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Abstract: This paper analyses the dimensions of the term structure and 
explains their associations with macroeconomic parameters that foretell 
financial crises. Five prominent financial economic indicators were found, 
collectively explaining the dynamics of bond yields. Data from China’s bond 
market from 2007 to 2019 were used to calibrate our model and hypothesis. 
The VAR model was adopted to explore in what direction and to what extent 
the early warning indicators of financial crises may effect changes in the term 
structure. Given its high complexity and the irregularity of its occurrence in 
different economies, it is usually a challenging task to quantitatively model 
financial crises. This challenge has been handled by an indirect approach 
introduced in the current study, linking the original limited sample size problem 
to a VAR-based model with abundant time series data. The findings provide an 
implementable scheme that may be used to design an early warning system of 
financial crises. 
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1 Introduction 

China’s economy has undergone rapid growth in the past 40 years. In the meantime, there 
has emerged a series of problems, including overcapacity in traditional industry (Li et al., 
2019), a high number of non-performing loans in the banking sector (Chen et al., 2018), 
and relatively low efficiency and turnover in the secondary security market (Han et al., 
2019), the solution to which is urgently needed for long-term economic growth and 
financial stability. On the other hand, all economies are increasingly integrated and 
intertwined, where the economic sentiment in one region will quickly ripple to other parts 
of the world. Abundant country-specific reviews of a large economic entity suffice to 
demonstrate the complex and interconnected nature of financial crises across different 
markets. Since the 1980s, there have been several major financial crises around the 
world, which have inspired scholars from various fields to endeavour to provide 
forecasting measures as well as to design monitoring schemes for financial crises. To 
date, the task is still open, due to different causalities and types of financial crises across 
different regions. One major challenge from an econometric modelling perspective is that 
the occurrence of financial crises, despite its significance to various economies, is highly 
irregular and the total sample size is rather small, limiting conclusions with reasonable 
statistical significance. 

The objective of the current paper is to provide an indirect route towards a 
theoretically well-founded and operationally easy-to-implement scheme to serve as an 
early warning system of financial crises by linking the prominent macroeconomic 
variables to the movement of the term structure of treasury bonds. The term structure of 
interest rates is not only the pricing basis of financial assets, but also mirrors the 
economic and financial conditions of a particular market (Aslanidis and Demiralp, 2020). 
At a microscopic level, it produces the risk-free benchmark interest rates of loans of 
different maturities in the market, so as to help investors implement asset pricing and risk 
management. At the macro level, the term structure of interest rates contains rich 
information on economic wellness. Practically, the term structure of interest rates reflects 
the liquidity of the market, which provides a channel for policymakers to transmit price 
signals to the market. One innovation of the current paper is the exploration of the  
 
 



   

 

   

   
 

   

   

 

   

    A VAR-based factor decomposition to the term structure of treasury bonds 587    
 

    
 
 

   

   
 

   

   

 

   

       
 

effectiveness of the term structure of interest rates to serve as an early warning of a 
financial crisis, an area which has not been well studied so far. The study uses the  
well-celebrated Diebold-Li model for data fitting as it overcomes the shortcoming of the 
bootstrap method in the requirement of the number of traded bonds. The model also 
solves the difficulty relating to spline functions where direct estimation of the forward 
interest rate beyond the maturity range of coupon-paying bonds is not possible. The 
Diebold-Li model (Diebold and Li, 2002), as shown in the paper, is superior to other 
classical models by better capturing the key factors of the term structure of interest rates 
with highly predictive ability and accuracy. After identification of the key properties of 
the term structure of interest rates, VAR models were implemented to investigate in what 
direction and to what extent the early warning indicators of a financial crisis will affect 
the term structure of treasury bonds. The impulse response and variance decomposition 
analysis sufficed to validate the proposed scheme. The results of our analysis show that 
the term structure of treasury bonds plays a critical role in the early warning of financial 
crises. Signs of financial crisis are analysable according to the change of key factors in 
the term structure of bonds. 

