin:

r̈(t) = −amax. (2.1)

We assume that the acceleration continues until the robot reaches a speed of vmax. Moti-

vated by the physics associated with friction, we further assume that the “acceleration”

(really force) must be maintained at the maximum level to keep the speed at vmax.

When the robot nears the origin, it must begin to slow to achieve its goal of reaching

the origin with zero velocity. Again, for the shortest elapsed time, the deceleration must

be maximized. Since the acceleration is constant, we have that

r(t) = rd +
amaxτ

2

2
− vmaxτ, (2.2a)

where τ measures the time of deceleration, and rd is the position at which the deceleration

begins (which is what we wish to determine). Moreover, examining the velocity, we obtain

the following:

−vmax + τdamax = 0 =⇒ τd =
vmax

amax
, (2.2b)

where τd is the duration of deceleration. Given this definition, at τ = τd the robot must

be at the origin, so (2.2a) becomes

rd +
v2max

2amax
− v2max

amax
= 0

rd =
v2max

2amax
, (2.3)

where we have used (2.2b). This is the standard braking-distance formula from physics

[4, p. 64].

What if the robot starts close enough to the origin that it cannot reach maximum speed

before having to decelerate? In that case, the robot must begin decelerating whenever it

reaches the braking distance for its actual velocity:

rd =
v2(t)

2amax
. (2.4)

Equation (2.4) is generic enough to cover both cases, so in the one-dimensional case we

have the following algorithm:

Algorithm 1.

Apply maximum acceleration/force until (2.4) is satisfied, then apply maximum decel-

eration.

(Note that this algorithm holds even in the case where we reach maximum velocity,

since in that case we still apply maximum force to maintain it.)

Finding the Limits of Machine Learning in Optimization 5

2.2 Polar Coordinates

We return to the more general case shown in Fig. 1.1. Given the focus on reducing r, it

is convenient to write the relevant equations in terms of polar coordinates:

x = (r cos θ, r sin θ) = rr̂, r̂ = (cos θ, sin θ), (2.5a)

where the hat indicates a unit vector (see Fig. 2.2). θ̂ is perpendicular to r̂:

θ̂ = (− sin θ, cos θ). (2.5b)

r̂

θ̂

θ

θ

x

y

Figure 2.2. Unit vectors, polar coordinates.

To calculate velocities, it is necessary to have the derivative of the normal vectors:

dr̂

dt
= (−θ̇ sin θ, θ̇ cos θ) = θ̇θ̂, (2.6a)

dθ̂

dt
= (−θ̇ cos θ,−θ̇ sin θ) = −θ̇r̂. (2.6b)

Then using (2.6), we have

v =
dx

dt
= ṙr̂+ r

dr̂

dt
= ṙr̂+ rθ̇θ̂, (2.7a)

a =
dv

dt
= r̈r̂+ ṙ

dr̂

dt
+ ṙθ̇θ̂ + rθ̈θ̂ + rθ̇

dθ̂

dt

= r̈r̂+ ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂

= (r̈ − rθ̇2)r̂+ (rθ̈ + 2ṙθ̇)θ̂, (2.7b)

which is a standard result from physics [3, p. 32].

As a first näıve approach, we may reuse our algorithm from the one-dimensional case

6 Edwards et al.

and take a to be proportional to r̂ only, in which case the θ̂ component of (2.7b) becomes

rθ̈ + 2ṙθ̇ = 0

θ̈ = −2ṙθ̇

r
. (2.8)

But (2.8) illustrates the key difference between the one- and two-dimensional cases. In

the one-dimensional case, θ̇ is always zero, so this equation is satisfied exactly. However,

in the two-dimensional case, for any acceleration imposed only in the radial direction,

the angular velocity θ̇ will become arbitrarily large as the robot approaches the origin.

(Note that the r term multiplying θ̇ in (2.7a) ensures that a large angular velocity does

not violate the bound that v < vmax.)

3 Numerical Results, No Obstacles

To validate this analysis, we wrote a Python code. The robot was given an initial condi-

tion x0, where each component was uniformly distributed in a range [−xmax, xmax] (for

parameter values, see Appendix A). Each component of v0 was uniformly distributed in

a range [−vmax, vmax], and then v0 was scaled to have length vmax if the sampled speed

was too large.

3.1 Radial Acceleration

The robot’s acceleration is given by a = −amaxr̂. (Because there is now a component of

the velocity in the angular direction, we do not impose deceleration once we cross the

threshold (2.4).) We employ a simple explicit Euler method with time step dt, keeping in

mind the artificial speed constraint that v ≤ vmax. Hence if adding a(t)dt to the velocity

caused the speed to exceed vmax, the velocity was scaled as follows:

v(t+ dt) = vmax
v(t) + a(t)dt

|v(t) + a(t)dt|

to enforce |v| = vmax.

The algorithm ran until two conditions were met:

(1) r < rs, so the robot was within some bound rs of the origin, and

(2) v < vs, so the speed was less than some bound vs.

The bound on the speed is much tighter the one on the radius; the exact values are listed

in Appendix A. If the code did not converge within Nmax iterations, the algorithm is said

to fail.

For a typical run, the robot’s path is shown at left in Fig. 3.1. The initial point is the

blue star at lower left, and the initial velocity is indicated by the line emanating from it.

Each iterate is indicated with a point. Though the robot does approach the origin (black

star at upper right), it overshoots it.

Moreover, the algorithm actually does not converge because the velocity does not

decrease to zero, as shown at right. Instead the velocity rapidly oscillates when the robot

is near the origin. In particular, as the robot approaches the origin, the speed decreases.

Finding the Limits of Machine Learning in Optimization 7

160 140 120 100 80 60 40 20 0
x

40

35

30

25

20

15

10

5

0

y

Position at Each Iterate, Radial Acceleration

0 200 400 600 800 1000
t (s)

10 6

10 4

10 2

100

102

Radius and speed vs. t
r
v

Figure 3.1. Left: Robot path with radial acceleration only. Right: Comparing r and v for

various iterates. Here the orange block corresponds to rapid oscillations in v between the

upper and lower values.

But as discussed above, with only a radial acceleration, as r → 0, θ̇ gets large, so the robot

will near the origin, but then pass beyond it. Hence to reverse this escape trajectory, the

speed has to increase again. This process repeats until the process is terminated.

The overshoot phenomenon may be exacerbated by maintaining a fixed time step

throughout the experiment. If instead the time step were reduced as the robot approaches

the origin, it would no longer stay on the same path for so long, reducing the possibility

of overshoot. Moreover, the robot would reevaluate its acceleration direction more fre-

quently, allowing it to keep on a path better aligned with the origin. We did not have

time to explore these ideas at the workshop.

