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Summary

To cool electronic components of spacecraft, engineers are considering

the use of heat pipes, which are sealed copper pipes containing an

annular copper wick saturated with water. Water vapor from the hot

end travels to the cold end, where it condenses in the wick and flows

back to the hot end.

In space, the cold end can freeze the water inside, which can cause two

modes of pipe failure. First, if water accumulates in the cold end, then

freezes, it can burst the pipe wall. Second, with the repeated expansion

of the freezing water, pores in the copper wick can enlarge, reducing

the speed of transport and hence the heat pipe’s effectiveness.

In this work we will examine both types of failures, with an eye to-

ward establishing tolerances below which we expect the wick to remain

functional.

† Corresponding author: dedwards@udel.edu
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Section 1: Introduction

Figure 1.1. Typical heat pipe with sintered wick [2].

It is imperative to cool electronic components of spacecraft in order to ensure their
continued performance. One possibility for cooling such components is the use of heat pipes,
which use the heat capacity of a working fluid to dissipate heat. In the case we analyze,
these devices consist of a copper pipe (sealed at both ends) with an annular sintered copper
wick inside (see Fig. 1.1), and contain water as the working fluid. Capillarity forces induced
by the porosity of the wick enhance the circulation of water in the pipe. The core of the
pipe is then set to near-vacuum.

Figure 1.2 shows a schematic. Liquid water at the hot end is vaporized, absorbing
heat. Given that the pipe is sealed, the water vapor travels to the other (cold) end, where
it condenses in the wick, which is adjacent to the cold environment of space. The water
then travels through the wick to the hot end, where the process repeats.

These designs have been used extensively in terrestrial applications (cooling computer
chips, etc.), but in those cases the cold end has not been held at temperatures which would
freeze the water inside. Therefore, care must be taken to ensure that the pipe will not fail
in such an environment. To do that, experimentalists run a series of freeze-thaw cycles to
determine whether the repeated freezing and thawing of the water inside will damage the
copper compoenents.

There are two modes of failure which we wish to investigate. In the first, water
accumulates in the cold end, then freezes. The resulting expansion of the liquid water is
enough to burst the pipe wall, and has been seen experimentally [3]. We call this wall
failure.
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Figure 1.2. Schematic of heat pipe. Grey region is wick; region outside is pipe wall, region
inside is evacuated core.

The sintered copper wick forms a porous medium with a small pore size, which en-
hances liquid transport from the cold end to the hot end. In the second type of failure,
water in the wick freezes and expands, deforming the porous media structure. With a
larger pore size, the speed of transport in the wick decreases, reducing the heat pipe’s
effectiveness. We call this wick failure.

In this work we will examine both types of failures, with an eye toward establishing
tolerances below which we expect the wick to remain functional.
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Section 2: Pipe Failure
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Figure 2.1. One-dimensional model of expansion. Top diagram: Tw0 = 20◦ C. Lower
diagram: Ti0 = 0◦ C. Dark grey: copper. Light grey: water. White: void space.

We begin by examining the case of pipe failure. We introduce a simple one-dimensional
model as shown in Fig. 2.1. We scale the width of the wick to be 1, and just consider the
proportion of each of the three components in the cross section.

At roughly room temperature (Tw0 = 20◦ C, where the subscript “w” refers to “wa-
ter”), the void fraction of the porous medium is given by φ (0 ≤ φ ≤ 1). Hence the
proportion of copper in the wick is given by 1− φ. Then the voids are filled with water to
some percentage f (called the charging factor), so the fraction of water in the cross-section
is given by φf .

Next, we bring the temperature of the pipe down to Ti0 = 0◦ C, where the subscript
“i” refers to “ice”. We choose this value since this is the where the density of water is
lowest, which corresponds to the largest expansion. The copper will contract by a factor
1 + α∆T , where α is the linear thermal expansion coefficient, and ∆T = Ti0 − Tw0. α is
roughly constant for a metal like copper. Note also that ∆T = −20◦ C < 0, so the metal
does indeed contract.

On the other hand, the water will expand. The coefficient of thermal expansion for
water is not constant, so we use specific values of the density ρ of water. In particular, we
have that the volume of water will expand by the following volumetric expansion factor:

Vr =
ρi

ρw
. (2.1)

We note that Vr > 1 since the density of water is higher at room temperature than at
freezing. To convert this to a linear expansion factor, we simply take the cube root. Hence
we have that at freezing, the amount of space taken up by the copper and the water is
given by

(1− φ)(1 + α∆T )︸ ︷︷ ︸
copper

+φfV 1/3
r︸ ︷︷ ︸

water

.
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We say that the pipe has failed if the above expression is greater than 1. Hence the ice has
expanded enough that it will burst the pipe wall, or that it will expand into the inner core.
Once in the core, the water can pool during thaw cycles, eventually freezing and bursting
the pipe during a later cycle.

