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Section 1: Introduction

The occurrence of air gaps at the interface between a forming mold and the solidifying
melt it contains is regarded as a serious problem in the metal castings industry. When
surface air gaps form or nucleate, heat transfer between the part of the melt that has al-
ready solidified and the mold decreases locally, introducing a source of nonuniformity and
temperature gradients tangential to the mold surface. Transverse temperature gradients
induce irregularities in the solidification front that propagate through the melt and differ-
ential thermomechanical stresses in the solidified part of the melt. Since stresses in the
solidified melt may themselves be the cause of air gaps forming at the mold surface, the
sequence of cause and effect in the formation of air gaps is not clear. However, the result
is, in progressively worse cases, irregularities in the casting, followed by interior cracks,
and, ultimately, a weakening and failure of the casting in use. It has been suggested that
air gap nucleation and spatial variation in the heat extraction profile at the mold-melt
interface may be caused by irregularities in the mold surface due to effects such as mold
topography, the use of separating agents, or the presence of oxides.

The problem brought to the Mathematical Problems in Industry (MPI) workshop by
Louis G. Hector Jr. (Surface Science Division, Alcoa Technical Center) was to derive and
solve a mathematical model for the thermomechanical behavior of the casting process. The
model is based on a series of experiments in which a cold metal cube or block, insulated
on all sides except for one bare vertical side, is immersed at constant speed into a bath of
aluminum that is initially just above its melting temperature. A wedge-shaped sample of
solidified aluminum forms on the cold, bare, vertical ‘mold’ surface. The sample is widest
near its lowest point, where the time over which solidification has occurred is greatest, and
has zero width at the point where the mold enters the bath. The experiment is stopped
instantaneously, and the shape of the wedge surface, which can be ‘wavy’, indicates the
evolution in time of a solidification front as it propagates through a casting.

The specific goal was to derive expressions for the contact pressure at the mold-melt
interface, including the case of purely sinusoidal variations imposed on the mold surface
topography. It was expected that, among other things, expressions for the contact pressure
would depend on the wavelength of the mold topography; see [1] for more discussion and
further references. Air gaps are assumed to form at points where the contact pressure is
zero.

In this report we describe work done on the problem during the week of the work-
shop. The first task was a derivation of dimensionless governing equations and boundary
conditions to describe both heat transfer and elasticity effects in the solidified melt. The
two effects are coupled as follows:

1. The boundary condition describing heat transfer at the mold-cast interface is such
that the heat flux leaving the solid melt is proportional to the difference in tempera-
ture between the solid melt and the mold, where the constant of proportionality is a
(known) function of the contact pressure. This is the coupling from the elastic field
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to the thermal field.
2. The temperature appears in the diagonal components of the stress tensor for elastic

stresses in the solidified melt as a result of thermal expansion and contraction. This
is the coupling from the thermal to the elastic field.
We scaled the governing system and estimated the resulting scaling parameters based

on experimental data. Approximate (asymptotic) solutions were found for the thermal
field. The system decouples since the dependence of solid temperature on contact pressure
appears only parametrically via the contact resistance in the boundary condition at the
mold-melt interface. Next, the stress field in the solidified melt was incorporated, leading to
a nonlinear ordinary differential equation describing the solidification front that propagates
through the melt. Lastly, we investigated the effect of small-amplitude sinusoidal variations
in mold surface topography on the thermal field.

We now outline the contents of the report. In §§2–5 we study the Stefan problem
appropriate for heat conduction in the solidifying melt. The dimensionless Stefan problem
is given in §2. A small parameter ε is identified, equal to the length scale xc of temperature
variation due to heat transfer from the solidified melt to the mold divided by a length scale
zc associated with the speed of propagation of the solidification front in the melt.

In §§3 and 4 two approximate solutions to the Stefan problem are found in the limit
of small ε. In the first of these, the Stefan number St, defined as the ratio of sensible to
latent heat, is also assumed to be small. Furthermore, we construct explicit results for the
temperature field and solidification front position near the tip. In §4 we use approximate
methods (see [2]) to obtain the initial development of the solidification front at moderate
values of the Stefan number, which is estimated to be around 5 in the experiment under
consideration. The resulting analysis leads to approximate solutions, as series expansions
in ε, for the temperature in the solidified melt in terms of the location of the solidification
front and the contact resistance. The position of the solidification front is described by a
first order differential equation.

In §5 we consider the influence of small-amplitude undulations imposed on the mold
surface. The undulations are considered to be in the direction parallel to the mold motion.
The wavelength of this mold topography is assumed to be O(xc), and is thus much less than
the original length scale zc in the direction tangential to the mold. The method of multiple
scales [3] is applied to determine the form of undulations induced in the solidification front
in terms of the contact resistance. We also derive equations for the dynamics near the tip,
where we expect the effects of the undulations to me most pronounced.

In §6 we study deformation of the solidified melt caused by thermal contraction during
solidification and cooling. Of primary interest is a derivation of the contact pressure p on
the mold-cast interface. The governing equations of linear hypothermo-elasticity are used,
and stresses are written in terms of the Airy stress function (or potential). Terms in the
equations at O(ε) are discarded to compute a leading-order expression for the contact
pressure as a function of temperature in the solidified melt. The results of §3 are then
used to the find the contact pressure in terms of the location of the solidification front;
the pressure is then eliminated to find a nonlinear, third-order differential equation for the
location of the solidification front alone.



Section 2: Governing Equations

We wish to model the immersion of a metal mold into a bath of molten metal main-
tained at a constant freezing temperature Tf (see Fig. 1). The mold moves with velocity
V in the z̃-direction. All sides of the mold, save one, are insulated. The remaining face
(x̃ = x̃s) is exposed to the melt and the molten metal begins to solidify there.

We idealize this problem using a mold which is infinite in two directions and semi-
infinite in the third (x̃, see Fig. 2). The surface of the mold may have an irregular shape
and vary in time due to the motion in the z̃-direction, so we define the mold boundary
to be x̃ = x̃s(z̃, t̃). The molten metal will begin to solidify against the cool surface of the
mold in the x̃-direction. (The problem is uniform in the third direction.) Hence, there will
be a moving solidification front x̃ = s̃(z̃, t̃) between the solid and the molten liquid. For
the solid region, the governing equation is the following convection-diffusion equation:

ρcp

(
∂T̃

∂t̃
+ V

∂T̃

∂z̃

)
= k

(
∂2T̃

∂x̃2
+
∂2T̃

∂z̃2

)
, x̃s(z̃, t̃) ≤ x̃ ≤ s̃(z̃, t̃), (2.1)

where ρ is the density, cp is the specific heat, T̃ is the temperature, and k is the thermal
conductivity of the solid.

At the surface of the mold we impose the heat flux using Newton’s Law of Cooling.
Since the surface of the mold is maintained at room temperature, this condition may be
written as

k

[
1 +

(
∂x̃s

∂z̃

)2
]−1/2(

∂T̃

∂x̃
− ∂x̃s

∂z̃

∂T̃

∂z̃

)
(x̃s(z̃, t̃), z̃, t̃) =

T̃ (x̃s(z̃, t̃))− Ts

R̃(z̃, t̃)
, (2.2)

where Ts is room temperature and R̃ is the thermal contact resistance. (It will depend on
z̃ and t̃ through the contact pressure p̃.) The left-hand side results from writing down the
flux in the direction normal to the front.

At the solid-fluid interface, we must impose two conditions. First, the temperature
has been specified at the freezing temperature Tf :

T̃ (s̃(z̃, t̃), z̃, t̃) = Tf . (2.3)

In addition, we specify the standard Stefan condition at the solid-liquid interface. In other
words, the flux normal to the interface is proportional to the normal velocity of the front:

k

(
∂T̃

∂x̃
− ∂s̃

∂z̃

∂T̃

∂z̃

)
(s̃(z̃, t̃), z̃, t̃) = ρL

(
∂s̃

∂t̃
+ V

∂s̃

∂z̃

)
, (2.4)
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where L is the latent heat of fusion of the aluminum. The second term on the right arises
from the fact that there is a contribution to the front motion from the motion of the mold
itself.