3.2 Convex Combination Approach

Since using a purely radial acceleration does not yield convergence, we expand the uni-

verse of acceptable accelerations. First consider that if the acceleration is constant, then

the movement of the robot is given by

x(t) =
at2

2
+ v0t+ x0.

Therefore, if we want x(t) = 0 at some time, the needed (constant) acceleration would

depend on both the initial velocity and the initial position.

Motivated by this fact, in the time-dependent case we try a form for the acceleration

which depends on the robot’s current velocity and position:

a = −amaxâ, â =
(1− λ)v + λx

|(1− λ)v + λx|
, λ ∈ [0, 1]. (3.1)

Note the magnitude of the acceleration remains at its maximum, and here â has been

defined as the unit vector pointing opposite to the acceleration so the first equation

in (3.1) is similar to (2.1). The parameter λ determines how much weight we give to

8 Edwards et al.

opposing the velocity (the first term) versus driving the robot to the origin (the second

term).

x(t)

v(t)

x

y

Figure 3.2. Shaded region: allowable â directions with λ ∈ [0, 1].

Mathematically, by taking λ ∈ [0, 1], we are forcing â to be a convex combination of x

and v. Physically, â must lie in a direction between v and x (see Fig. 3.2). That choice

will come back to haunt us later.

The approach in Sec. 3.1 is equivalent to taking λ = 1 in (3.1). From (2.8) we know

that problems with that approach occur when r gets small, as indicated at the right of

Fig. 3.1. For small r, it becomes more important to reduce the speed than to reduce r.

But this is exactly what (3.1) prescribes: as r gets small, for any λ ̸= 1 the component

of â reducing speed will dominate the component reducing distance.

0 50 100 150 200 250 300 350
x

0

100

200

300

400

500

600

y

Path with = 0.55

0 20 40 60 80 100 120 140 160
t (s)

10 15

10 12

10 9

10 6

10 3

100

103
Radius and speed vs. t

r
v

Figure 3.3. Left: Robot path using (3.1) with λ = 0.55. Right: Comparing the sizes of r

and v for various times.

This is illustrated in Fig. 3.3, which uses the same design as Fig. 3.1. The algorithm

Finding the Limits of Machine Learning in Optimization 9

guides the robot to the origin, as both the radius and speed go to zero. Moreover, the

goals are achieved in two stages. First, the robot proceeds at maximum velocity to the

origin, roughly in the first 160 s. Then once r gets small, the speed quickly reduces to

zero. This illustrates the “switching” nature of (3.1) for moderate and small r.

Once the initial transients decay away, the robot’s trajectory in Fig. 3.3 is nearly radial.

But in that case x and v are almost parallel, and the shaded region in Fig. 3.2 collapses.

Hence along any near-radial path, the restriction on λ in (3.1) is essentially meaningless,

as there is not really a one-parameter family of â at all.

0 20 40 60 80 100 120 140 160
t (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Al
ig

nm
en

t

Alignment vs. t

Figure 3.4. Alignment of x and v vectors.

In order to quantify this shortcoming, we compute the scalar projection

α =
x · v
|x||v|

, (3.2)

which we call the alignment. In Fig. 3.4 we show α vs. t for the path shown in Fig. 3.3.

Initially the vectors are not perfectly aligned due to the random assignment of v0 and

x0. Then for most of the run, α ≈ −1, indicating that v ≈ −x, which corresponds to

a radial trajectory. Then near the end of the run, α quickly switches to +1, so v ≈ x,

which corresponds to the robot overshooting the origin. The vectors remain in nearly

that state until the acceleration slows the robot down.

Given that this algorithm achieves the robot’s goal, we must refine it in order to

minimize the travel time. Therefore, we investigate the time it takes to get to the origin

for various λ, which we interpret as a control parameter. With λ = 1, the algorithm does

not converge before the code ends, as discussed above. At the other extreme (λ = 0), the

code does not converge, either. In that case, the sole function of the acceleration is to

reduce the velocity. Hence the radius does not change that much (see Fig. 3.5). Therefore,

we expect that there is some λ∗ ∈ (0, 1) that minimizes the time to the origin.

10 Edwards et al.

0 100 200 300 400 500 600
x

80

60

40

20

0

y
Path with = 0.0

Figure 3.5. Result using (3.1) with λ = 0.

With a parameter λ that the algorithm can vary, we must then address the following

questions:

(1) What set of points should be used for λ? A continuous interval, or a discrete set?

(2) How should values of λ be sampled? Using some probability distribution from

the interval/set? With the same sampling, or should the sampling depend on the

current position and velocity of the robot?

(3) How should the effectiveness of the algorithm be measured?

(4) How often should the optimization occur?

In Secs. 3 and 4, we use a set of either ten or twenty different values for λ, ignoring

the pathological cases 0 and 1. We sample all of the values of λ, rather than taking some

smaller set at random. To compare performance among various initial conditions, we

calculate the performance factor p as follows:

p =
Ndt

r0/vmax
=

robot transit time

minimal transit time if α = 1
, (3.3)

where N is the number of time steps to completion. Thus lower values of p are better,

and p has a lower bound of 1.

We consider two possible alternatives for question #4, as outlined in the next two

subsections.

3.3 Global Search

In the first approach, given some initial state, we simulate the trajectories for various

values of λ, which we require to be constant for the entire run. We compare the perfor-

Finding the Limits of Machine Learning in Optimization 11

mance factors of the various λ to find the optimal value λ∗. We then instruct the robot

to use that value in (3.1) for the entire run. We refer to this as the global search method.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.00

1.05

1.10

1.15

1.20

1.25

Pe
rfo

rm
an

ce
 fa

ct
or

Performance factor for 10 initial conditions

Figure 3.6. Comparing performance factors for different values of λ using (3.1).

Figure 3.6 show the results of this approach for ten different sets of initial conditions,

each illustrated by a different color. In the worst cases, the transit time is only about

30% more than the optimal value, while for the best λ values, the transit time is only

a few percent above optimal. (This is consistent with the right of Fig. 3.3, which shows

v = vmax for the vast majority of the transit time.) Moreover, the graph suggests a single

value of λ∗ may be near-optimal for any initial state of the robot.

Most of the robot’s trajectory is nearly radial (and hence insensitive to λ). Hence

differing λ affects only the transient decay at the beginning. The relative brevity of the

decay causes variations in p with λ to be minimal, and thus the performance factor in

Fig. 3.6 is relatively constant for moderate λ.