Typically φ is determined for a particular wick, and f is at the discretion of the
manufacturer. Therefore, we construct an upper bound for f given a particular φ:

(1− φ)(1 + α∆T ) + φfV 1/3
r ≤ 1

φfV 1/3
r ≤ 1− (1− φ)(1 + α∆T )

f ≤ −α∆T + φ(1 + α∆T )

φV
1/3
r

≤ 1 + α∆T

V
1/3
r

− α∆T

φV
1/3
r

. (2.2)

If φ = 1 and there is no copper, the maximum loading percentage is V
−1/3
r . This corre-

sponds to the percentage of water that will expand to fill the entire volume upon freezing.
If φ = 0 and there is no water, there is no maximum loading percentage.

Figure 2.2. Plot of (2.2).

A graph of (2.2) for the values in Appendix A is given in Fig. 2.2; the upper limit for
the charging factor is always over 97%. How then to explain the failure in [3]? Recall that
in terrestrial applications, freezing is not an issue, so the charging factor can be 1, or even
higher, if additional water is allowed to pool in the core. Hence a heat pipe designed for
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terrestrial uses could undergo pipe failure upon freezing. Fortunately, heat pipes designed
for use in space are usually charged to only about f = 0.9, which is well under the upper
bound in (2.2).

We conclude by noting that the failure of the heat pipe is quite different from the
failure of copper water pipes in houses.

In a house water pipe, the cold pipe freezes the water from the outside in, forming
an ice annulus. As the annulus solidifies into a solid plug, the ice then begins to expand
parallel to the pipe. Expansion toward the house increases pressure on the water in the
pipe downstream of the plug. It is this pressure which then bursts the pipe.∗ In contrast,
the heat pipe is near vacuum. So the ice itself must burst the copper pipe.

Moreover, this phenomenon is quite different in terms of geometry. Most engineering
discussions of pipe bursting focus on the case where the pipe wall thickness is small com-
pared to the pipe diameter. But we see from Appendix A that the pipe wall thickness is
comparable to the pipe diameter, which is a regime not generally discsussed.

∗ This is why house pipes leak water when burst. It is also why it is suggested to leave
the faucet dripping when freezing is possible (as this relieves the pressure in the line).
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Section 3: Wick Failure
We next examine the case of wick failure. We wish to see if the thermal expansion

of the water as it freezes will deform the structure of the pores in the wick. If the pores
become too large, that may lessen the wicking effect and cause the heat pipe to fail. (To
our knowledge, this has not been observed experimentally.)

Figure 3.1. Schematic of pumping action caused by freezing. Dark grey circles correspond
to copper; light grey circles correspond to ice. Left: illustration of pumping process at
beginning of freezing. Water flows in direction of arrows. Right: As freezing continues, a
small quantity of water is trapped by the overlapping ice circles.

As the porous media itself is made of copper, it will conduct heat quickly. Hence we
expect the ice to move outward from the copper toward the center of the pores. In general,
this will cause a pressure gradient which will pump water through the porous media (see
left of Fig. 3.1). Since the inner core is near vacuum, water will tend to flow from the
outer portions of the pipe to the empty inner portion of the wick. Then that water will
also come into contact with the cold copper wick, where it will freeze.

However, as the ice from neighboring beads comes together, they can isolate a water
pocket (small white area in center of right of Fig. 3.1). As this pocket freezes, it will exert
pressure on the neighboring ice. It is our belief that if these pockets are small enough,
they will not cause enough pressure to distort the wick matrix, which has of course been
trapped in ice from the beginning.

We now present a toy problem to illustrate our analysis. But first, some caveats:

1. The idea of isolating the copper beads in the water is not realistic. We could think
of them being connected by thin sinter connections made of copper, or consider the
microstructure more carefully (see Section 4).

2. In the right of Fig. 3.1, the ice region is shown as a series of overlapping circles, and
we will continue that model here. However, in reality surface energy considerations
would cause the boundaries of the water pocket to be convex.
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3. In two dimensions, it is much easier to trap water than in three dimensions. In
particular, consider the problem of circle packing in two dimensions. This will cause
many inclusions, as described below. But the problem of sphere packing does not.
In particular, a perfect sphere packing still has a continuous pore structure through
it. Hence there will have to be more overlap (as in the right of Fig. 3.1) before the
inclusions are closed. This will reduce their surface area.

In the light of the above, the analysis we present will give a conservative estimate of
the volume of inclusions—most assuredly too conservative.

dc/2

dp

Figure 3.2. Schematic of trapping water by freezing of triangular lattice. Triangle is
repeated in six-fold symmetry in lattice. Dark grey regions correspond to copper, light
grey regions correspond to ice, white regions correspond to water. Left: array before
freezing. Right: Trapping of water in matrix.

We begin by considering a triangle (really part of a hexagonal array), as shown in Fig.
3.2. The triangle is equilateral with side length dp + dc, where dp is the diameter of the
pore and dc is the diameter of the bead (the subscript “c” stands for “copper”). Hence
the area of the triangle is given by

A4 =
(dp + dc)2

√
3

4
. (3.1)

Taken together, the sectors form a semicircle of diameter dc with area

Ac,4 =
π

2

(
dc

2

)2

=
πd2

c

8
. (3.2)

After freezing, the sectors form a semicircle of diameter dc + dp with area

Ai,4 =
π(dc + dp)2

8
. (3.3)

Thus the fraction F of the water in the pore originally that becomes trapped is given by
the following:

F4 =
A4 −Ai,4

A4 −Ac,4
=

[(dp + dc)2
√

3/4]− π(dc + dp)2/8

[(dp + dc)2
√

3/4]− πd2
c/8

=
(dp + dc)2(2

√
3− π)

2(dp + dc)2
√

3− πd2
c

. (3.4)
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With the values of the parameters from Appendix A, we have

F4 = 0.130. (3.5)

Note that:

1. Because of the symmetry involved with the equilateral triangle, F∆ as given by (3.5)
is actually the largest percentage that can be trapped. Random placement greatly
reduces the size of the inclusions (see right of Fig. 3.1).