To normalize the problem, we introduce the following scalings:

T (x, z, t) =
T̃ (x̃, z̃, t̃)− Ts

Tf − Ts
=
T̃ (x̃, z̃, t̃)− Ts

∆T
, ∆T = Tf − Ts, s(z, t) =

s̃(z̃, t̃)
xc

,

(2.5a)

R(z, t) = hR̃(z̃, t̃), x =
x̃

xc
, z =

z̃

zc
, t =

t̃

tc
, (2.5b)

where h is the heat transfer coefficient at hydrostatic pressure. To obtain xc, we use the
Neumann condition at x̃ = 0. Substituting (2.5) into (2.2), we have[

1 +
x2
c

z2
c

(
∂xs

∂z

)2
]−1/2

k∆T
(

1
xc

∂T

∂x
− xc

z2
c

∂xs

∂z

∂T

∂z

)
(xs(z, t), z, t) =

h(∆T )T (xs(z, t), z, t)
R(z, t)

k

h

[
1 + ε2

(
∂xs

∂z

)2
]−1/2(

∂T

∂x
− ε2 ∂xs

∂z

∂T

∂z

)
(xs(z, t), z, t) =

xcT (xs(z, t), z, t)
R(z, t)

,

(2.6a)

ε =
xc

zc
, (2.6b)

where we expect 0 < ε¿ 1. To obtain an O(1) heat flux we set

xc =
k

h
, (2.7a)

which is equivalent to setting the Biot number equal to 1 at hydrostatic pressure. Thus
(2.6a) becomes[

1 + ε2
(
∂xs

∂z

)2
]−1/2(

∂T

∂x
− ε2 ∂xs

∂z

∂T

∂z

)
(xs(z, t), z, t) =

T (xs(z, t), z, t)
R(z, t)

. (2.7b)

Substituting (2.5) and (2.7a) into (2.4), we have

k∆T
(

1
xc

∂T

∂x
− xc

z2
c

∂s

∂z

∂T

∂z

)
(s(z, t), z, t) = ρLxc

(
1
tc

∂s

∂t
+
V

zc

∂s

∂z

)
,(

∂T

∂x
− ε2 ∂s

∂z

∂T

∂z

)
(s(z, t), z, t) =

ρLx2
c

k∆Ttc

(
∂s

∂t
+
V tc
zc

∂s

∂z

)
. (2.8)

To balance front motion with the flux term, we set

tc =
ρLx2

c

k∆T
=

ρLk

h2∆T
. (2.9a)
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To balance the effects of convection and unsteady flow, we set

zc = V tc =
ρLkV

h2∆T
=⇒ ε =

h∆T
ρLV

. (2.9b)

Making these substitutions into (2.8), we obtain(
∂T

∂x
− ε2 ∂s

∂z

∂T

∂z

)
(s(z, t), z, t) =

∂s

∂t
+
∂s

∂z
. (2.10)

In addition, equation (2.3) becomes

T (s(z, t), z, t) = 1. (2.11)

Substituting (2.5), (2.7a), and (2.9) into (2.1), we obtain the following:

ρcp∆T
(

1
tc

∂T

∂t
+
V

zc

∂T

∂z

)
= k∆T

(
1
x2

c

∂2T

∂x2
+

1
z2

c

∂2T

∂z2

)
, 0 ≤ x ≤ s(x, t)

ρcp
h2∆T
kρL

(
∂T

∂t
+
∂T

∂z

)
= k

h2

k2

(
∂2T

∂x2
+ ε2

∂2T

∂z2

)
,

St
(
∂T

∂t
+
∂T

∂z

)
=
∂2T

∂x2
+ ε2

∂2T

∂z2
, St =

cp∆T
L

. (2.12)

Here St is the Stefan number.
Using the values from the Appendix, we have

tc = 4.18 s, (2.13a)
zc = 0.42 m, (2.13b)
xc = 2.4× 10−2 m, (2.13c)
ε = 5.81× 10−2, (2.13d)

St = 4.88. (2.13e)

Therefore, we see that 0 < ε¿ 1, as surmised.



Section 3: Flat Surface, Small St

We now tackle the equations arising from the problem of a flat mold plunging into
the molten metal. In this case, we have that

xs(z, t) = 0,

so equation (2.7b) becomes
∂T

∂x
(0, z, t) =

T (0, z, t)
R(z, t)

. (3.1)

We begin by considering the case of small St. This contradicts (2.13e), but we note
that since cp appears nowhere else in our problem, we can run an experiment with a
different material to validate the theory. In addition, we shall show that in the limit of
small z, the small St and moderate St limits for the front position are the same.

Letting St be our perturbation parameter, we have

T (x, z, t; St) ∼ T0(x, z, t)+StT1(x, z, t)+o(St), s(z, t; St) ∼ s0(z, t)+Sts1(z, t)+o(St).
(3.2)

For now, we do not expand R in a series in St. We wish to neglect the ε2 terms in our
equations, and hence we choose ε = o(St1/2). Substituting these expressions into (2.12),
(3.1), (2.10), and (2.11), we obtain, to leading orders,

St
[
∂(T0 + StT1)

∂t
+
∂(T0 + StT1)

∂z

]
=
∂2(T0 + StT1)

∂x2
+ ε2

∂2(T0 + StT1)
∂z2

∂2T0

∂x2
= 0, (3.3a)

∂2T1

∂x2
=
∂T0

∂t
+
∂T0

∂z
, (3.3b)

∂(T0 + StT1)
∂x

(0, z, t) =
(T0 + StT1)(0, z, t)

R(z, t)
∂T0

∂x
(0, z, t) =

T0(0, z, t)
R(z, t)

, (3.4a)

∂T1

∂x
(0, z, t) =

T1(0, z, t)
R(z, t)

, (3.4b)

∂(T0 + StT1)
∂x

(s0(z, t) + Sts1(z, t), z, t) =
∂(s0 + Sts1)

∂t
+
∂(s0 + Sts1)

∂z
∂T0

∂x
(s0(z, t), z, t) =

∂s0

∂t
+
∂s0

∂z
, (3.5a)

∂T1

∂x
(s0(z, t), z, t) + s1(z, t)

∂2T0

∂x2
(s0(z, t), z, t) =

∂s1

∂t
+
∂s1

∂z
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∂T1

∂x
(s0(z, t), z, t) =

∂s1

∂t
+
∂s1

∂z
, (3.5b)

(T0 + StT1)(s0(z, t) + Sts1(z, t), z, t) = 1
T0(s0(z, t), z, t) = 1, (3.6a)

s1(z, t)
∂T0

∂x
(s0(z, t), z, t) + T1(s0(z, t), z, t) = 0, (3.6b)

where we have used (3.3a) when deriving (3.5b).
Solving (3.3a) subject to (3.4a) and (3.6a), we have the following:

T0(x, z, t) = A1(z, t)x+A2(z, t)
= A1(z, t)(x− s) + 1

=
x+R(z, t)
s0 +R(z, t)

. (3.7)

Substituting the above into (3.5a), we obtain

∂s0

∂t
+
∂s0

∂z
=

1
s0 +R(z, t)

. (3.8)

The function R depends on deviations in the contact pressure from hydrostatic pressure.
If these deviations are small (in some appropriate scaling, presented in §6), then R may
be approximated by a constant. (Note that with our definition of h, the constant should
be R = 1. However, we leave R arbitrary for now.) Then (3.8) becomes

(s0 +R)
(
∂s0

∂t
+
∂s0

∂z

)
= 1

(s0 +R)
ds0

dz
= 1 when

dt

dz
= 1

s2
0

2
+Rs0 = z +A,

s0(z, t) = −R+
√
R2 + 2(z +A).