This code gives a method by which an optimal parameter λ∗(x0,v0) can be determined

for any initial configuration. However, the typical robot does not have the onboard com-

putational power to execute the code efficiently. Therefore, to improve performance, as a

preprocessing step we could construct a lookup table of λ∗ for a series of initial conditions

(x0,v0). Then we could proceed in one of two different ways:

(1) Given (x0,v0), use linear interpolation among the entries in the lookup table

(scipy.interpolate.griddata) to compute λ∗, then use that value for the entire

run to get to the origin.

(2) Use the process in #1 to determine the acceleration for some time interval [0, t∗],

then repeat the lookup process to find λ∗ for the “new starting point” (x(t∗),v(t∗)).

Repeat as needed until the origin is reached.

The lookup table approach has the following drawbacks:

12 Edwards et al.

• The table would quickly become lengthy. Entries for every 50 m in x and fifty points

in v space would produce 21× 21× 50 = 22,050 entries in the lookup table. However,

terabytes of storage could be devoted to this purpose since the robot is performing

only an interpolation, so we should be able to get much finer coverage in the lookup

table.

• Given the shape of the curves in Fig. 3.6, the entries in the lookup table for λ∗ may

differ only slightly (or not at all, depending on how many values you sampled). So

the computational effort may not be worth it if a single value (λ = 0.55, say) would

provide reasonable results for any initial condition.

• This approach would be best only for the simplest problem we were given: an empty

room with no obstacles. Any change in the configuration of the room would require

computation of a new table.

3.4 Local Search

Rather than performing a large preprocessing step in order to create a lookup table, it

may be more efficient to have the robot perform multiple optimizations on its travels,

making course corrections based upon the results. Though these computations would

necessarily have to be of smaller size, this procedure has the advantage that it would be

able to accommodate changes in the features of the room (obstacles, etc.—see Sec. 4).

We outline a very general optimization procedure:

(1) Construct a function F (x(t),v(t);λ) to be optimized.

(2) At some time t, calculate F for various values of λ, and determine the optimal

value λ∗.

(3) For some interval [t, t+ t∗], accelerate the robot according to (3.1) using λ∗.

(4) Set t = t+ t∗ and repeat steps #2 and #3 until the robot reaches the origin.

Some discussion of step (3) is appropriate. In order to minimize computational cost,

we would like t∗ to be larger than dt.

Since t∗ is less than the entire transit time, the optimization outlined above should be

quick. (We were not able to do a thorough comparison of runtimes at the workshop.)

The algorithm described in this section is slightly different from the algorithm previ-

ously tried by DEKA, where the robot accumulated reward over each time step. (We will

return to such an accumulated reward approach in Sec. 5.) In the current formulation,

the function is optimized at each interval, and previous results are discarded.

As a first choice for F , we take distance to the origin after the interval in which the

acceleration is applied, so we minimize

F (x(t);λ) = r(t+ t∗). (3.4)

Starting with an arbitrary (x0,v0), we perform the algorithm described above, comparing

ten values of λ ∈ (0, 1). We take t∗ = 10 s, dt = 1 s, using the parameters in the Appendix.

For reasons that will become clear later, we do not require that F be monotone decreasing

from iteration to iteration—we simply choose λ∗ to minimize F on the interval given in

(3.4).

Finding the Limits of Machine Learning in Optimization 13

500 400 300 200 100 0
x

400

300

200

100

0

y

Path, F=(4.1), p=1.18

0 25 50 75 100 125 150 175
t (s)

10 1

100

101

102

103

F

F vs. t

Figure 3.7. Left: Robot path using (3.4). Right: Value of objective function.

A typical trajectory resulting from using (3.4) is shown at left in Fig. 3.7. Though the

trajectory converges to the origin, the performance factor (listed in the figure title) is

worse than that for the global search. This is consistent with our intuition that solving the

global problem will yield a lower minimum time than solving a series of local problems.

At right of Fig. 3.7 we show the evolution of F . Though not clear from the semilog plot,

F decays linearly for the bulk of the evolution as the robot takes the radial path. The

rise in F at the right of the graph corresponds to the robot overshooting the origin, as

seen in the previous section. The robot then decelerates back to the origin with velocity

closer to zero.

Since (3.4) does not depend on the velocity, the resulting accelerations would be similar

to using (3.1) with λ = 1, which we know does a poor job stopping the robot. To reduce

the overshoot phenomenon, we should penalize high velocities near the origin to force the

robot to stop more quickly. Hence we replace (3.4) with the following piecewise function:

F (x(t),v(t);λ) =

{
r(t+ t∗), r > rs,

v(t+ t∗), r < rs.
(3.5)

In other words, we reduce the radius until we have satisfied the rs bound, then switch

to minimizing the velocity instead. This sequential process was achieved organically in

the original algorithm, as shown at the right of Fig. 3.3. The results from using (3.5) are

shown at left in Fig. 3.8. Here the performance factor is somewhat improved from Fig.

3.7.

It may seem artificial to switch from minimizing the radius to minimizing the velocity.

One can include both terms, but at some point the dependence of F on v must switch

from encouraging high speed to discouraging it. A very simple possibility is listed below:

F (x(t),v(t);λ) =

{
r(t+ t∗) + [v(t+ t∗)]

−1, r > rs,

r(t+ t∗) + v(t+ t∗), r < rs.
(3.6)

In other words, when the robot is outside the stopping circle, we want the speed to be

large. When the robot is inside the stopping circle, we want the speed to be small. (Ob-

viously the coefficients and exponents of these terms can be varied to optimize results.)

14 Edwards et al.

500 400 300 200 100 0
x

400

300

200

100

0

y

Path, F=(4.2), p=1.16

0 25 50 75 100 125 150 175
t (s)

100

101

102

F

F vs. t

Figure 3.8. Left: Robot path using (3.5). Right: Value of objective function.

500 400 300 200 100 0
x

400

300

200

100

0

y

Path, F=(4.3), p=1.16

0 25 50 75 100 125 150 175
t (s)

101

102

F

F vs. t

Figure 3.9. Left: Robot path using (3.6). Right: Value of objective function.

The results from using (3.6) are shown in Fig. 3.9, which is virtually indistinguishable

from Fig. 3.8. This is because outside the stopping circle, the speed is typically always at

vmax anyway, so the v−1 term in (3.6) does not affect anything. And inside the stopping

circle, the r term is typically smaller than the v term, so there is little difference between

(3.6) and (3.5) in that case, either.