2. The analysis can be continued by hand (at least) for isosceles triangles. However, the
analysis is complicated, must be broken into separate cases, and is not particularly
illustrative, as (3.5) provides the upper bound.

Nevertheless, the process may be handled numerically for all triangles using Mathe-
matica (see Appendix B). It is possible that separate cases may be needed here as well,
depending on the relative lengths of the triangles. Also, Mathematica should be able to
do the same sorts of calculations in three dimensions, but that is beyond the scope of this
manuscript.

dc/2

dp

Figure 3.3. Schematic of trapping water by freezing of square lattice. Region labeling is
the same as in Fig. 3.2.

Next we repeat the analysis for a square array, as shown in Fig. 3.3. The square has
side length dp + dc; hence its area is given by

Aut = (dp + dc)2. (3.6)

Taken together, the sectors form a circle of diameter dc with area

Ac,ut = π

(
dc

2

)2

=
πd2

c

4
. (3.7)

After freezing, the sectors form a semicircle of diameter dc + dp with area

Ai,ut =
π(dc + dp)2

4
. (3.8)
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Hence the fraction F of the water in the pore originally that becomes trapped is given by
the following:

Fut =
Aut −Ai,ut
Aut −Ac,ut

=
(dp + dc)2 − π(dc + dp)2/4

(dp + dc)2 − πd2
c/4

=
(dp + dc)2(4− π)

4(dp + dc)2 − πd2
c

. (3.9)

With the values of the parameters from Appendix A, we have

Fut = 0.284. (3.10)

The same remarks regarding the symmetry apply as above.
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Section 4: 1-D Heat Transfer Models
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Figure 6. SEM photograph (1500 times magnification) of wick
sintered at 800◦C.

Figure 7. SEM photograph (300 times magnification) of wick sin-
tered at 1000◦C.

inter-agglomerate pores are not as numerous compared
to the compact sintered at 800◦C although the pore sizes
appear to be larger. Large pores of 100µm are clearly
visible.

Figure 8, which is a SEM image at 1500 times mag-
nification of the surface characteristics of the individual
particles, reveals that the grain growth is almost com-
plete. The grains are also larger in size and there is
more complete bonding between the lumps of crystal
grains. The 2–3µm pores are voids, which occur at
places where the grain boundaries of adjacent grains
fail to meet. Due to the more complete recrystalliza-
tion, these pores are fewer in number.

The above SEM observations show the pore struc-
tural morphology of the wick structure and are helpful

Figure 8. SEM photograph (1500 times magnification) of wick
sintered at 1000◦C.

to explain the relationship between pore structure and
heat pipe performance. In general, to achieve a high
heat transfer rate in a heat pipe, the wick structure
should exhibit high permeabilityk and low capillary
radius,r . A high permeability results in a low flow
resistance in a wick while a low capillary radius leads
to a high capillary pressure, which facilitates trans-
portation of the working fluid. The SEM observations
indicate the presence of both small intra-agglomerate
pores, which contribute to capillary pumping of the
working fluid and large inter-agglomerate pores for
low flow resistance. For wicks sintered at 1000◦C,
the SEM photographs show that there are more intra-
agglomerate pores which are also regular in shape and
a reduced number of inter-agglomerate voids due to
sintering and recrystallization.

3.4. Shrinkage of Compacts

A discussion of shrinkage is in order as it gives clearer
insight into the pore structure of the sintered compacts.
Substantial shrinkage was observed in compacts sin-
tered at 800◦C and 1000◦C. Table 2 shows the initial
and final dimensions of the compacts before and af-
ter sintering. A higher degree of shrinkage (36.2%)
is observed for the compact sintered at 1000◦C com-
pared to that sintered at 800◦C (19.4%). At higher
sintering temperatures, rearrangement of the powder
particles is more extensive. Gaps between particles are
minimized and spaces left behind by the removal of the
binder are filled up more completely resulting in greater
shrinkage. At higher temperatures, the crystals formed

Figure 4.1. Typical microstructure of copper matrix [10].

In contrast to the description in Section 3, a more common model of porous media
is to have regular geometric shapes (such as a network of cylinders) for the pores, rather
than the media. This is motivated by the microstructure of the wick (see Fig. 4.1). In
that case, water-filled cylinders closing up with ice would be equivalent to a pore clogging.
This sort of analysis could give vastly different results about whether all the water could
be squeezed out of the medium or not.

In particular, consider the scenario illustrated in Fig. 4.2. Consider two pores, A and
B. Suppose that freezing proceeds linearly along the pores. Since A is more tortuous than
B, ice from B will block A, trapping the water in the remaining length of A. If this water
freezes in place, it could deform the porous medium adjacent to it.