To solve for A, we note that the front always initiates at the liquid-air interface, so
we have

s0(0, t) = 0 =⇒ A = 0,

and hence we obtain
s0(z, t) = −R+

√
R2 + 2z. (3.9)

This solution actually covers two cases. In the steady case, there is no dependence on t
at all and (3.9) holds for z ≥ 0. In the unsteady case, we impinge the flow into the melt
at t = 0. Therefore, the domain is 0 ≤ z ≤ t, but (3.9) still holds. This corresponds to a
wedge developing with the wide end at the entering end of the mold (see Fig. 1). Here we
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have neglected edge effects which would smooth the sharp edge. Substituting (3.9) into
(3.7) in the case of constant R yields

T0(x, z, t) =
x+R√
R2 + 2z

. (3.10)

For comparison with later work, we expand (3.9) for small z:

s0(z) = −R+R

√
1 +

2z
R2
∼ −R+R

[
1 +

1
2

(
2z
R2

)
− 1

8

(
2z
R2

)2
]

=
z

R
− z2

2R3
. (3.11)

From (3.11) we note that for small z we have that the relevant x values are also O(z).
Keeping this in mind, we expand (3.10) to obtain a small z-and-x expansion:

T0(x, z, t) =
x+R

R
√

1 + 2z/R2
∼
(

1 +
x

R

)(
1− z

R2

)
∼ 1 +

x

R
− z

R2
. (3.12)

To obtain the O(St) correction in the steady case, we substitute (3.7) and (3.8) into
(3.3b) and (3.6b), which yields

∂2T1

∂x2
= − x+R

(s0 +R)3
, (3.13a)

T1(s0(z), z) = − s1

s0 +R
, (3.13b)

Solving (3.13a) subject to (3.13b) and (3.4b), we obtain

T1(x, z) = − (x+R)3

6(s0 +R)3
+

1
6
− s1

s0 +R
+A(x− s0)

=
x+R

s0 +R

{
1
6

[
1− (x+R)2

(s0 +R)2

]
− s1

s0 +R

}
+
R3(x− s0)
3(s0 +R)4

. (3.14)

Substituting (3.14) into (3.5b), we have the following:

ds1

dz
=

1
3(s0 +R)

[
R3

(s0 +R)3
− 1
]
− s1

(s0 +R)2

(s0 +R)
ds1

dz
+

s1

s0 +R
=

1
3

[
R3

(s0 +R)3
− 1
]
. (3.15)

To integrate (3.15), we note the following identity, which follows from the steady form
of (3.8):

d2s0

dz2
= − 1

(s0 +R)2

ds0

dz
= − 1

(s0 +R)3
. (3.16)
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Substituting various permutations of (3.8) and (3.16) into (3.15), we obtain

ds1

dz

(
ds0

dz

)−1

− s1
d2s0

dz2

(
ds0

dz

)−2

= −1
3

(
R3 d

2s0

dz2
+ 1
)

(3.17a)

s1

(
ds0

dz

)−1

= −1
3

(
R3 ds0

dz
+ z +A

)
s1(z) = − 1

3(s0 +R)

(
R3

s0 +R
+ z −R2

)
, (3.17b)

where we have used the fact that s1(0) = 0. Substituting in the form of s0(z) from (3.9),
we have the following:

s1(z) = − 1
3
√
R2 + 2z

(
R3

√
R2 + 2z

+ z −R2

)
. (3.18)

Substituting (3.9) and (3.18) into (3.14), we obtain

T1(x, z) =
x+R√
R2 + 2z

{
1
6

[
1− (x+R)2

R2 + 2z

]
− s1

s0 +R

}
+
R3(x−

√
R2 + 2z)

3(R2 + 2z)2
(3.19a)

=
x+R√
R2 + 2z

{
1
6

[
1− (x+R)2

R2 + 2z

]
+

1
3(R2 + 2z)

(
R3

√
R2 + 2z

+ z −R2

)}
+
R3(x−

√
R2 + 2z)

3(R2 + 2z)2

=
x+R√
R2 + 2z

{
1
6

[
1− (x+R)2

R2 + 2z

]
+

z −R2

3(R2 + 2z)

}
+
R3(2x+R−

√
R2 + 2z)

3(R2 + 2z)2
.

(3.19b)

Expanding (3.18) for small z yields

s1(z) = − 1
3R
√

1 + 2z/R2

(
R2√

1 + 2z/R2
+ z −R2

)

∼ − 1
3R

{
R2

[
1− 1

2

(
2z
R2

)
+

3
8

(
2z
R2

)2
]

+ z −R2

}

∼ −R
3

(
3z2

2R4

)
∼ − z2

2R3
. (3.20)

We also expand (3.21) for small z and x, retaining only those terms which are O(x2) =
O(z2):

T1(x, z) ∼ − x2

2R2
+
z2

R4
=

1
R2

(
z2

R2
− x2

2

)
. (3.21)
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Therefore, for small z we have that

s(z) ∼ z

R
− z2(1 + St)

2R3
, (3.22a)

T (x, z) = 1 +
x

R
− z

R2
+

St
R2

(
z2

R2
− x2

2

)
+O(z2, x2, xz). (3.22b)

Here we have not listed all the terms in the O(z2) perturbation expansion because only
the parabolic terms multiplying St will be of interest.

For the unsteady case, we note again that (3.17a) will hold on lines where dt/dz = 1,
and hence we obtain all the same solutions, except restricted to z ≤ t.



Section 4: Flat Surface, Moderate St

For the moderate Stefan number case, the convective boundary condition makes an
exact solution difficult. However, there are several approximate methods available. We
assume that ε = o(1) and also focus on the steady case. Therefore, equations (2.12), (2.10),
(2.11), and (3.1) become, to leading order,

St
∂T

∂z
=
∂2T

∂x2
, (4.1)

∂T

∂x
(s(z), z) =

ds

dz
, (4.2)

T (s(z), z) = 1, (4.3)
∂T

∂x
(0, z) =

T (0, z)
R(z)

. (4.4)

We begin with the Megerlin method [2]. In this method, we assume that the tem-
perature profile is parabolic in x. Satisfying equations (4.2) and (4.3) immediately, we
have

TM(x, z) = 1 +
dsM

dz
(x− sM) +

A(z)(x− sM)2

2
, (4.5)

where the subscript “M” (for Megerlin) emphasizes that we are going to calculate only
approximations to T and s. To calculate A(z), we satisfy equation (4.4):

dsM

dz
−A(z)sM =

1
R(z)

[
1− dsM

dz
sM +

A(z)s2
M

2

]
A(z)

[
R(z)sM +

s2
M

2

]
= R(z)

dsM

dz
− 1 + sM

dsM

dz

A(z) =
(sM +R)dsM/dz − 1
sM[R(z) + sM/2]

(4.6)

A(z) =
d{sM[R(z) + sM/2]}/dz − 1

sM[R(z) + sM/2]
.

In the Megerlin method, we assume that TM satisfies (4.1) only at x = sM(z). There-
fore, we have

St
∂TM

∂z
(sM(z), z) =

∂2TM

∂x2
(sM(z), z)

−St
(
dsM

dz

)2

= A(z)

−St
(
dsM

dz

)2

=
[sM +R(z)]dsM/dz − 1

sM[R(z) + sM/2]
(4.7a)
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0 = StsM

[
R(z) +

sM

2

](dsM

dz

)2

+ [sM +R(z)]
dsM

dz
− 1

dsM

dz
=
−[sM +R(z)] +

√
[sM +R(z)]2 + 2StsM[sM + 2R(z)]

StsM[sM + 2R(z)]
. (4.7b)

We believe that equations (4.7) must be solved numerically. However, we would like to
obtain a small-z asymptote to see what happens near the area where the mold enters the
melt. In particular, in the case of constant R we would like the small-z asymptote to match
with (3.22a). Therefore, we make the following ansatz and see if it satisfies the leading
orders of (4.7a):

sM ∼
z

R
− z2(1 + St)

2R3
. (4.8)

Substituting (4.8) into (4.7a) and expanding to leading order, we have

−St
(

1
R

)2

=
[( z
R

+R
)( 1

R
− z(1 + St)

R3

)
− 1
](
R
z

R

)−1

− St
R2

=
1
R2
− (1 + St)

R2
, (4.9)

and hence we see that (4.8) is indeed correct to leading two orders. (Note that the only
place where the z2 term came into play was in the dsM/dz term.) Since both sides of (4.9)
are an asymptotic expansion for A(z) for small z, we see that for small z we have

TM(x, z) ∼ 1 +
(

1
R

)(
x− z

R

)
− St

2R2

(
x− z
R

)2

= 1 +
x

R
− z

R
− St
R2

(
x2

2
− xz

R3
+
z2

R2

)
, (4.10)

which does not match with (3.22b) at O(St). However, several of the terms are the same,
which should occur since TM is an approximation.