This paper is divided into five sections: Section 1 introduces the background and 
impact of the method. Section 2 reviews the main related literature in the field, 
particularly those relating to classical theories and modern models of the term structure of 
interest rates, and early warning indicators of financial crises. Section 3 focuses on data 
fitting using the Diebold-Li model, where a two-step method is implemented and proxy 
variables are constructed to enhance the model fit. In Section 4, we identify the five most 
predictive early warning indicators of a financial crisis (CPI, loan-to-deposit ratio, 
M2/M1, real effective exchange rate and P/E ratio) and implement them with a VAR 
model to explain the dynamic change of term structure of interest rates. In particular, 
impulse response and variance decomposition analysis are provided to explore in what 
direction and to what extent the early warning indications of financial crisis may 
influence the term structure of interest rates. Section 5 summarises the current research 
with discussions of future directions to perfect such a system in real financial practice. 

2 Literature review 

The term structure of interest rates is used to describe the relationship between interest 
rate and term-to-maturity. The yield curve has different shapes, which notably include 
quasi-flat, increasing, decreasing and humped shapes. Classical theories on the term 
structure of interest rate have existed since the 19th century, and can be divided into two 
major categories: pure expectation theory and risk premium theory (including liquidity 
premium, preferred habitat and market segmentation theories) (Taylor, 1991). The pure 
expectation theory proposed by Fisher is the cornerstone of classical theories on term 
structure dynamics. It assumes that the expectation of the future short-term interest rate is 
the only factor that affects the forward interest rate, where the long-term interest rate is 
the average of the expected short-term interest rate. Nowadays, pure expectation theory 
still plays an important role in the theoretical and empirical research of fixed income 
securities. Longstaff (2000) studied the short-term interest rate and concluded that  
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expectation theory could forecast the short-term and extremely short-term interest rates. 
Fama (1984) analysed the interest rate of 1–6 months in  US and documented evidence 
disagreeing with the expectation theory. Wu and Xie (2005) used regression and vector 
autoregression models to verify the term structure of interest rates in China’s government 
bond market. Shi et al. (2005) focused on the analysis of yield curve in different periods 
and found that before the Asian financial crisis, the CHIBOR rate (China inter-bank 
offered rate) supported the expectation theory, while after the financial crisis, it could not 
fully support the expectation theory. Wang and Wang (2010) analysed China’s market 
and came to the conclusion that both the short-term interest rate and the long-term 
interest rate do not support the expectation theory. 

Liquidity premium theory, one of the most widely used theories in the field of fixed 
income securities, was described by Hicks (1939) and Culbertson (1957). They modified 
the pure expectation theory by adopting the basic assumption of expectation theory (the 
expectation of future interest rate will affect the behaviour of investors), but rejected the 
other assumption of pure expectation theory (investors are indifferent between long-term 
securities and short-term securities). They introduced risk factors into liquidity premium 
theory, believing that the liquidity of short-term bonds is higher than long-term bonds. If 
investors are risk-averse, a preference for highly liquid bonds will drive interest rates 
lower on short-term bonds than on long-term ones. Horne (1965) concluded that in 
addition to the expected information, the forward rate should also include risk factors, 
which serve as the compensation for liquidity. Market segmentation theory was proposed 
by Culbertson (1957). It regards the bond market with different maturities as different, 
segmented markets and indicates that the yield of bonds with different maturities depends 
only on their own supply and demand relationship, not on other bonds. Under the 
influence of market segmentation theory, Modigliani and Sutch (1966) proposed the 
preferred habitat theory. They believe that the market is composed of a variety of 
investors with different preferred investment horizons, and each of them prefers to invest 
in a specific segment of the yield curve. Hence investors should be compensated if they 
move away from their preferred segments on the yield curve. If the supply-demand 
relationship is out of balance, the bond should be sold at a premium or discount on the 
basis of expected yield. The major drawback of this theory is that it ignores the important 
link between long-term and short-term bond markets. 