We examine some simple models to get some estimates for the time scales of the heat
transfer effects. First, we consider a pore as a single cylinder which penetrates the entire
wick. Its diameter would be dp = 50µm, which is much less than the thickness of the wick,
which is 7.5 mm. Thus, the cylinder can be approximated by a one-dimensional model.

We wish to estimate the amount of time it would take for the water in the pore to
freeze. At first, we consider a simple example where the water is cooled only from the
outer surface of the wick. This leads to consideration of the one-phase Stefan problem
where water freezes into ice. The details of the derivation may be found in [1]; we outline
the steps below.
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Figure 4.2. Pore structure. Grey: ice. White: water.
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Figure 4.3. Schematic of Stefan problem.

Let x be distance along the pore as measured from the outer wall of the wick (see Fig.
4.3). We consider a semi-infinite problem; this is a reasonable simplification since we are
trying to get only an estimate of the freezing front progression. Ti(x, t), the temperature
of the ice, follows the standard heat equation:

∂Ti

∂t
= Di

∂2Ti

∂x2
, Di =

ki

ρci
, (4.1)

where ci is the specific heat and ki is the thermal conductivity of the ice. Di is called the
thermal diffusivity (note it is usually denoted by α, but we use D since we have used α for
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the linear expansion factor).
Note that we have not put a subscript on the density, even though we know there is a

drastic change in the density as the water freezes. The Stefan problem can be formulated
with a change in density, though the setup is more complicated [1, §2.3]. Hence we proceed
with a constant density (namely the one for water at 0.01◦ C) to follow the standard Stefan-
problem analysis.

The domain of (4.1) is 0 < x < s(t), where s(t) is the freezing boundary. At that
boundary, we have

Ti(s(t), t) = 0, (4.2a)

ki
∂Ti

∂x
(s(t), t) = ρL

ds

dt
, (4.2b)

where L is the latent heat of fusion (freezing) of water. Equation (4.2b) says that the net
heat flux into the freezing front will be used up in freezing the ice into its crystalline shape.
Note that in the one-phase Stefan problem, the temperature in the water is assumed to be
held at exactly 0. Hence there is no contribution from heat flux in the water to (4.2b).

We close the system with a boundary condition on Ti and an initial condition on s:

Ti(0, t) = Ti0, (4.3a)

s(0) = 0. (4.3b)

With these conditions, (4.1) has a similarity solution of the form

Ti(x, t) = Θi(ζ), ζ =
x

2
√
Dit

; s(t) = 2s0

√
Dit. (4.4)

Note that (4.4) automatically satisfies (4.3b).
Substituting (4.4) into (4.1) and solving, we have

− x

4
√
Dit3

dΘi

dζ
= Di

1

4Dit

d2Θi

dζ2
(4.5a)

−2ζ
dΘi

dζ
=
d2Θi

dζ2

dΘi

dζ
= B1e

−ζ2

Θi(ζ) = B1 erf ζ +B2. (4.5b)

Substituting (4.4) into (4.2a) and (4.3a) and using the resulting conditions to solve for the
Bi, we obtain

Θi(s0) = 0, (4.6a)

Θi(0) = Ti0, (4.6b)

Θi(ζ) = Ti0

(
1− erf ζ

erf s0

)
. (4.7)
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Susbtituting (4.4) into (4.2b), we have the following:

ki

2
√
Dit

dΘ

dζ
(s0) = ρLs0

√
Di

t

ki

2DiρL

dΘ

dζ
(s0) =

ci
2L

dΘ

dζ
(s0) = s0, (4.8)

where we have used the definition of Di in (4.1). Substituting (4.7) into (4.8), we obtain

ci
2L

(
−2Ti0√

π

e−s
2
0

erf s0

)
= s0

St√
π

e−s
2
0

erf s0
= s0, St =

ci|Ti0|
L

, (4.9)

where we have used the fact that Ti0 must be less than 0 for the ice to freeze.
In this case we take Ti0 = −20◦ C. Then solving (4.9) numerically using the values in

Appendix A, we have that
s0 = 0.237. (4.10)

To traverse the wick, the freezing front must advance a distance Rm − Rv, where Rm is
the outer radius of the wick (the subscript “m” refers to “middle”), while Rv is the outer
radius of the core (the subscript “v” refers to “vacuum”). See Fig. 1.2. Hence the freezing
front reaches the inner edge of the wick when

(Rm −Rv) = 2s0

√
Dit

t =
(Rm −Rv)2

4s2
0Di

. (4.11a)

Then using the parameters in Appendix A, we have

t =
(2 cm− 1.25 cm)2

4(0.237)(1.23× 10−6 m2/s)
=

(7.5× 10−3 m)2

4(0.237)2(1.23× 10−6 m2/s)

=
(7.5)2

4(0.237)2(1.23)
s = 204 s. (4.11b)

As a correction, we now examine the two-phase Stefan problem, where we have water
and ice. The ice problem holds on the same domain as before, so the solution is of the
form (4.7). The standard two-phase Stefan condition states that the difference in the fluxes
propels the front:

ki
∂Ti

∂x
(s−(t), t)− kw

∂Tw

∂x
(s+(t), t) = ρL

ds

dt
. (4.12)