Next we try the integral balance method [2]. Again we assume a parabolic profile, and
since A(z) was determined by satisfying the boundary conditions, (4.6) still holds with a
new subscript “I” (for integral balance method) replacing the subscript “M”. We require
that TI(x, z) satisfy (4.1) in an average sense, so we have∫ sI

0

St
∂TI

∂z
dx =

∫ sI

0

∂2TI

∂x2
dx

St
[
∂

∂z

∫ sI

0

TI dx−
dsI

dz
TI(sI(z), z)

]
=
∫ sI

0

A(z) dx

St
[
d

dz

(
sI −

s2
I

2
dsI

dz
+A(z)

s3
I

6

)
− dsI

dz

]
= A(z)sI

St
6

{
d[A(z)s3

I ]
dz

− d2(s3
I )

dz2

}
= A(z)sI. (4.11)
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In general, (4.11) must be solved numerically. Since it is a second-order equation for sI,
we need a derivative condition as well as the condition that sI(0) = 0.

This condition can be derived from a small-z expansion. Again, for the case of constant
R we try to match (3.22a) by assuming that

sI ∼
z

R
− z2(1 + St)

2R3
. (4.12)

Substituting (4.12) into (4.11) and retaining terms to leading order, we have

St
6

[
∂

∂z

(
− St
R2

z3

R3

)
− ∂2

∂z2

(
z3

R3

)]
= − St

R2

z

R

−Stz
R3

= −Stz
R3

,

where we have used the second term in the expansion when we replace A(z) by −St/R2.
Therefore, we see that (4.12) holds for sI and the second condition for (4.11) is

dsI

dz
(0) =

1
R
. (4.13)

Also, since the small-z asymptote for sI is the same as for sM, we see that our small-z
asymptote for TM in (4.10) also holds for TI.

We note that throughout this section we have considered the steady case. Looking at
the unsteady case may be more complicated due to the nature of the partial differential
equation we are attempting to solve.



Section 5: The Influence of Mold Topography

We now examine the influence of mold topography on location of the solidification
front, assuming a topography with a single frequency; see Fig. 3. Therefore, we have the
following form for x̃s:

x̃s = ã cos
(
z̃ − V t̃

˜̀

)
. (5.1)

Normalizing as before, we have

xs = a cos
(
z − t
ε`

)
(5.2)

where

a =
ã

xc
, ` =

˜̀

xc
,

Using the parameters in the Appendix, we find that a = 4.1× 10−5 ¿ 1.
The experiments on effects of mold topography include surface irregularities over a

wide range of frequencies. We consider two cases: that of long-range ‘undulations’ and
that of small-scale ‘surface roughness.’

Undulations
We first consider the case of long-range ‘undulations’ where

˜̀= 2 cm =⇒ ` = 0.83.

Substituting (5.2) into (2.7b), we obtain the mold surface boundary condition[
1 +

a2

`2
sin2

(
z − t
ε`

)]−1/2 [
∂T

∂x
+
εa

`
sin
(
z − t
ε`

)
∂T

∂z

]
=
T

R
at x = xs. (5.3)

We note that equations (2.10), (2.11) and (2.12) remain unchanged. Our task is thus to
solve (2.10)–(2.12) with the new mold surface boundary condition (5.3). The system differs
from that considered earlier in §§3 and 4 in that (5.3) introduces a new length scale in the
z-direction, defined by the length scale of undulations on the mold surface. This length
scale manifests itself through the appearance of a new, fast variable η = (z − t)/ε, where
ε¿ 1.

To develop an asymptotic approximation to the solution of this problem, we use a
multiple-scale method with the Stefan number as our small parameter. In order to write
all our parameters in terms of the Stefan number, we assume that

ε = O(St), a = a0St +O(St2).
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We need not write an explicit series for ε since with the inclusion of η, ε will drop out of
our problem to leading two orders. The latter assumption reaffirms that the amplitude of
the undulations on the mold surface is small. Next, we seek a solution in the form of a
series in St, and we explicitly include the fast variable η by putting

T (x, z, t) ∼ T0(x, z, t)+StT1(x, z, t, η)+O(St2), s(z, t) ∼ s0(z, t)+Sts1(z, t, η)+O(St2).

We treat η as an independent variable, substituting our expansions for T and s into the
governing equations (2.10)–(2.12) and (5.3). Then we equate coefficients of like powers of St
to obtain a sequence of systems which determine Tn and sn sequentially. The dependence
of T and s on η is absent at leading order, and appears only at the next order (O(St)). This
is a simple consequence of the assumption that the amplitude a of the surface topography
is small. To leading order, the mold surface appears flat, and we expect our results to
agree with those of §3. On the other hand, at O(St) the fast variable η enters the problem
through the boundary condition (5.3), so that η-dependence must be included at this order.
The systems at the first two orders are therefore sufficient to capture the dominant effect
of mold topography.

At leading order (O(1)), we have

∂2T0

∂x2
= 0, (5.4)

∂T0

∂x
(0, z, t) =

T0

R
(0, z, t), (5.5)

T0(s0, z, t) = 1, (5.6a)

∂T0

∂x
(s0, z, t) =

∂s0

∂t
+
∂s0

∂z
, (5.6b)

while at O(St) we have
∂2T1

∂x2
+
∂2T1

∂η2
=
∂T0

∂t
+
∂T0

∂z
, (5.7)

∂T1

∂x
(0, z, t, η) + a0 cos(η/`)

∂2T0

∂x2
(0, z, t) =

T1(0, z, t, η)
R

+ a0 cos(η/`)
∂T0

∂x
(0, z, t), (5.8)

∂T1

∂x
(s0, z, t, η) + s1

∂2T0

∂x2
(s0, z, t) =

∂s1

∂t
+
∂s1

∂z
, (5.9a)

T1(s0, z, t, η) + s1
∂T0

∂x
(s0, z, t) = 0. (5.9b)

The solution of the leading-order system (5.4)–(5.6b) is given by equations (3.7) and
(3.9). Hence, we turn to the system (5.7)–(5.9b) and use the leading-order solution to
simplify it. We obtain

∂2T1

∂x2
+
∂2T1

∂η2
=
∂T0

∂z
, (5.10)
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∂T1

∂x
(0, z, t, η)− T1(0, z, t, η)

R
=
a0

R
cos(η/l)

1
s0 +R

, (5.11)

T1(s0, z, t, η) +
s1

s0 +R
= 0, (5.12a)

∂T1

∂x
(s0, z, t, η) =

∂s1

∂t
+
∂s1

∂z
. (5.12b)

Since the system (5.10)–(5.12b) is linear in T1 and s1, we may decompose its solution
into a sum. Hence, we seek solutions of the form

T1(x, z, t, η) = Tm(x, z, t) cos(η/l) + Tflat(x, z, t), (5.13a)

s1(z, t, η) = sm(z, t) cos(η/l) + sflat(z, t), (5.13b)

where the subscript “m” refers to the contribution due to mold topography and the sub-
script “flat” refers to the contribution due to the influence of non-zero Stefan number on
the flat mold solution. Thus we choose Tflat and sflat so that they satisfy the perturbed
flat mold problem. That is, Tflat and sflat are chosen to satisfy the flat mold problem at
order O(St) as found in §3. Simplifying that system ((3.3b), (3.4b), (3.5b), and (3.6b))
somewhat, we see that Tflat and sflat satisfy

∂2Tflat

∂x2
=
∂T0

∂z
, (5.14)

∂Tflat

∂x
(0, z, t) =

Tflat(0, z, t)
R

, (5.15)

Tflat(s0, z, t) +
sflat(z, t)
s0 +R

= 0, (5.16a)

∂Tflat

∂x
(s0, z, t) =

∂sflat

∂t
+
∂sflat

∂z
. (5.16b)

Similarly, Tm and sm satisfy

∂2Tm

∂x2
− Tm

`
= 0, (5.17)

∂Tm

∂x
(0, z, t) =

Tm(0, z, t)
R

+
a0

R(s0 +R)
, (5.18)

∂Tm

∂x
(s0, z, t) =

∂sm

∂t
+
∂sm

∂z
, (5.19a)

Tm(s0, z, t) +
sm

s0 +R
= 0. (5.19b)

We solve the system (5.17)–(5.19b) for Tm and eliminate terms to obtain an equation
in sm only. In this manner, we find the following partial differential equation for sm, which
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governs the amplitude of the η-dependent perturbation to the moving boundary at order
O(St):

∂sm

∂t
+
∂sm

∂z
+

cosh(s0/`) + (R/`) sinh(s0/`)
R(s0 +R)(cosh(s0/`) + (`/R) sinh(s0/`))

sm

=
a0

R(s0 +R)(cosh(s0/`) + (`/R) sinh(s0/`))
. (5.20)

Since we are interested in macroscopic irregularities in the cast surface, we examine the
behavior of the solution of (5.20) for sm when z and t are large. Along characteristics
dz/dt = 1 of (5.20), s0 ∼

√
2t, so we find that sm satisfies

dsm

dt
+

Rsm

`2
√

2t
= 0,

Thus, sm decays exponentially along characteristics as z and t tend to ∞. The physical
implications are clear: initially, i.e., near the point where the mold surface enters the
solidifying melt, the solidification front exhibits small-amplitude undulations that conform
to the mold surface topography, but their amplitude decreases at points on the front that
are further into the melt, where the time over which solidification has occurred is greater.