Classical theories on term structure of interest rate only describe the shape of and 
reasons for yield curve movement theoretically, but they cannot examine the specific 
meaning of yield curve movement from the quantitative perspective, and cannot guide 
micro investors to manage interest rate risk. Therefore, modern models on the term 
structure of interest rates mainly focus on the problem of how to fit and forecast the yield 
curve to price financial assets. The Bootstrap Method is a classical and direct method to 
derive the term structure of interest rates. It separates the coupons from the principal of a 
bond and makes them into individual ‘zero-coupon bonds’. The interest rate of the 
corresponding maturity can be derived from the yield of these ‘zero-coupon bonds’. This 
method is relatively simple and suitable for the developed bond market with complete 
product categories, accurate pricing and strong liquidity. In the underdeveloped bond 
market, deducing the term structure of interest rates with the bootstrap method may differ 
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greatly from the actual situation. Fama and Bliss (1987) proposed to separate coupons 
from coupon-paying bonds and calculate the yield to maturity of coupon-paying bonds by 
a recursive method. However, some studies have shown that while the short-term interest 
rates fitted by this method are more accurate, fitting the middle-term and long-term rates 
is not so good. The splines method uses the spline function to fit the discount factor and 
estimates the parameters by minimising the difference between the theoretical price and 
the market price of the sample bonds, thus estimating the discount function. Piecewise 
polynomial, exponential, and spline functions are usually used to fit the discount 
function. McCulloch (1971) proposed to fit the term structure of interest rate with a 
piecewise polynomial ( ) , 1, 2 .j

jf m m j k= = …  Langetieg and Smoot (1989) used an 
exponential discount function  ( ) ( )exp( )D t tR t= −  to fit the term structure of interest 
rates, but the parameter estimation was more complex. Shea (1984) first proposed to use 
a B-spline function ( ) ( )1

k
j jj

D t b g t
=

=∑  (where jb  is the spline parameter, k is the 
number of spline functions and ( )jg t  is the B-spline basis function) to estimate the 
discount function. Steeley (1991) first used a B-spline model to study the term structure 
of treasury bonds, and believed that the three-time B-spline model could ensure that the 
forward interest rate curve was smooth, which was also adopted by many researchers in 
succession. The Nelson-Siegel model (1987) uses Laguerre functions to construct the 
bond yield to maturity function with only four estimated parameters, which overcomes 
the shortcoming that the bootstrap method requires more trading bonds, and it solves the 
difficulty that the spline function method cannot directly estimate the forward interest 
rate beyond the maturity range of coupon paying bonds. The formula is as follows: 

( ) 11
0 1 2

1

1 1

1 exp1 exp( )
0, exp  R

θθ
ττ θθ β β βθ θ τ

τ τ

⎡ ⎤⎛ ⎞
− −− − ⎢ ⎥⎜ ⎟ ⎛ ⎞⎝ ⎠⎢ ⎥= + + − −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

 (1) 

where (0, )R θ  is the pure discount rate with maturity θ 0, β  is the level parameter (or the 
long-term rate), 1β  is the slope parameter (or the spread short/long-term rate), 2β  is the 
curvature parameter (or middle-term rate) and 1τ  is the scale parameter. 

Diebold and Li (2002) put forward a new model, which is conventionally called the 
DL or DNS model, by studying the dynamic variation of three factors of the Nelson-
Siegel model and making dynamic fitting and prediction for the term structure of interest 
rates. Substantial subsequent empirical research validated the predictive ability of the 
Diebold-Li model in comparison to classical dynamic models (Sari et al., 2019; 
Poghosyan and Poghosyan, 2019; Csepregi, 2020). In this paper, we choose the Diebold-
Li model for data fitting as it overcomes the shortcoming that the bootstrap method 
requires more trading bonds. It also solves the difficulty that the spline function method  
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cannot directly estimate the forward interest rate beyond the maturity range of coupon 
paying bonds. Moreover, the Diebold-Li model is superior to other classical models by 
capturing the key factors of the term structure of interest rates with higher predictive 
ability. Additionally, the model is relatively parsimonious and easy to implement with 
software. 