Equation (4.12) replaces (4.2b) in our analysis. Note also that in the limit where the
water temperature is identically zero, the flux in the water region vanishes and we obtain
(4.2b). Also, in the water we have an initial condition, rather than a boundary condition:

Tw(x, 0) = Tw0. (4.13)



Draft Date: August 21, 2018 Cepeda-Rizo, et al. 4.5

We may again use the similarity form (4.4), but we have to be careful to keep track
of the different quantities in the ice and water. In particular, for the water temperature,
(4.5a) is replaced by

− x

4
√
Dit3

dΘw

dζ
= Dw

1

4Dit

d2Θw

dζ2

−2ζ
Di

Dw

dΘw

dζ
=
d2Θ

dζ2

dΘw

dζ
= B1 exp

(
−Diζ

2

Dw

)
Θw(ζ) = B1 erfc

(
ζ

√
Di

Dw

)
+B2, (4.14)

where we use the complementary error function for algebraic convenience. Our boundary
condition (4.13) becomes

Θw(∞) = Tw0. (4.15)

Equation (4.6a) holds for Θw as well, since at s(t) the temperature must be continuous at
the freezing temperature. Solving (4.14) subject to this fact and (4.15), we obtain

Θw(ζ) = Tw0

[
1−

erfc(ζ
√
Di/Dw)

erfc(s0

√
Di/Dw)

]
. (4.16)

Substituting (4.4) into (4.12), we have the following:

ki

2
√
Dit

dΘi

dζ
(s0)− kw

2
√
Dit

dΘw

dζ
(s0) = ρLs0

√
Di

t

ki

2DiρL

dΘi

dζ
(s0)− kw

2DiρL

dΘw

dζ
(s0) = s0. (4.17)

Substituting (4.7) and (4.16) into (4.17), we obtain:

ci
2L

(
−2Ti0√

π

e−s
2
0

erf s0

)
− kw

2DiρL

[
2Tw0√
π

√
Di

Dw

e−Dis
2
0/Dw

erfc(s0

√
Di/Dw)

]
= s0

ci
L

(
− Ti0√

π

e−s
2
0

erf s0

)
− kw

2ρLDw

√
Dw

Di

[
2Tw0√
π

e−Dis
2
0/Dw

erfc(s0

√
Di/Dw)

]
= s0

Sti√
π

e−s
2
0

erf s0
− cwTw0

L
√
π

√
Dw

Di

e−Dis
2
0/Dw

erfc(s0

√
Di/Dw)

= s0

Sti√
π

e−s
2
0

erf s0
− Stw√

π

√
Dw

Di

e−Dis
2
0/Dw

erfc(s0

√
Di/Dw)

= s0, Stw =
cwTw0

L
. (4.18)
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In this case we take Tw0 = 20◦ C. Then solving (4.18) using the values in Appendix
A, we have that

s0 = 0.200. (4.19)

Note that the front speed is lower, which is expected since now the copper has to cool the
water from room temperature before freezing it. Substituting (4.19) into (4.11a), we have

t =
(7.5)2

4(0.200)2(1.23)
s = 287 s, (4.20)

which is longer, also as expected.
However, both of these times seem long, especially given that the cross-sectional area

of the pore is so small. But recall that when using the one-dimensional approximation, we
are essentially assuming that the only heat sink is at the wick exit. In other words, we are
treating the sides of the pore as insulating, when they are really conducting.

Therefore, the next estimate we compute is how long it takes the copper wick material
to cool once the pipe is exposed to a cold temperature. This is a simpler problem, since
there is no phase change. Hence the heat equation (4.1) still holds with Di replaced by
Dc, the thermal diffusivity of copper.

To make the problem simple, we assume an infinite domain, so a similarity solution
still holds. Therefore, we solve (4.1) subject to (4.3a) and (4.13), which corresponds to
substituting the functional form in (4.5b) into (4.6b) and (4.15). Our solution is given by

Θc(ζ) = Tw0 + (Ti0 − Tw0) erfc ζ, ζ =
x

2
√
Dct

. (4.21)

In this case x = 0 corresponds to the outside of the pipe (radius Rh, where the subscript
“h” refers to “heat pipe”), since that is where the copper is exposed to the external cold
temperature (see Fig. 1.2). To get an estimate of the time for heat transport, we find
the time when the temperature at the inside of the wick has evolved to within 5% of
equilibrium. In other words:

Tc(Rh −Rv, t) = Tw0 + (Ti0 − Tw0)(0.95)

Tw0 + (Ti0 − Tw0) erfc

(
Rh −Rv

2
√
Dct

)
= Tw0 + (Ti0 − Tw0)(0.95)

erfc

(
Rh −Rv

2
√
Dct

)
= 0.95

Rh −Rv

2
√
Dct

= 4.43× 10−2, (4.22)

where we have used our new definition of ζ. Using the parameters in Appendix A, we have
that

t =
(12.5)2

4(4.43× 10−2)2(116)
s = 171 s. (4.23)