Tip Dynamics
We next examine the case of surface roughness where, using the values in the Ap-

pendix,
` = 2.08× 10−2.

Clearly the introduction of the undulations introduces a new length scale ε` for z̃ (and
hence a new scale for t̃). Since a is so small, we note from the above analysis that far from
the tip where s(0, t) = 0, the undulations do not contribute appreciably to the dynamics.
However, near the tip they may contribute.

To examine the tip dynamics, we introduce the following new variables:

T (x, z, t) = θ0(ξ, ζ, τ) + ε`θ1(ξ, ζ, τ) + o(1), s(z, t) = x`S(ζ, τ) + o(1), (5.21a)

ξ =
x

x`
, ζ =

z

ε`
, τ =

t

ε`
, (5.21b)

where x` is yet to be determined. However, we note from (3.11) that in the steady case
near the tip we have

s(z) ∼ z

R
=
ε`ζ

R
.

Thus, we set x` = ε`.
Making these substitutions into (2.12), (2.10), (2.11), and (5.3), we obtain, to leading

order,

St
ε`

(
∂(θ0 + ε`θ1)

∂τ
+
∂(θ0 + ε`θ1)

∂ζ

)
=

1
ε2`2

(
∂2(θ0 + ε`θ1)

∂ξ2
+ ε2

∂2(θ0 + ε`θ1)
∂ζ2

)
,

(5.22a)
∂2θ0

∂ξ2
= 0, (5.22b)



Hector et al. 5.5[
1
ε`

∂(θ0 + ε`θ1)
∂ξ

− 1
ε`
ε2
∂S

∂ζ

∂(θ0 + ε`θ1)
∂ζ

]
(S(ζ, τ), ζ, τ) =

∂S

∂ζ
+
∂S

∂τ
(5.23a)

∂θ0

∂ξ
(S(ζ, τ), ζ, τ) = 0, (5.23b)

(θ0 + ε`θ1)(S(ζ, τ), ζ, τ) = 1 (5.24a)
θ0(S(ζ, τ), ζ, τ) = 1, (5.24b)

[
1 +

a2

`2
sin2(ζ − τ)

]−1/2

×(
1
ε`

∂(θ0 + ε`θ1)
∂ξ

+
a

`2
sin(ζ − τ)

∂(θ0 + ε`θ1)
∂ζ

)( a
ε`

cos(ζ − τ), ζ, τ
)

=
1
R

(θ0 + ε`θ1)
( a
ε`

cos(ζ − τ), ζ, τ
)

(5.25a)

∂θ0

∂ξ

(a
`

cos(ζ − τ), ζ, τ
)

= 0, (5.25b)

where in (5.25b) we have used the fact that a/`¿ 1.
But the solution of (5.22b), (5.23b), (5.24b), and (5.25b) is

θ0(ξ, ζ, τ) ≡ 1, (5.26)

and hence we have obtained the physically obvious fact that the temperature in the tip
doesn’t vary much from the freezing temperature. Substituting (5.26) into (5.22a), (5.23a),
(5.24a), and (5.25a), we see that the next order equations are

∂2θ1

∂ξ2
= 0, (5.27)

∂θ1

∂ξ
(S(ζ, τ), ζ, τ) =

∂S

∂ζ
+
∂S

∂τ
, (5.28a)

θ1(S(ζ, τ), ζ, τ) = 0, (5.28b)
∂θ1

∂ξ

(a
`

cos(ζ − τ), ζ, τ
)

=
1
R
. (5.29)

Those working on the tip dynamics proceeded no further than these equations.



Section 6: The Thermoelastic Problem

We now consider the problem for the thermal stresses in the solidified metal layer. The
novel feature is that these are coupled to the thermal problem considered in the previous
sections through the thermal contact resistance R̃, which is an experimentally-determined
function of the pressure exerted by the metal on the mold. Heuristically speaking, the heat
transfer between the two solids increases if they are pushed together, since the effective
contact area (including asperities) increases. What experimental evidence exists [4] sug-
gests a power-law dependence of the heat transfer coefficient 1/R̃ on the pressure p̃, but
for simplicity we make the simpler assumption of linear dependence.

We denote the stress tensor by σ̃; a local stress balance shows that its components
must satisfy

∂σ̃x̃x̃
∂x̃

+
∂σ̃x̃z̃
∂z̃

= 0,
∂σ̃x̃z̃
∂x̃

+
∂σ̃z̃z̃
∂z̃

= −ρg, (6.1)

where g is the acceleration due to gravity. Thus we can write σ̃ in terms of an Airy stress
function φ̃, first subtracting the hydrostatic pressure:

σ̃x̃x̃ = −ρgz̃ +
∂2φ̃

∂z̃2
, σ̃x̃z̃ = − ∂2φ̃

∂x̃∂z̃
, σ̃z̃z̃ = −ρgz̃ +

∂2φ̃

∂x̃2
. (6.2)

To close the problem we must specify a constitutive law relating σ̃ to the displacement
field (ũ, w̃). We use the equations of linear hypo-thermo-elasticity, namely

∂σ̃x̃x̃

∂t̃
= (λ+ 2µ)

∂2ũ

∂x̃∂t̃
+ λ

∂2w̃

∂z̃∂t̃
− 2(λ+ µ)α

∂T̃

∂t̃
, (6.3a)

∂σ̃x̃z̃

∂t̃
= µ

∂2ũ

∂z̃∂t̃
+ µ

∂2w̃

∂x̃∂t̃
, (6.3b)

∂σ̃z̃z̃

∂t̃
= (λ+ 2µ)

∂2w̃

∂z̃∂t̃
+ λ

∂2ũ

∂x̃∂t̃
− 2(λ+ µ)α

∂T̃

∂t̃
, (6.3c)

where λ and µ are the Lamé constants and α is the coefficient of thermal expansion.
Thermal stress are purely dilational, so they appear only in (6.3a) and (6.3c).

Equations (6.3) are simply the result of differentiating the left- and right-hand sides
of the usual thermo-elastic constitutive relation with respect to t̃. The rationale for this is
that the equilibrium state, at which the stress is purely hydrostatic, is fixed at the freezing
front and hence unknown a priori. The equilibrium state can be associated with the three
arbitrary funtions of x̃ and z̃ that are introduced if (6.3) is integrated with respect to t̃.
With the three extra degrees of freedom (six in a three-dimensional geometry) come three
more boundary conditions at the freezing front. Firstly the stress is purely hydrostatic: this
supplies one more boundary condition than in classical elasticity, where only the normal
component of stress is specified at a free boundary. Secondly, the material at the freezing
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front is at its equilibrium state and so the displacement there is zero. (One can readily
verify that the same count works in three dimensions: specifying the stress gives three
extra conditions, which along with specifying the three components of displacement yields
six extra conditions for the six extra degrees of freedom.)