4 Including Obstacles

The great advantage of the local search outlined in Sec. 3.4 is that it can adjust to

topographical changes on the fly. For instance, if there is some sort of wall or other

obstacle between the initial condition and the origin, terms can be added to F to penalize

colliding with them. Waypoints are often manually created to help the robot navigate

around such obstacles, but including the effect of obstacles into F should reduce the need

to do so. This both saves time and makes the robot’s behavior more robust.

As a particular case, consider the case of a wall occupying (x, 200), x > −100 (see

Fig. 4.1). We examine a wall at first rather than a post, chair, or similar object for

Finding the Limits of Machine Learning in Optimization 15

two reasons. First, it poses a more difficult challenge to the robot, since the robot can

avoid it by moving in only one direction. Second, the objective function is somewhat

nonstandard.

In particular, we wish to penalize the robot whenever y → −200, as long as x > −100.

(Otherwise, the robot is the region beyond the wall and can traverse y = −200 without

difficulty.) The penalty should increase as y gets closer to −200, and become infinite if

the robot actually strikes the wall. Hence we posit a penalty term of the form[
(x+ 100)+

|y + 200|

]β
, (x+ 100)+ = max{0, x+ 100}, β > 0. (4.1)

As the more complicated cost function (3.6) did not improve results, we use the piece-

wise form in (3.5) augmented by (4.1):

F (x(t),v(t);λ) =

[
(x+ 100)+

|y + 200|

]β
+

{
r(t+ t∗), r > rs,

v(t+ t∗), r < rs.
(4.2)

Note that for x < −100, the barrier term vanishes and we are just left with (3.6), which

will then direct the robot to the origin along a radial path.

Using the standard approach outlined in Sec. 3.2 did not work. By the time the robot

reached the wall, its velocity and displacement were aligned, so using the convex combi-

nation (3.1) provided no way for the robot to divert from the radial path and avoid the

barrier.

Therefore, when the vectors are in alignment, we introduce a kludge (which we will

systematize in the next section). When |α| > 0.9, we replace the vector â in (3.1) with

â =
(1− λ)z+ λx

|(1− λ)z+ λx|
, zTv = 0. (4.3)

With z replacing v, there are now two (nearly) orthogonal directions in (4.3). Hence by

varying λ, we can obtain a wide range of motion. Since it’s possible the robot may need

to reverse course (particularly in more complicated situations like mazes), we widen the

range of allowable λ values to [−1, 2], again sampling ten values over which to optimize.

To demonstrate the efficacy of the algorithm, we chose an x0 in the first quadrant.

The trajectory resulting from (4.2) (with β = 2) and (4.3) is shown at left in Fig. 4.1.

In contrast to the previous graphs, the iterates are now shown only at each t∗. With the

addition of the vector z, the robot is able to bypass the obstacle, though not optimally:

the r term in F forces the robot to follow a radial path until its proximity to the barrier

causes700 it to veer to the left.

At right of Fig. 4.1 we show the evolution of F . Though not clear from the semilog

plot, F decays linearly initially until the robot approaches the barrier. Then F remains

roughly constant as the robot navigates around the barrier. In this region, precious time

is lost as the robot oscillates back and forth to balance the r and barrier portions of F .

Then F returns to a linear descent once it turns the corner, only to oscillate as the robot

slows down near the target.

Note that compared to Fig. 3.8, the robot takes much longer to come to a stop. For

small r, the velocity portion of (4.2) is small enough that it is comparable to the barrier

portion, thus confusing the robot about what to do. Therefore, in future work it may

16 Edwards et al.

100 50 0 50 100 150
x

0

100

200

300

400

500

y

Path with Barrier, p=3.45, Exponent = 2

0 100 200 300 400
t (s)

10 2

10 1

100

101

102

F

F vs. t, Exponent = 2

Figure 4.1. Left: Robot path using (4.2) (with β = 2) and (4.3). Wall is shown as orange

line. Right: Value of objective function.

be more useful to keep the barrier term only for r > rs, since the barrier would never

impinge upon the target.

100 50 0 50 100 150
x

0

100

200

300

400

500

y

Path with Barrier, p=2.77, Exponent = 10

Figure 4.2. Left: Robot path using (4.2) (with β = 10) and (4.3). Right: Value of objective

function.

At first the trajectory in Fig. 4.1 is radial, unnecessarily lengthening the robot’s path.

Therefore, an increase in the barrier term in F is needed, which we achieve by increasing

β in (4.1) from 2 to 10: the results are shown in Fig. 4.2. The trajectory length is reduced,

as indicated by the reduced value of p. (Note that the lower bound for the performance

factor is no longer 1 due to the obstacle.) One can also discern a “stairstep” pattern in

the trajectory once it starts to avoid the barrier. This is most probably a function of the

coarse set of λ values the code searches.

Finding the Limits of Machine Learning in Optimization 17

4.1 Other Approaches to Obstacles

Increasing the exponent of the barrier term forces the penalty from the barrier to be

much larger than the contribution from the radius. Hence the robot prioritizes maneu-

vering around the obstacle, switching to radius reduction only after the obstacle has been

avoided, as shown in Fig. 4.2. To shorten the distance even further, it may be useful to

take the limit as the exponent gets large, which is just an exponential:

exp

(
(x+ 100)+

|y + 200|

)
,

similar to the forms in Sec. 5.2. Time ran out at the workshop before we could explore

this idea more completely.

For other shapes, the basic principle is the same: make the cost function infinite at the

barrier. So typical forms would be

|r− ro|−β , β > 0; exp

(
1

|r− ro|

)
,

where ro describes the boundary of the obstacle. In addition, the local optimization

procedure allows the robot to adapt to changes in its environment, such as new or moving

obstacles. As long as the robot has some sensor capability, it can estimate ro at some

time t. Then with adequate onboard computing power, it can compute F at that time

and map a path around it.

4.2 A More Robust Approach

The fact that x and v become aligned severely limits the choice of accelerations the

robot can impose using (3.1). The kludge (4.3) is inelegant and unmotivated, but we

may implement a more robust approach by returning to first principles. Given the known

magnitude amax of the acceleration, we may choose only its direction â, which we may

write as

â = (cos(θ + ϕ), sin(θ + ϕ)), ϕ ∈ [0, 2π], (4.4)

where ϕ measures the change in orientation from the x vector.

With this change, we can rerun our obstacle code from the previous section, optimizing

over ϕ instead of λ. We ensure that two of the sampled values are ϕ = 0 and ϕ = π,

which correspond to â being aligned with x. (We could also use (4.4) for our unobstructed

codes, but did not have time to do so at the workshop.)