Note this is less than the time given in (4.11b) and (4.20). It’s not that much less, even
though the thermal diffusivity of copper is much higher than water. The reason is because
in the case of water, we were tracking cooling down to 0◦ C, while in the case of copper
we are treating cooling down to −18◦ C (95% of the total change in temperature).
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Section 5: Other Heat Transfer Models
If the copper gets colder faster than the water, one may think of tracking freezing

in the cross-section of the pore, rather than longitudinally. In particular, we consider the
heat equation in a circular cross-section. We assume that the temperature at the outer
edge is uniform at Ti0. Hence there is no angular dependence on the problem and the heat
equation becomes

∂Tw

∂t
=
Dw

r

∂

∂r

(
r
∂Tw

∂r

)
, Tw(dp/2, t) = Ti0, Tw(r, 0) = Tw0. (5.1)

For now, we derive a rough estimate of the time it would take the water in this situation
to freeze. The time scale for the problem is given by

(dp/2)2

Dw
=

(50× 10−6 m)2

1.5× 10−7 m2/s
=

2500× 10−5 s

1.5
= 1.8× 10−2 s,

where we have used the parameters in Appendix A.
But this is an incredibly small time. How can this be? Recall that when setting up

the problem as in (5.1), we implicitly assumed that there was an infinite reservoir of cold
copper at temperature Ti0. But from the parameters in Appendix A, we see that this
is not the case. In particular, the size of the pores and the copper between the cores is
comparable. Hence a more realistic situation is diagrammed in Fig. 5.1.

copper pore

0

∂Tc/∂x = 0 ∂Tw/∂x = 0

T = Ti0

dp/2−dc/2 x

y

Figure 5.1. Coupled pore-copper system. Dotted lines are lines of symmetry.
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We reduce to a Cartesian coordinate system. Here x is along the cross-section of the
pore, while y measures along the pore (which we take to be semi-infinite). We take x = 0
to be the pore-copper interface. We also take a periodic array of copper and pore, so there
are lines of symmetry at x = −dc/2 and x = dp/2.

The governing equations are as below. First, the heat equation (with the appropriate
thermal diffusivity) holds in each region:

∂Tc

∂t
= Dc

(
∂2Tc

∂x2
+
∂2Tc

∂y2

)
, −dc/2 ≤ x ≤ 0, y > 0, (5.2a)

∂Tw

∂t
= Dw

(
∂2Tw

∂x2
+
∂2Tw

∂y2

)
, 0 ≤ x ≤ dp/2, y > 0. (5.2b)

The bottom of each region is held at the cold-copper temperature:

Tc(x, 0, t) = Tw(x, 0, t) = Ti0. (5.3a)

Initially, the temperature is taken to be the warm-water temperature:

Tc(x, y, 0) = Tw(x, y, 0) = Ti0. (5.3b)

Since we have a periodic array, there is no flux through the outer boundaries:

∂Tc

∂x
(x,−dc/2, t) =

∂Tw

∂x
(x, dp/2, t) = 0. (5.4a)

At the boundary between the two regions, the heat flux is constant:

kc
∂Tc

∂x
(x, 0, t) = kw

∂Tw

∂x
(x, 0, t). (5.4b)

Equations (5.2)–(5.4) form a simple closed heat-transfer system. Since it does not
include the latent-heat considerations of a full Stefan problem, it will underestimate the
true time needed for the pore/copper system to freeze. Equations (5.2)–(5.4) may be solved
in Matlab, but a full implementation is beyond the scope of this manuscript.
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Section 6: Conclusions and Further Research
In order for heat pipes to be used in space, designers must be confident that they can

survive the freeze-thaw cycles that occur there. The pipe itself must be resistant to burst-
ing, and the porous media structure of the sintered copper wick must resist deformation.

In this work we modeled both failure mechanisms. For pipe failure, it is hypothesized
that if liquid water leaches out of the wick into the void space, it will form a pool. It is
the freezing of that pool which then causes expansion and pipe failure.

We used a simple volume-balance approach to study this situation. We tracked the
expansion of water and the contraction of copper during freezing. Our calculations showed
that if the charge percentage of water was under 97% of the wick capacity, the frozen water
would remain inside the wick, rather than leaking out into the void space. Though heat
pipes for terrestrial applications are often charged higher than this, typical prototypes for
space applications are charged at only 90%. Hence this type of failure should be easily
avoided.

The problem of failure by deformation of the wick structure was more complicated.
First, we modeled the structure as a series of copper balls (or cylinders, in two dimensions)
around which ice formed. We searched for pockets of water that became trapped by ice
on all sides. We hypothesized that the freezing of such pockets would cause pressure that
could deform the porous matrix structure.

In the case of a regular hexagonal array of copper beads, we found that the fraction
of liquid water originally in the matrix that could be trapped was around 13%. However,
this regular structure had the highest fraction; for randomly chosen triangles, the volume
would be much less (see Appendix B). A square lattice was even worse, with 28% of the
volume trapped. We determined that the use of software such as Mathematica could help
do these calculations when the array consisted of triangles of random side length, and
perhaps could help in the harder three-dimensional case as well.