We wish to scale our problem by the largest characteristic stress around; that way all
the dimensionless stresses will be O(1) or less. By looking for a leading-order balance in
(6.3) we obtain the appropriate scalings for the displacement and stress, namely

ũ(x̃, z̃, t̃) = αxc∆Tu(x, z, t), w̃(x̃, z̃, t̃) = αzc∆Tw(x, z, t), (6.4a)

σ̃(x̃, z̃, t̃) = 2(λ+ µ)α∆Tσ(x, z, t), (6.4b)

where σ, u, and w are dimensionless. Using the parameter values given in the Appendix,
the typical strain α∆T is around 2.4% and the typical stress αE∆T ≈ 1.4 × 109 Pa,
where E is the Young’s modulus. The latter seems rather large, and it was suggested at
the meeting that in the temperature range of interest, E may be somewhat smaller than
the value quoted in the Appendix (which we understand to have been measured at room
temperature).

Finally, the appropriate scaling for the Airy stress function is

φ̃(x̃, z̃, t̃) = 2(λ+ µ)x2
cα∆T φ(x, z, t). (6.4c)

In writing the equations (6.3) in dimensionless form we look for a steady solution in our
moving frame, so that derivatives with respect to t̃ are replaced by those with respect to z̃
via ∂/∂t̃ = V ∂/∂z̃. Since the t̃-derivative appears in each term, the V s cancel and hence
we arrive at the following three equations for φ, u and w:

−ε2B + ε2
∂3φ

∂z3
= (1− ν)

∂2u

∂x∂z
+ ν

∂2w

∂z2
− ∂T

∂z
, (6.5a)

−ε2 ∂3φ

∂x∂z2
=
(

1
2 − ν

)( ∂2w

∂x∂z
+ ε2

∂2u

∂z2

)
, (6.5b)

−ε2B +
∂3φ

∂x2∂z
= (1− ν)

∂2w

∂z2
+ ν

∂2u

∂x∂z
− ∂T

∂z
, (6.5c)

where ν is Poisson’s ratio and B is a dimensionless parameter measuring the relative
influence of hydrostatic pressure and thermal stress:

B =
ρgz3

c

2x2
c(λ+ µ)α∆T

=
ρgz3

c (1 + ν)(1− 2ν)
x2
cαE∆T

. (6.6)

The parameter values in the Appendix suggest that B is small: around 2×10−3, which
would imply that hydrostatic pressure is negligible compared to thermal stresses. However,
as mentioned above, there is some uncertainty as to the true value of E. Notice moreover
that the length-scales zc and xc are defined in terms of the heat-transfer coefficient h.
Since in this section the heat transfer is not assumed to be constant (it depends on the
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contact pressure) it is not immediately clear how to define h uniquely: we address this
issue in more detail later. So for the moment we proceed treating B as an O(1) constant.

Now we must consider suitable boundary conditions to apply to (6.5). As outlined
above, on the free boundary x = s(z) we have zero displacement:

u = w = 0 on x = s(z), (6.7)

and the stress tensor is purely hydrostatic. From the dimensionless form of (6.2) we see
that this implies that

∂2φ

∂x∂z
= 0 on x = s(z), (6.8a)

∂2φ

∂z2
= 0 on x = s(z). (6.8b)

Since on the curve x = s(z) all the functions in (6.8) depend on z only, we may integrate
(6.8b) once with respect to z to see that ∂φ/∂z is a constant A at the freezing surface.
However, we see from the dimensionless form of (6.2) that we may add an arbitrary linear
function of z to our solution φ without changing the resulting stress field σ. Hence we may
set A = 0, thereby replacing (6.8b) with

∂φ

∂z
= 0 on x = s(z). (6.9)

This sort of integration trick may also be used on (6.10) and (6.9a) to yield the more
standard conditions

φ =
∂φ

∂x
=
∂2φ

∂x2
= 0 on x = s(z),

where we have used the form for σzz at the interface. However, these boundary conditions
are not in a useful form for our problem.

The correct boundary conditions to be imposed on the mold (which we choose to be
flat, so xs = 0) are less clear, since the form of mechanical contact between the metal and
the mold is uncertain. We consider two possible scenarios. Firstly, if we assume that the
metal remains in contact with the mold everywhere, and that the tangential stress there
is zero, then we impose

zero friction: u =
∂2φ

∂x∂z
= 0 on x = 0. (6.10a)

This condition is probably not particularly realistic. There must be some kind of traction
between the mold and the metal since we know that the metal is dragged along by the mold.
However, (6.10a) makes the solution of the problem particularly simple, and might be
expected to give qualitatively correct results. Also, this boundary condition was previously
imposed in a similar context in [5].

Secondly, an arguably more physically relevant condition is to impose zero slip between
the metal and the mold:

zero slip: u = w = 0 on x = 0. (6.10b)
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It might be more realistic still, though considerably more complicated, to impose a Coul-
omb friction law. Also, we really ought to pose an elastic contact problem in which u = 0
when the contact pressure is positive and u > 0 when the pressure is zero (i.e. when the
metal loses contact with the mold).

The equations (6.5) with their associated boundary conditions (6.7), (6.8a), (6.9), and
either of (6.10) in principle enable us to find the displacements and stresses in the solid
layer if the temperature distribution T and free boundary s are known. For simplicity we
concentrate here on the zero Stefan number limit, in which T and s are given to leading
order by

T0 =
x+R

s0 +R
,

ds0

dz
=

1
s0 +R

. (6.11)

Recall that the coupling between the thermal and elastic problems is in the contact re-
sistance R, which depends on the pressure exerted by the metal on the mold. Thus the
problem is closed by specifying a constitutive law R = R(p), where p is the dimensionless
pressure exerted by the metal on the mold. The dimensional pressure is the negative of
the normal stress σ̃x̃x̃ on the surface of the mold, and hence we have

p̃(z̃) = ρgz̃ − ∂2φ̃

∂z̃2
(0, z̃)

p(z) = Bz − ∂2φ

∂z2
(0, z), (6.12)

p̃(z̃) = 2ε2(λ+ µ)α∆Tp(z).

The values given in the Appendix suggest that the typical pressure scale is around 107 Pa.
The equations (6.5) with their associated boundary conditions (6.7), (6.8a), (6.9), and

either of (6.10) appear rather formidable, but they have the following fortunate property.
To close the problem for T and the free boundary s we need to find only the pressure p,
and we can do so without solving for the displacements u and w. The solution is clarified
by introducing the substitutions

∂φ

∂z
= Φ(x, z; ε,St) = Φ0(x, z) + o(1),

∂u

∂z
= U(x, z; ε,St) = U0(x, z) + o(1), (6.13a)

∂w

∂z
= W (x, z; ε,St) = W0(x, z) + o(1). (6.13b)

Note that we do not indicate the next term in the expansion [it will probably be O(St),
since we are also taking St→ 0]. Substituting (6.13) into (6.5), (6.8a), (6.19), and (6.10),
we obtain the leading-order problem

0 = (1− ν)
∂U0

∂x
+ ν

∂W0

∂z
− ∂T0

∂z
, (6.14a)

0 =
(

1
2 − ν

) ∂W0

∂x
, (6.14b)

∂2Φ0

∂x2
= (1− ν)

∂W0

∂z
+ ν

∂U0

∂x
− ∂T0

∂z
, (6.14c)
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Φ0 =
∂Φ0

∂x
= 0 on x = s0(z), (6.15)

U0 =
∂Φ0

∂x
= 0 on x = 0, (6.16a)

U0 = W0 = 0 on x = 0. (6.16b)

First we observe from (6.14b) that W0 is independent of x:

W0 = W0(z). (6.17)

Then from (6.14a) we read off ∂U0/∂x,

∂U0

∂x
=

1
1− ν

∂T0

∂z
− ν

1− ν
dW0

dz
,

and substitute it into (6.14c):

∂2Φ0

∂x2
=
(

1− 2ν
1− ν

)(
dW0

dz
− ∂T0

∂z

)
. (6.18)

Integrating (6.18) once using the derivative condition in (6.15), we obtain

∂Φ0

∂x
=
(

1− 2ν
1− ν

)[
(x− s0)

dW0

dz
−
∫ x

s0

∂T0

∂z
(x′, z) dx′

]
. (6.19)

Equation (6.19) provides us with the necessary expression to find W0. Clearly, in the case
of zero slip W0 ≡ 0 by (6.16b) and (6.17). In the case of zero friction, using (6.16a) yields

dW0

dz
=

1
s0

∫ s0

0

∂T0

∂z
dx. (6.20)

Integrating (6.19) once with respect to x using the Dirichlet condition in (6.15), we
obtain