The trajectory resulting from (4.4) is shown at left in Fig. 4.3. The curve looks similar

in shape to Fig. 4.1. Near the wall, the iterates are more widely spaced, indicating that

the robot is going faster in this part of the trajectory. It approaches the origin for the

first time at around t = 150 s, which is when F first reaches a steady state at the right

of Fig. 4.3. This is about half the time shown in Fig. 4.1, but all of the oscillations in

the F graph after that represent the robot trying to slow itself down, which takes much

longer than the corresponding time in Fig. 4.1. Hence the overall p value is abysmal.

This may be remedied using a hybrid approach. Away from the origin, (4.4) seems to

do a better job of lowering the travel time. But near the origin, when velocity reduction

18 Edwards et al.

100 50 0 50 100 150
x

0

100

200

300

400

500

y

Path with Barrier, p=14.70, Exponent = 2

0 250 500 750 1000 1250 1500 1750
t (s)

100

F

F vs. t, Exponent = 2

Figure 4.3. Left: Robot path using (4.2) (with β = 2) and (4.4). Right: Value of objective

function.

Figure 5.1. A schematic of basis reinforcement learning.

dominates, aligning a with v is critical. Hence in that region, we should switch to a

control using (3.1). Time ran out before we were able to implement those ideas.

5 Reinforcement Learning

There have been some machine learning studies of this problem (cf. [1]).

Reinforcement Learning (RL) is a class of Machine Learning, which is about learning

to make a good sequence of decisions. This means that the algorithm will map the

situations into actions. Figure 5.1 shows a diagram to explain the basic structure of

a reinforcement learning mechanism. The agent is a goal-seeking object that is trying

to observe some parameters from the given environment and takes an action given the

current state of parameters. The action will change the current environment and based on

the change in the situation, the agent gets a reward or penalty. The goal of the algorithm

is to maximize the reward over many iterations. Hence, in order to incentivize desired

behavior, an efficient and effective reward function is necessary.

Finding the Limits of Machine Learning in Optimization 19

5.1 Current Reward Model

To describe our reward models, we use the subscript i to reflect the value of any quantity

at time step i. The current reward model rewards the agent based on its distance to the

origin and its relative location within a reward radius, as follows:

Fi =

(
Rreward

Rout
+Rreward − xi

)
, (5.1)

where Rreward is the reward radius and Rout is the boundary radius. Here Fi is the

reward at step i. Note that we use the same letter as in previous sections for the penalty

(cost) function, but they can easily be related with a minus sign. Also, in contrast to the

previous sections, where the cost was evaluated at each time step and then discarded, in

this section we accumulate the total reward W over time, so

Wi =

i∑
k=1

Fk. (5.2)

So as the agent position closes in on the origin, the total accumulated reward increases.

As well as this reward, there is an additional penalty which penalizes the agent exiting the

boundary radius. The problem with this reward function is that there is no mechanism

which incentivizes the agent to reach the origin with as few time steps as possible. To

account for this missing time incentive, we have developed three systems to reward desired

agent behavior.

5.2 Proposed Models

In the first model, the reward function uses the distance at current and previous step

to determine whether the agent has stepped closer to the origin or away from the ori-

gin. Therefore, the reward is a function of difference between the previous and current

positions:

Fi = C(ri−1 − ri).

As shown in Fig. 5.2, the green line segments show positive reward because of the step

towards the origin. The red line segment shows the penalty for stepping away from the

origin. The outer domain and inner domain radii are denoted by Rout and Rin respec-

tively. The agent gets maximum penalty if the current position is outside Rout and gets

maximum reward if inside Rin.

The second model is similar to the first model but with the reward as a function of

area difference. Therefore it is a function of the distance squared:

Fi = C(Ai−1 −Ai) = C ′(r2i−1 − r2i).

Fig. 5.3 shows the schematic of this reward mechanism. The benefit of using this function

is it increases the reward by square of the distance, which makes the agent learn to take

larger steps, eventually getting to the origin in less time than the first model.

The third model utilizes an exponential scoring system. We introduce the maximum

time limit T and the time step size dt. We introduce four different components to the

20 Edwards et al.

Figure 5.2. Reward mechanism using step direction.

Figure 5.3. Reward mechanism using area difference.

reward, characterized by coefficients b. At each step, we reward the agent if it travels

closer to the origin by

b
(1− ri

ri−1
)(1− i

T/dt
)

1

and

b
(1− θi

π/2
)(1− i

T/dt
)

2 .

This rewards the agent for traveling directly to the origin relative to its previous position.

As well, once the agent crosses the maximum distance required to slow to a stop at the

Finding the Limits of Machine Learning in Optimization 21

origin, we give an additional reward of

b
(1− vi

vmax
)(1− i

T/dt
)

3 .

Finally, if the agent arrives at the origin, we multiply the total accumulated reward Wi

by a bonus time multiplier:

b
(1− i

T/dt
)

4 Wi.

This bonus multiplier, as well as the time terms in the rewards give the agent incentive to

complete the iteration as quickly as possible. This reward system should prevent needless

wandering by the agent. Unfortunately due to time constraints, we were unable to test

this reward system for a significant period of time.

6 Analytical Approaches

In this section, we present several analytical approaches to the posed problem. First, we

relax the maximal velocity constraint and the final velocity requirement, and consider

the travel time-minimizing problem with only a maximal acceleration. There, we find

that the robot should simply travel with maximal acceleration to hit the origin. Then,

we consider the problem in which the final position and velocity must be the origin

and zero, respectively, under the usual maximal acceleration constraint but without the

maximal velocity one.

6.1 Analytical Solution

6.1.1 Assuming only maximum acceleration

We are given an initial position x0 and an initial velocity v0. Assume we have any curve

x(t) with these initial conditions and a time T such that x(T) = 0. We then have∫ T

0

v(t) dt = −x0.

Let v(t) = v0 +w(t). Then ∫ T

0

w(t) dt = −Tv0 − x0 ≡ X. (6.1)

Now let u(t) = at where the vector a is chosen so that∫ T

0

u(t) dt = X, (6.2)

i.e.,

a =
2X

T 2
.

Observe that if |a| > max
t

|ẇ(t)| then

ẇ(t) · a
|a|

< |a|.

22 Edwards et al.

This implies that w(t) · a < u(t) · a for all positive times, which then implies

d

dt

(∫ t

0

w(s) ds ·X
)

<
d

dt

(∫ t

0

u(s) ds ·X
)
,

which is a contradiction since the two parenthetical expressions are equal at time T .

What the above shows is that any solution x(t) can be replaced by a solution with

constant acceleration without changing the time T it takes to reach the origin and without

increasing the maximum acceleration. Thus to find a minimal T , we can restrict to

solutions with constant acceleration. Therefore we consider

a =
2X

T 2

to be a function of T and seek the smallest T for which

|a| = amax.