By treating the wick as a series of copper spheres whose effective radius expands with
accumulating ice, we may be able to use techniques from the field of persistent homology.
The advantage to looking at the problem this way is that software exists which (hopefully)
could take a set of spheres with a random distribution of pore sizes between them (as
in [10]), and then accumulate ice to them to track trapped water inclusions in a random
matrix.

We next examined wick failure by tracking the water in individual pores. The over-
arching goal was to see if ice advancing in less-torturous pores could trap water in more-
torturous ones. First, to get an idea of front speed, we examined one-dimensional models,
where the heat sink was considered to be at one end. We solved the problem as both a one-
and two-phase Stefan problem, obtaining estimates of around 3–5 minutes for the time to
take ice to traverse the wick. In contrast, the time for the copper to reach the coldest
temperature at the inside of the wick was estimated to be slightly less than 3 minutes.

These one-dimensional models are unrealistic, as the sintered copper is spread through-
out the pore structure, and thus heat would be drawn from the water all along the pore.
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We then considered more detailed models for the pore. Considering the sides of the pore to
be made of copper maintained below freezing proved to be unrealistic, leading to freezing
times of milliseconds. This is because the widths of the pores and the connecting copper
structures are of the same magnitude. Hence heat is conducted away from the water at a
rate limited by the conduction properties of the copper.

Though we were able to write down the governing equations for such a model, a full
solution is beyond the scope of this manuscript.

In summary, our calculations indicate that with current (90%) loading for heat pipe
prototypes for space use, it is unlikely that the heat pipe will rupture. This is because
such loading leaves enough space in the wick after freezing so water does not accumulate
in the void space (which is the theorized mechanism for pipe rupture). They also indicate
that it is unlikely for the wick itself to fail. Given the connectedness of the pores in the
wick, the advancing ice front should push the remaining water toward the center of the
pipe without pushing it into the central void space. Moreover, it should do so without
trapping appreciable amounts of water in ice pockets.



Draft Date: August 21, 2018

Acknowledgments
We wish to thank the following people for their contributions to the project:

Peter Kramer of Rensselaer Polytechnic Institute for helpful discussions regarding the
models in Section 3.
Ferran Planella of Oxford University, for references regarding phase changes in porous
media.
Tracy Stepien of the University of Arizona and Manuchehr Aminian of Colorado State
University, for references and ideas regarding persistent homology.



Draft Date: August 21, 2018

Nomenclature

Units are listed in terms of mass (M), length (L), temperature (Θ), and time (T ). If
a symbol appears both with and without tildes, the symbol with tildes has units, while the
one without is dimensionless. Equation numbers where a variable is first defined is listed,
if appropriate.

A: area, units L2 (3.1).
B: arbitrary constant, variously defined.
c: specific heat, units L2/T 2Θ (4.1).
D: thermal diffusivity, units L2/T (4.1).
d: diameter of pore or particle, units L (3.1).
F : trapped water ratio (3.4).
f : charging factor.
k: thermal conductivity, units ML/T 3Θ (4.1).
L: latent heat of fusion, units L2/T 2 (4.2b).
R: radial measurement, units L (4.11a).
r: radius of pore or particle, units L (5.1).

St: Stefan number (4.9).
s(t): freezing boundary, units L (4.2a).
T : temperature, units Θ.
t: time, units T (4.1).
x: distance along pore, units L (4.1).
y: distance across pore or copper, units L (5.2a).
Vr: volumetric expansion factor (2.1).
α: linear expansion factor.
ζ: similarity variable (4.4).

Θ(ζ): similarity solution for temperature, units Θ (4.4).
ρ: density, units M/L3 (2.1).
φ: void fraction.

Other Notation

c: as a subscript, used to indicate copper (3.1).
h: as a subscript on R, used to indicate the heat pipe (4.22).
i: as a subscript, used to indicate ice.

m: as a subscript on R, used to indicate the wick (4.11a).
p: as a subscript on d, used to indicate a pore (3.1).
v: as a subscript on R, used to indicate the inner wick radius (4.11a).
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w: as a subscript, used to indicate water.
0: as a subscript, used to indicate an initial value.
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Appendix A: Parameter Values

The linear expansion factor for cast copper is given by [4, p. 11]:

17× 10−6

K
≤ α ≤ 18× 10−6

K
,

and so we take the midpoint of the range:

α =
1.75× 10−5

◦ C
, (A.1)

where we have used the fact that a differential degree Celsius is the same as a differential
Kelvin.

The density of water at room temperature is given by [6]:

ρw = 998.21
kg

m3
, (A.2a)

while the density of ice at 0◦ C is given by [5]:

ρi = 916.2
kg

m3
. (A.2b)

Substituting these values into (2.1), we have the following for the volumetric expansion
coefficient:

Vr =
998.21

916.2
= 1.090. (A.3)

According to [10], the typical diameter of the copper powder (bead) is

dc = 63µm, (A.4a)

and the typical pore diameter is
dp = 50µm. (A.4b)

At −20◦ C, the properties of ice are given by [5]:

ki = 2.39
W

m ·K
, ci = 1.943

kJ

kg ·K
, (A.5a)

while the density of water at 0.01◦ C is given by [5]:

ρ = 999.8
kg

m3
. (A.5b)
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Using these values in (4.1), we have the following:

Di =

(
2.39

W

m ·K

)(
999.8

kg

m3

)−1(
1.943

kJ

kg ·K

)−1

=
2.39 J/s ·m2

(999.8)(1.943× 103 J)

= 1.23× 10−6 m2

s
. (A.6)

Moreover, we have that the latent heat of fusion for ice is given by [11]:

L = 334
kJ

kg
. (A.7)

Substituting these values into (4.9), we have that (using Ti0 = −20)

Sti = (20 K)

(
1.943

kJ

kg ·K

)(
334

kJ

kg

)−1

=
(20)(1.943)

334
= 0.116. (A.8)

At 20◦ C, the properties of water are given by [7], [8]:

kw = 598.03
mW

m ·K
, cw = 4.1844

kJ

kg ·K
. (A.9)

Substituting (A.5b) and (A.9) into (4.1), we have that

Dw =

(
598.03

mW

m ·K

)(
999.8

kg

m3

)−1(
4.1844

kJ

kg ·K

)−1

=
0.59803 J/s ·m2

(999.8)(4.1844× 103 J)

= 1.5× 10−7 m2

s
. (A.10)

Given these values, we may use (4.18) to calculate Stw (using Tw0 = 20):

Stw = (20 K)

(
4.1844

kJ

kg ·K

)(
334

kJ

kg

)−1

=
(20)(4.1844)

334
= 0.25. (A.11)

The outer radius of the heat pipe is given by

Rh = 2.5 cm, (A.12a)

while the outer radius of the wick is given by

Rm = 2 cm. (A.12b)

(Note that this is also the inner radius of the pipe wall.) The inner radius of the wick is
given by

Rv = 1.25 cm. (A.12c)

The properties of copper are given by [9]:

kc = 401
W

m ·K
, cw = 385

J

kg ·K
, ρc = 8.96

g

cm3
. (A.13)

Substituting (A.13) into (4.1), we have the following:

Dc =

(
401

W

m ·K

)(
8.96

g

cm3

)−1
(

385
J

kg ·K

)−1

=
401

(8.96)(385)

J · cm3 · kg

m · s · g · J

= 0.116
(10−6 m3)(103 g)

m · s · g
= 1.16× 10−4 m2

s
. (A.14)



Appendix B: Using Mathematica to 
Calculate Percentage Trapped 
Volume

Before Freezing
First we start with a series of points.

In[!]:= Vertices = {{0, 0}, {1, 3}, {3, 0}}

Out[!]=

0 0
1 3
3 0

From these vertices we construct the three sides, and find the maximum length.  For illustration, we use 1/4 of this length as the radius 
of the copper disks:

In[!]:= Sides = {Line[{Vertices[[1]], Vertices[[2]]}],
Line[{Vertices[[1]], Vertices[[3]]}], Line[{Vertices[[3]], Vertices[[2]]}]};

Lengths = {ArcLength[Sides[[1]]], ArcLength[Sides[[2]]], ArcLength[Sides[[3]]]};
minrad = Max[Lengths] / 4

Out[!]=
13

4

Now we can illustrate the situation.



In[!]:= tri = Triangle[Vertices];
copper = {Disk[Vertices[[1]], minrad],

Disk[Vertices[[2]], minrad], Disk[Vertices[[3]], minrad]};
Show[Graphics[{EdgeForm[Thick], GrayLevel[0.1], Opacity[0.5], copper}],
Graphics[{EdgeForm[Thick], Opacity[0], tri}, copper]]

Out[!]=

The area of the water originally is the area of the triangle less the grey region.  Since the central angles sum to π, the area of the 
sectors is half the area of one of the circles. 

In[!]:= atri = Area[tri]
acop = Area[copper[[1]]] / 2
before = N[atri - acop]

Out[!]=
9

2

Out[!]=
13 π

32

Out[!]= 3.22373

After Freezing
In this case the maximum length is the diameter of the desired disks:

In[!]:= maxrad = Max[Lengths] / 2

Out[!]=
13

2

Now we can illustrate the situation.

2     jpl.nb



In[!]:= ice = {Disk[Vertices[[1]], maxrad],
Disk[Vertices[[2]], maxrad], Disk[Vertices[[3]], maxrad]};

Show[Graphics[{EdgeForm[Thick], GrayLevel[0.1], Opacity[0.5], copper}],
Graphics[{EdgeForm[Thick], Gray, Opacity[0.5], ice}],
Graphics[{EdgeForm[Thick], Opacity[0], tri}, ice]]

Out[!]=

The area of the white region is given by the area of the triangle less the grey region.  Since the central angles sum to π, the area of the 
sectors (with overlap) is half the area of one of the larger circles.  The area of the overlap is half the area of the overlap of the circles 
in total.  Hence we have

In[!]:= asec = Area[ice[[1]]] / 2;
over =

(Area[RegionIntersection[ice[[1]], ice[[2]]]] + Area[RegionIntersection[ice[[3]],
ice[[2]]]] + Area[RegionIntersection[ice[[1]], ice[[3]]]]) / 2;

after = N[atri - (asec - over)]

Out[!]= 0.0651663

And then the ratio is then computed easily:

In[!]:= after / before
Out[!]= 0.0202146
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