Φ0 =
(

1− 2ν
1− ν

)[
(s0 − x)2

2
dW0

dz
−
∫ s0

x

(x′ − x)
∂T0

∂z
(x′, z) dx′

]
. (6.21)

Finally, the leading-order pressure is given by

p0 = Bz − ∂Φ0

∂z
(0, z)

= Bz +
(

1− 2ν
1− ν

)
d

dz

∫ s0

0

(
x− s0

2

) ∂T0

∂z
dx (zero friction), (6.22a)

= Bz +
(

1− 2ν
1− ν

)
d

dz

∫ s0

0

x
∂T0

∂z
dx (zero slip). (6.22b)
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Notice that these forms of p0 are determined solely from the thermo-elastic problem, and
so are valid for any thermal distribution T0. Taking the zero-Stefan-number limit, we
substitute the expression for T0 from (6.11) to obtain

p0 = Bz +
(

1− 2ν
1− ν

)
f(z), (6.23)

where

f(z) =
d

dz

(
s3

0

12
d2s0

dz2

)
(zero friction), (6.24a)

f(z) = − d3

dz3

(
s4

0

24

)
(zero slip). (6.24b)

The two forms of f(z) that we obtain, depending on whether we impose zero friction
or zero slip between the metal and the mold, differ in one crucial respect, namely the sign
of the highest derivative of s0. Hence we may expect the behavior of the solutions that
result to be quite different in the two cases. This certainly suggests that considerable care
should be taken in imposing the right contact conditions on the mold: the character of the
solution may be largely determined by them.

The leading-order constitutive relation is coupled to (6.23) via the expression for R
obtained from the second equation in (6.11):

R(p0) =
1

s′0(z)
− s0(z). (6.25)

The functional form of R(p) must be determined experimentally. For the purposes of this
report we restrict our attention to the simple case in which the heat transfer coefficient
1/R̃ is linear in the pressure, say

1
R̃

= h(h0 + h1p̃), (6.26)

where h0 and h1 are constants. Since R̃ is not constant, we have to devise a way in which
the parameter h can be defined uniquely.

First, we note that we expect the heat transfer coefficient to be very small when the
pressure is zero, so we expect h0 ¿ 1. In the special case that h0 = 0, we see that for
R̃−1 = h at hydrostatic pressure as described earlier, h1 would not be constant. Therefore,
we choose to set R̃−1 = h at hydrostatic pressure at the characteristic depth zc, and thus
we obtain

h1 =
1

ρgzc
.

Recalling the definition of zc, h is defined by

h3 =
ρ2gLkV

∆T
d

dp̃

(
1
R̃

)
.
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Combining equations (6.25) and (6.26) while recalling that R = hR̃, we obtain(
1
s′0
− s0

)−1

= h0 +
2ε2(λ+ µ)α∆T

ρgzc
p0

s′0
1− s0s′0

= h0 +
1
B

[
Bz +

(
1− 2ν
1− ν

)
f(z)

]
s′0

1− s0s′0
= h0 + z + γf(z), (6.27a)

γ =
1
B

(
1− 2ν
1− ν

)
=

x2
cαE∆T

ρgz3
c (1− ν2)

=
Eαh4(∆T )4

ρ4gL3kV 3(1− ν2)
. (6.27b)

Note that when γ = 0, there is no temperature differential to drive thermal stresses, and
hence the pressure is purely hydrostatic.

Substituting either of (6.24) into (6.27a), we obtain a single ordinary differential equa-
tion for s0, depending on the two parameters h0 and γ. In the case of zero friction this
reads

γ

12
(
s3

0s
′′
0

)′
+ z + h0 −

s′0
1− s0s′0

= 0, (6.28a)

while for zero slip we obtain

γ

24
(
s4

0

)′′′ − z − h0 +
s′0

1− s0s′0
= 0. (6.28b)

As initial conditions for (6.28) we specify zero thickness and zero pressure at the entry
point z = 0:

s0(0) = 0, f(0) = 0.

In the case of zero friction the initial behavior of s is thus

s0(z) ∼ h0z +
(
1− h3

0

) z2

2
+ h2

0

(
−10 + γh0 + 6h3

0 − γh4
0

) z3

12
+ · · ·

+ const. z9/4 exp

(
−4

√
3

γh3
0z

)
+ · · · as z → 0. (6.29a)

The arbitrary constant multiplying the exponentially small term parametrizes a one-
parameter family of solutions with the correct behavior as z → 0. (Note that the contribu-
tion from this one-parameter family also becomes transcendentally small in the limit that
h0 → 0.)

In contrast, in the case of zero slip if we disallow unphysical oscillatory behavior, there
is just one solution satisfying the initial conditions, with

s0(z) ∼ h0z +
(
1− h3

0 − γh4
0

) z2

2
+ h2

0

(
−5− 10γh0 + 3h3

0 + 15γh4
0 + 10γ2h5

0

) z3

6
+ · · ·
(6.29b)
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as z → 0. This indicates that in the latter case we can solve (6.28b) as an initial-value
problem, using (6.29b) as the initial condition. However, (6.28a) is not well posed as
an initial-value problem: a further boundary condition (e.g. specifying the behavior as
z → ∞) is needed to determine the solution uniquely. It is not at all clear what such a
condition should be, so from now on we consider only the zero-slip problem (6.28b) and
(6.29b) which in any case is likely to be of more physical relevance than the zero-friction
case.

As further evidence that equations (6.28b) and (6.29b) form a well-posed initial-value
problem, we can verify that there are three degrees of freedom in the asymptotic behavior
of the solution for large z:

s ∼
√

2z +
A1√
z

+
1
z
− A2

1

(2z)3/2
+ . . .

+ z−9/8

{
A2 cos

(
4× 181/4z7/4

7
√
γ

)
+A3 sin

(
4× 181/4z7/4

7
√
γ

)}
+ . . . (6.30)

as z → ∞; A1, A2 and A3 are arbitrary constants. The oscillatory behavior of (6.30) is
encouraging since significant oscillations in the free surface have been observed in experi-
ments.

5 10 15 20 25 30

1

2

3

4

5

6

7

s(z)

increasing γ

z

Figure 5. A numerical plot of the free boundary s(z) (as governed by (6.28b)) vs.
depth z, with parameter values h0 = 0 and γ = 0, 50, 100. Here increasing γ increases the
spike severity.

Finally, we now present some numerical solutions of (6.28b) and (6.29b). Since h0,
the heat transfer at zero pressure, is expected to be rather small, we set h0 = 0 and
examine the effect of varying γ. As shown in Fig. 5, the free surface s(z) is not greatly
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affected by rather large changes in γ. In particular, the oscillatory behavior suggested by
(6.30) appears to be swamped by the algebraic growth of s, and there is no evidence of
large-amplitude oscillations like those reported experimentally.

However, the pressure distribution does vary quite dramatically as γ is increased, as
shown in Fig. 6. When γ = 0, there are no thermal stresses and the pressure is purely
hydrostatic. For nonzero γ, p oscillates about its hydrostatic value, the amplitude of the
oscillations increasing with γ. Such behavior is consistent with the asymptotic form (6.30)
of s: substitution of (6.30) into (6.23) shows that oscillations in p have growing amplitude,
with

p ∼ z +
√

3
γ

25/4z21/8

{
A3 cos

(
4× 181/4z7/4

7
√
γ

)
−A2 sin

(
4× 181/4z7/4

7
√
γ

)}
+ · · · .

These large variations in pressure may well be the cause of the surface instability observed
in experiments.

5 10 15 20 25 30
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20
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40
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60

p(z)

z

Figure 6. A numerical plot of the pressure p(z) [as governed by (6.28b)] vs. depth z,
with parameter values h0 = 0 and γ = 0, 50, 100. When γ = 0, the pressure is purely
hydrostatic.



Section 7: Conclusions and Further Research

A mathematical model for the initiation of air gaps between a forming mold and solid-
ifying melt was written down and perturbation approximations were furnished in various
cases where certain parameters were assumed to be small. The focus of the modeling was
on examination of possible causes of surface irregularities in the solid.

The main task completed was a derivation of equations and boundary conditions for
both heat conduction and elasticity effects. These two sets of equations are coupled by
the contact pressure at the mold-solid interface. The coupling occurs because the contact
pressure appears in a boundary condition for the temperature while it is also a component
of the stress tensor. A nondimensionalization of these coupled equations and condition
with a set of scales that are physically realistic was also derived.