This is an algebra problem.

6.1.2 Assuming maximum acceleration and reaching the origin with zero velocity

First, we provide a reasonable ansatz for the expression of the solution. As we saw above,

for a given x(t) over [0, T], (6.1) must hold. Observe now, however, that there is the

added constraint w(T) = −v0, forcing the final velocity to zero. In this case it is not

possible in general to take

w(t) = at

as we did before. Instead let us write

w(t) = f(t)X+ g(t)v0. (6.3)

Observe that f = 2t/T 2 and g ≡ 0 gives us the solution from Sec. 6.1.1. Also, the

condition of reaching the origin at time T implies∫ T

0

f(t) dt = 1,

∫ T

0

g(t) dt = 0,

and having zero velocity at time T implies f(T) = 0, g(T) = −1. These conditions must

hold for any candidate solution x(t).

For fixed T , there are unique f and g satisfying these conditions belonging to the

space of continuous, piecewise linear functions over [0, T], and having minimal slope

within this subspace. By arguments similar to those in the first section, we can always

replace a solution with these functions without increasing the maximum slopes of each

function separately. Below is an example of a path generated using this approach.

If we calculate

ẇ = ḟ(t)X+ ġ(t)v0, (6.4)

we find that

|ẇ|2 = ḟ(t)2|X|2 + f(t)g(t)X · v0 + ġ(t)2|v0|2. (6.5)

For future work, we will investigate the class of functions to which f and g belong by

first assuming X · v0 = 0 as a base case (so that the middle term in (6.5) drops out).

Finding the Limits of Machine Learning in Optimization 23

Figure 6.1. Path using algorithm in Sec. 6.1.2.

6.2 Using a Switching Function

Suppose that the velocity and acceleration of the robot are both limited, and suppose

that x∗(t) is an optimal (that is, a quickest) trajectory to the origin (any space dimension

is allowed here). We shall show that there is no time interval such that the velocity and

acceleration of x∗(t) are continuous and under both the speed and acceleration limits.

Thus if an optimal x∗(t) is piecewise smooth, then on each of the smooth segments x∗(t)

moves at either the limiting top velocity, or top acceleration, or both.

The proof is by contradiction. Assume that there is an interval, which by a shift and

rescaling can be taken as an interval I = [0, 1], such that |ẋ∗(t)| < vmax, |ẍ∗(t)| < amax

on I. Since velocity and acceleration are continuous, there is an ε > 0 such that

|ẋ∗(t)| < vmax − ε, |ẍ∗(t)| < amax − ε, t ∈ I. (6.6)

We claim that the robot can travel on the same trajectory a little faster and still satisfy

(6.6). We can show this by introducing a parametrization t(s) for time, where

0 < s < S < 1, t(0+) = 0, t(S−) = 1. (6.7a)

Moreover, if we introduce the constraints

lim
s→0+

dt

ds
= lim

s→S−

dt

ds
= 1, lim

s→0+

d2t

ds2
= lim

s→S−

d2t

ds2
= 0, (6.7b)

then x∗(t(s)), as a function of the new parameter s, still satisfies (6.6). If we can satisfy

(6.7) with S < 1, it takes x∗(t(s)) less time to smoothly traverse the same path as before,

and so the original x∗(t) cannot be optimal. Details are given below; they are not too

illuminating, and basically indicate to travel on the same path, but a bit faster, yet not

too fast to hit the velocity or acceleration bounds.

To achieve our goal, let φ(s) be a smooth switching step function,

φ(s) =


0, s ≤ 0,

1

2

[
1 + tanh

(
2(s− 1/2)

s(1− s)

)]
, 0 < s < 1,

1, s ≥ 1.

(6.8)

24 Edwards et al.

All the derivatives of the switching function φ are zero at the endpoints s = 0, s = 1,

and the first and second derivatives of it are bounded, so there exists an M such that

|φ̇| < M , |φ̈| < M , 0 ≤ s ≤ 1.

Let us use this switching function to switch smoothly from t(s) = s (corresponding to

the original velocity) to the new parametrization

t(s) = ks, k = (1 + δ), 0 < δ < 1, (6.9)

which corresponds to a faster velocity. We impose the switching over some interval s ∈
[0, S1], so we have

t(s) = s

[
1− φ

(
s

S1

)]
+ ksφ

(
s

S1

)
, 0 < s ≤ S1. (6.10a)

We travel at the higher velocity in some interval s ∈ [S1, S2], and hence we require the

parametrization (6.9) to hold there. Then we use the switching function again to switch

smoothly from t(s) = ks back to t(s) = s over the interval [S2, S]:

t(s) = kS2+k(s−S2)

[
1− φ

(
s− S2

S − S2

)]
+(s−S2)φ

(
s− S2

S − S2

)
, S2 < s < S. (6.10b)

Then t(s) is smooth, t(0+) = 0, t(S−) = S + δS2, and (6.7b) is satisfied, provided

S + δS2 = 1, since all derivatives of the switching function are zero at the endpoints.

For specificity, we let

S1 =
S

4
, S2 =

3S

4
, S =

1

1 + 3δ/4
;

the last is to ensure that t(S−) = 1. Since 0 < δ < 1, we have that

4

7
< S =

1

1 + 3δ/4
< 1, (6.11a)

which implies that

1

S1
,

1

S − S2
< 7, S1, S2, S < 1. (6.11b)

Moreover, since derivatives of the switching function are bounded, and (6.11) holds, there

exists an M2 such that ∣∣∣∣ dtds
∣∣∣∣ < 1 +M2δ,

∣∣∣∣ d2tds2

∣∣∣∣ < M2δ. (6.12)

Since by the Chain Rule

dx∗

ds
=

dx∗

dt

dt

ds
,

d2x∗

ds2
=

d2x∗

dt2

(
dt

ds

)2

+
dx∗

dt

d2t

ds2
, (6.13)

it follows from (6.6) and (6.12) that we can choose δ small enough so that (6.6) is still

satisfied, yet it takes less time, namely

1

1 + 3δ/4
< 1,

to travel on the same path as before.

Finding the Limits of Machine Learning in Optimization 25

6.3 Hamiltonian Approach

In this section, we set up the Hamiltonian for the problem with constraints on both

acceleration and velocity. Let x(t) be the position of the robot at time t. We wish to

land at the origin with zero velocity while also minimizing travel time by controlling the

acceleration a(t). This can be posed as a time-optimal control problem:

min
a∈U

∫ T

0

dt,

where U is an admissible class of functions. The above must be solved subject to

ẋ = v; x (0) = x0, x (T) = 0, v (0) = v0, v (T) = 0.