Several asymptotic solutions of the thermal problem were found that support the
√
z

shape shown in Fig. 2. These approximations were found assuming small Stefan number
in one case and small z in the other. We also derived an approximation with the Megerlin
method (see [2]).

To explore possible sources of surface irregularities, we considered the case where the
mold’s surface has oscillations. In this situation, which we referred to as the “mavy mold”
case, we found that the oscillations were induced onto the solid-melt interface but were
damped exponentially for large x as in Fig. 3.

Lastly we studied the full thermoelastic problem using the equations of hypo-thermo-
elasticity and derived asymptotic approximate solutions for the shape of the solid-liquid
interface. We made a simplifying assumption that the relationship between the heat trans-
fer coefficient on the mold-melt interface and the pressure was linear. Here, we again found
our approximation had the

√
z shape for the solid. We also found oscillations present in

the formula for the presure.
Below we list some future directions for the work begun at the MPI meeting which

was described in this report.
1. Examine the effects due to changes in temperature in the mold which will introduce

thermal stresses. We wish to know how important these effects are and if they can be
included in this model.

2. Incorporate the wavy mold solution for T and s which were found in §5 by coupling
to the effects of the elastic part of the problem. This would lead to a new equation
for the s function.

3. Add in the effects of the fluid motion in the molten metal. This would allow us to
gain precise information on the shape of the meniscus (see Fig. 4) that forms at the
surface of the molten metal where the mold enters. We would hope to see how the
molten metal folds over and quantify the sizes and shapes of the air gaps (again see
Fig. 4). Here we would also study the full thermoelastic problem. The presence of
air gaps would lead to dramatic changes in heat transfer between the mold and the
molten metal that would introduce large thermal stresses.
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4. Furthur explore the solutions found in §6 which have oscillatory behavior. The focus
here would be on determining the causes of the irregular behavior.



Appendix

For the thermal conductivity k, we have the following [5]:

k = 229.4
J

m · s · ◦C . (A.1)

For the density ρ of the mold, we have [5]

ρ = 2650
kg
m3

. (A.2)

Reference [5] gives the following value for the thermal diffusivity κ = k/ρcp of the metal:

κ = 8.2× 10−5 m2

s
. (A.3)

For the specific heat, we don’t have a specific value. Rather, we had the following
quoted estimate:

cp = 3× 103 J
kg · ◦C .

However, if we use the values from (A.1)–(A.3) and the definition of κ, we have

cp =
k

ρκ
= 1.06× 103 J

kg · ◦C , (A.4)

and it is this value we use in our analysis.
For the latent heat of melting L, we have [5]

L = 3.9× 105 J
kg
. (A.5)

For the velocity V , we were quoted a range of 0–250 mm/s. Therefore, we use for a
characteristic velocity the value

V = 10−1 m
s
. (A.6)

For the temperature differential ∆T , we note that initially the mold is at room tem-
perature, so we have

Ts = 25◦C. (A.7a)

In [5] we are given a value of
Tf = 660◦C, (A.7a)

and thus the differential is
∆T = 635◦C. (A.8)
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Lastly we consider the heat transfer coefficient h, which may be calculated from a
characteristic heat flux Q via the relation h = Q/∆T . In [5] we are given a value of

Q = 7.2× 104 J
m2 · s ,

but we have decided that this was for a different problem. We were also given a value of

h = 1100
J

m2 · s · ◦C ,

but we aren’t sure of the value and have discarded it. In [6], they quote a value of

Q = 6× 106 J
m2 · s ,

and so using the relation, we have that

h = 9.45× 103 J
m2 · s · ◦C . (A.9)

For ã, the amplitude of the undulations, we were initially given the following upper
bound:

ã = 10−5 m, (A.10a)

but later it was revised downward to

ã = 10−6 m. (A.10b)

For ˜̀, the wavelength of the undulations, we were given the following upper bound:

˜̀= 5× 10−4 m, (A.11a)

but later it was revised downward to

˜̀= 10−3 m. (A.11b)

The coefficient of thermal expansion is given in [5] as

α =
37.8× 10−6

◦C
. (A.12)

In addition, the Young’s modulus is given there as

E = 6× 1010 kg
m · s2

, (A.13)

but as discussed in §6, we feel that this is too high for the temperature ranges under
consideration.



Nomenclature

Variables and Parameters

Units are listed in terms of length (L), mass (M), moles (N), time (T ), or temperature
(Θ). The equation number where a particular quantity first appears is listed.

ã: amplitude of undulation in mold, units L (5.1).
A: arbitrary function or constant, variously defined.
B: ratio measuring relative effects of hydrostatic pressure and thermal stresses, value

ρgz3
c/2x

2
c(λ+ µ)α∆T (6.5a).

cp: specific heat of solid, units L2T−2Θ−1 (2.1).
E: Young’s modulus of solid, units ML−1T−2.

f(z): function describing differential front operator for particular elastic boundary con-
dition (6.23).

g: acceleration due to gravity, units LT−2 (6.1).
h: heat transfer coefficient at hydrostatic pressure, units MT−3Θ−1 (2.5b).
k: thermal conductivity of solid, units MLΘ−1T−3 (2.1).
˜̀: wavelength of undulation in mold, units L (5.1).
L: latent heat of fusion, units L2T−2 (2.4).

p̃(z̃): thermal contact pressure, units ML−1T−2.
Q: heat flux, units MT−3.
R̃: thermal contact resistance, units ΘT 3M−1 (2.2).

S(ζ, τ): front position near tip (5.21a).
s̃(z̃, t̃): freezing front, units L.

St: Stefan number, value cp∆T/L.
t̃: time from beginning of experiment, units T .

T̃ (x̃, z̃, t̃): temperature, units Θ (2.1).
U(x, z): steady “velocity” in the x-direction (6.13a).
ũ(x̃, z̃): displacement in the x̃-direction, units L (6.3a).

V : velocity of mold, units LT−1 (2.1).
W (x, z): steady “velocity” in the z-direction (6.13b).
w̃(x̃, z̃): displacement in the z̃-direction, units L (6.3a).

x̃: distance measured normal to the surface of the mold, units L.
Z: the integers.
z̃: distance measured parallel to the surface of the mold, units L.
α: coefficent of thermal expansion, units Θ−1 (6.3a).
γ: constant, value Eαh4(∆T )4/ρ4gL3kV 3(1− ν2) (6.27a).
ε: ratio of characteristic x̃ length scale to characteristic z̃ length scale, value
h∆T/ρLV .

ζ: scaled z-coordinate near tip (5.21a).
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η: fast oscillation scale in undulation case, value (z − t)/ε.
θ(ξ, ζ, τ): temperature near tip (5.21a).

κ: thermal diffusivity, value k/ρcp, units L2T−1 (A.3).
λ: Lamé constant, units ML−1T−2 (6.3a).
µ: Lamé constant, units ML−1T−2 (6.3a).
ν: Poisson’s ration (6.5a).
ξ: scaled x-coordinate near tip (5.21a).
ρ: density of solid, units ML−3 (2.1).

σ̃(x̃, z̃): stress tensor, units ML−1T−2 (6.1a).
τ : scaled t-coordinate near tip (5.21a).

Φ(x, z): reduced Airy stress function (6.13a).
φ̃(x̃, z̃): displacement Airy stress function, units MLT−2 (6.2).

Other Notation

c: as a subscript, used to indicate a characteristic value.
f: as a subscript, used to indicate freezing.

flat: as a subscript, used to indicate the flat mold (5.13a).
I: as a subscript, used to refer to the integral method (4.11).
`: as a subscript, used to indicate the ` scaling (5.21a).

M: as a subscript, used to refer to the Megerlin method (4.5).
m: as a subscript, used to refer to the undulating mold (5.13a).
s: as a subscript, used to indicate a quantity on the mold.
x̃: as a subscript, used to indicate the x̃-component of stress (6.1).
z̃: as a subscript, used to indicate the z̃-component of stress (6.1).

∆: refers to a differential in temperature (2.5a).
n ∈ Z: as a subscript, used to refer to an expansion in St (3.2), p̃ (6.26), or z (6.30).
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