We must also specify the relationship between v and a. Though we could incorporate

(1.1) in this circumstance, for our purposes we use the same forced constraint as before:

v̇ = a; |a(t)| ≤ amax, |v(t)| ≤ vmax. (6.14)

Note that the constraint on a is device-driven, while the constraint on v is artificial.

Incorporating the inequality constraint on velocity and acceleration, we define the

Hamiltonian

H
(
x,v,a, λ⃗1, λ⃗2, µ

)
= 1 + λ⃗T

1 v + λ⃗T
2 a+

µ1

2
(|v| − vmax)

2
+

µ2

2
(|a| − amax)

2
, (6.15)

where the λ⃗i are Lagrange multipliers of length equal to the dimension of the problem

and the µi ≥ 0 are scalar Lagrange multiplier that enforce the inequality constraints

in (6.14). Note that if µ1 > 0, we must have |v| = vmax which means we are on the

boundary of the velocity constraint (saturation). If µ1 = 0, the velocity is strictly less

than the constraint, which is mathematically equivalent to the problem without a velocity

constraint at all. We may use similar reasoning for the constraint on |a|.
From here on, we solve the problem in one dimension, i.e., the Lagrange multipliers

are scalars. Before we start, we note that having µ2 = λ2 will yield the same optimal

solution. To see this, we minimize H pointwise in time first. When µ1 = 0 (when the

velocity is strictly less than the constraint), we find that the pointwise optimizer ã is

given by

ã(x, v, λ1, λ2) =

{
−amaxsgn(λ2), λ2 ̸= 0,

[−amax, amax] , λ2 = 0.

Clearly, when µ1 > 0, in order to minimize the Hamiltonian, we must also maintain the

velocity at vmax. This implies that we should solve the problem with µ1 = 0 and saturate

the velocity constraint whenever it is reached. We also point out that when λ2 ̸= 0, we

must have a = ±amax, which automatically kills the acceleration constraint in (6.15)

(and helps minimize H), thus justifying the choice that µ2 = λ2.

Denote a∗(t) as the optimal control. At a = a∗, the costate equations are

λ̇1(t) = −∂H
∂x

= 0,

λ̇2(t) = −∂H
∂v

= −λ1(t).

26 Edwards et al.

This implies

λ1(t) = λ0
1, λ2(t) = −λ0

1t+ C.

We discuss several possibilities of the λi’s. First, we know from optimal control theory

that if the Hamiltonian does not depend on time explicitly, then H (x, v, a∗, λ1, λ2, µ) = 0

(evaluated at optimum a∗). This implies that λ1 and λ2 are both never zero, or otherwise

H (x, v, a∗, λ1, λ2, µ) = 1 which is a contradiction. Therefore, both costates are never zero.

Altogether, we must have a∗(t) = ±amax, evident from the fact that λ2 is a linear

function in time, which implies that it changes sign only once. Using the acceleration, we

then have

x(t) = ±amax

2
t2 + v0t+ x0, (6.16a)

v(t) = ±amaxt+ v0. (6.16b)

We emphasize that there are two particular curves represented by (6.16) that pass

through the origin of the phase plane, i.e., (x, v) = (0, 0). They are important because

they are optimal paths that also satisfy the final condition, namely, zero velocity at the

origin (of position). We call these two curves switching curves. Once the position and

velocity of the robot satisfy the expression of the switching curves, the robot should

immediately travel according to them. To obtain their expressions, we first relate x(t)

and v(t),

x(t) = ± 1

2amax
v2(t) + x0 ∓

v20
2amax

. (6.17)

The switching curves then satisfy

x(t) = ± 1

2amax
v2(t) (6.18)

since they pass through (x, v) = (0, 0). This set of trajectories can be represented in an

x-v phase plane (see Fig. 6.2).

To incorporate the velocity constraint |v(t)| ≤ vmax, we simply place two horizontal

lines at v = ±vmax, respectively. We describe the optimal path of the robot as follows.

Starting with an initial position x0 and velocity v0, the robot travels on an optimal tra-

jectory within the velocity and acceleration constraints described by (6.17). It encounters

two mutually exclusive scenarios: 1) hits a switching curve (6.18) before obtaining max-

imal velocity or 2) accelerates to maximal velocity without hitting any of the switching

curves. In the former, the problem would be the same as if there is no maximal velocity

constraint (µ = 0); the robot goes on the switching curve and heads to origin, or in other

words, the control is bang-bang. In the latter, the robot will travel at maximal velocity

until it reaches a switching curve; this control is known as bang-off-bang since the robot

initially travels with a nonzero acceleration, releases the gas pedal and then steps on it

again. We note that it is possible that after reaching the maximal velocity, the robot

never visits a switching curve. This implies that there are certain initial conditions under

which there are no optimal solutions.

This 1D problem with both velocity and acceleration constraints is fully solved by

Fehér et al. [2], who considered a continuous-time double-integrator (i.e., second order)

Finding the Limits of Machine Learning in Optimization 27

x

v

v = vmax

v = −vmax

(a)

x

v

R

v = vmax

v = −vmax

(b)

Figure 6.2. (a) The phase plane: blue solid lines are the switching curves (6.18); red and

green dashed lines are optimal trajectories when the maximal velocity and acceleration

constraints are not violated; black dotted lines are the maximal velocity allowed.

(b) An example for x(t) < 0: red dashed line is one particular optimal trajectory within

the velocity and acceleration constraints following (6.17) with some initial position and

velocity. Robots (such as the lightgray shaded ball) traveling on the this curve encounter

a bang-off-bang control, that is, 1) (bang) accelerates (at amax in this case) until it hits

the maximal speed allowed vmax (black dotted), 2) (off) travels at this velocity until 3)

(bang) it reaches one of the switching curves (solid blue) and decelerates into the origin

(at −amax in this case).

system. The control function (acceleration) takes values {−amax, 0, amax}, under condi-

tions on position and velocity.

7 Conclusions and Further Research

7.1 Summary of Results

At first glance, the problem of guiding a robot with initial position x0 and velocity v0 to

a stop at the origin seems quite simple. However, upon further investigation, the prob-

lem turns out to be quite rich, and amenable to a variety of different solution techniques.

28 Edwards et al.

We considered computational optimization, reinforcement learning, and analytical ap-

proaches.

The variational approaches show that under certain specified conditions it is possible

to find an absolute minimizer. However, extending this approach to more complicated

problems, such as the presence of obstacles, may be difficult. For the computational op-

timization and reinforcement learning approaches, we can consider adjusting the reward

functions to account for obstructions. We speculate that the computational optimization

model will be easier and more cost efficient to implement than the reinforcement learning

model. However, an underlying assumption within the computational optimization model

is that the optimal action in the local environment is the optimal action for global envi-

ronment. The reinforcement learning model does not make this assumption and instead

focuses on the optimal sequence of actions for the global environment.

7.2 Further Research

With the limited time afforded to us during the workshop, we were unable to investigate

many ideas that may improve our results. Some of these have been outlined in the

individual sections above; we conclude by listing some other more general ideas.

All of the computational trajectories exhibit evidence of overshoot around the origin.

This may be due to the fact that we never change the magnitude of the acceleration. To

remedy this, we could try the following form:

|a| = min

{
amax,

v2

2r

}
, (7.1)

where the second term in (7.1) is motivated by a rearrangement of (2.4). There may still

be some problems due to the singular nature of the fraction near the origin; we did not

have time at the workshop to investigate (7.1) in detail.

When there were no obstacles, each trajectory quickly aligned v and x and approached

the origin on a radial path. It may be useful to create that as an objective, and cause

the acceleration to align the two vectors first before driving the robot to the origin.

Each of the methods were able to produce results that solved the problem. The local

optimization and machine learning methods rely upon the selection of an appropriate

function to be optimized. For future research, it would be beneficial to test the proposed

reward functions more rigorously with an eye toward improving them.

For the variational principles approach, an investigation of a hodograph transformation

[5, p. 182] may be useful. This is a transformation used in PDEs which switches the

dependent and independent variables. (Hence t would be come a dependent variable, and

might be easier to optimize.) This idea has yet to be pursued.

Nomenclature

Units are listed in terms of length (L) and time (T). Equation numbers where a variable

is first defined is listed, if appropriate.

A: area, units L2.
a: acceleration, units L/T 2.

Finding the Limits of Machine Learning in Optimization 29

a: magnitude of acceleration, units L/T 2 (2.1).
b: parameter in exponential cost function.
C: constant, variously defined.
F : cost or reward function.
f : function in definition of w (6.3).
g: function in definition of w (6.3).
H: Hamiltonian (6.15).
i: indexing variable for time step (5.1).
j: indexing variable for time step (5.2).
k: scaling factor for parametrization (6.9).
M : bound in switching function section.
N : number of iterations.
p: performance factor (3.3).
R: radial boundary in reward function, units L (5.1).
r̂: unit vector in the radial direction (2.5a).
r: distance of robot from origin, units L (2.1).
S: specific value of s (6.7).
s: paremetrization variable (6.7).
T : maximum time, units T .
t: time, units T (2.1).
U : space of feasible accelerations.
u: velocity with constant acceleration, units L/T (6.2).
v: velocity of robot, units L/T .
v: speed of robot, units L/T .
W : accumulated reward (5.2).
w: displacement of velocity from initial state, units L/T (6.1).
X: straight-line displacement, units L (6.1).
x: displacement of robot, units L.
x: Cartesian coordinate (4.1) or one-dimensional position of robot, units L.
y: Cartesian coordinate, units L (4.1).
z: kludged orthogonal direction (4.3).
α: alignment factor (3.2).
β: exponent in cost function (4.1).
δ: bound in switching section (6.9).
ε: used to establish bounds (6.6).
θ: angular coordinate (2.5a).
λ: parameter to adjust acceleration (3.1) or Lagrange multiplier (6.15).
µ: Lagrange multiplier (6.15).
ν: coefficient in friction law, units T−1 (1.1).
τ : time measured from start of deceleration, units T (2.2a).
ϕ: angle describing orientation of â (4.4).
φ(s): switching step function (6.8).

Other Notation

d: as a subscript, used to refer to the deceleration period (2.2a).
max: as a subscript, used to represent a maximum value.
o: as a subscript, used to represent the obstacle.
s: as a subscript, used to represent a stopping criterion.
0: as a sub- or superscript, refers to an initial condition.
∗: as a subscript, refers to an acceleration interval or optimal value.
:̇ used to indicate a derivative with respect to t (2.1).
:̂ used to indicate a unit vector (2.5a).
+: as a superscript, refers to a ramp function (4.1).
:̃ used to indicate a pointwise optimizer.

30 Edwards et al.

Acknowledgement

This work was supported in part by National Science Foundation grant DMS-2016095,

as well as the SIAM James Crowley Fund for Student Support. The authors thank the

reviewer for helpful suggestions which greatly improved the manuscript.

References

[1] Bozek, Pavol, Karavaev, Yury L, Ardentov, Andrey A, & Yefremov, Kirill S. (2020).

Neural network control of a wheeled mobile robot based on optimal trajectories. In-

ternational journal of advanced robotic systems, 17(2), 1–10.

[2] Fehér, Marek, Straka, Ondřej, & Šmı́dl, Václav. (2017). Constrained time-optimal

control of double-integrator system and its application in MPC. Journal of physics:

Conference series, 783, 012024.

[3] Thornton, S.T., & Marion, J.B. (2021). Classical dynamics of particles and systems.

Cengage Learning.

[4] Urone, P.P., Hinrichs, R., Dirks, K., & University, Rice. (2012). College physics.

OpenStax College, Rice University.

[5] Whitham, G.B. (2011). Linear and nonlinear waves. Pure and Applied Mathemat-

ics: A Wiley Series of Texts, Monographs and Tracts. Wiley.

Appendix A Parameter Values

For the device parameters, we were given

vmax = 4
m

s
, amax = 2

m

s2
. (A 1)

For the values of x0, we were given a bound of

xmax = 103 m. (A 2)

The prescribed termination tolerances are given by

rs = 1 m, vs = 10−2 m

s
, (A 3)

and we said the algorithm failed if it took more than

Nmax = 105 (A 4)

iterations.

For our time intervals, we used

dt = 0.01 s, t∗ = 1 s. (A 5)

	version2.pdf
	Introduction
	Governing Equations
	The One-Dimensional Problem
	Polar Coordinates

	Numerical Results, No Obstacles
	Radial Acceleration
	Convex Combination Approach
	Global Search
	Local Search

	Including Obstacles
	Other Approaches to Obstacles
	A More Robust Approach

	Reinforcement Learning
	Current Reward Model
	Proposed Models

	Analytical Approaches
	Analytical Solution
	Using a Switching Function
	Hamiltonian Approach

	Conclusions and Further Research
	Summary of Results
	Further Research

	Appendix A