Research in early warning indicators of financial crises began in the 1960s. Haner 
(1969) designed a country risk index (CRI) for evaluating a country’s economic, political, 
social, environmental risks. The financial indicators include foreign exchange reserves, 
foreign exchange income, amount of foreign debt, structure of foreign debt, the state of 
foreign exchange control and government financing ability, etc. Bilson (1979) pointed 
out that leading indicators are economic indicators that can give an alarm before a crisis 
occurs. He selected 16 leading indicators of currency crises, all of which will change 
abnormally when financial risks are concentrated. Reinhart and Rogoff (2008) divided 
early warning indicators into economic growth, asset price and public debt, and obtained 
effective early warning indicators through relevant statistical methods, including GDP 
growth rate per unit of capital, current account/GDP, public debt/GDP, stock price and 
housing price. Chen et al. (2009) selected early warning indicators of financial crises 
from four aspects: risk of bubbles, financial market, macroeconomic environment and 
global economic environment. The early warning indicators with good predictive effect 
were selected according to the multi-order Granger causality test. 

3 Data and term structure fitting with Diebold-Li model 

This paper uses the data of spot rates published by China Central Depository and 
Cleaning Company, which adopted the Hermite interpolation method. After eliminating 
outliers, this method interpolates the cubic polynomial to obtain the yield curve. This 
method gives consideration to smoothness, flexibility and stability, and can better reflect 
the yield curve at different time points. This paper uses daily data on 13 maturities:  
1 month, 2 months, 3 months, 6 months, 9 months, 1 year, 3 years, 5 years, 7 years, 10 
years, 15 years, 20 years and 30 years. The time span for the data is from January 2007 to 
December 2019, a total of almost 13 years. All data are publicly and openly accessible at 
the website of China Central Depository and Cleaning Company at the time when the 
current research was done. 

As shown in Table 1, the fluctuation of short-term interest rate is significantly greater 
than that of long-term interest rate, and the range of short-term interest rate fluctuation  
is relatively large. The difference between the maximum and minimum values of the  
one-month spot rate is 5.87%, while the difference between the maximum and minimum 
values of the 30-year spot rate is only 2.12%. In addition, the average and median interest 
rates for different maturities meet the law that “the longer the maturity, the higher the 
interest rate; the shorter the maturity, the lower the interest rate”. According to the 
Jarque-Bera test, the null hypothesis that the distribution is normal is rejected with a 95% 
confidence level. 
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Table 1 Descriptive statistics of the data 

 1m 2m 3m 6m 9m 1y 3y 5y 7y 10y 15y 20y 30y 

Mean 2.38 2.51 2.55 2.63 2.67 2.72 3.06 3.28 3.47 3.59 3.87 4.01 4.14 

Median 2.29 2.55 2.59 2.68 2.75 2.80 3.06 3.22 3.44 3.54 3.83 3.99 4.12 

Maximum 6.58 5.64 5.11 4.37 4.25 4.25 4.50 4.53 4.67 4.72 4.91 5.10 5.20 

Minimum 0.71 0.76 0.80 0.82 0.83 0.89 1.24 1.73 2.12 2.64 2.94 2.98 3.08 

Std. Dev 0.82 0.77 0.76 0.73 0.72 0.72 0.60 0.52 0.47 0.46 0.41 0.42 0.40 

Skewness 0.56 – 0.04 – 0.20 – 0.39– 0.47– 0.49– 0.26 0.09 0.18 0.34 0.29 0.25 0.25 

Kurtosis 4.44 3.24 2.99 2.80 2.81 2.79 2.87 2.50 2.54 2.52 2.82 3.02 3.12 

Jarque-Bera 446.86 8.33 21.95 88.63 122.47 136.40 39.12 38.17 46.18 93.37 49.40 33.41 36.21 

P value 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

It can be seen from Figure 1 that since 2007, China’s bond market has experienced 
several obvious swings between bull and bear markets. From 2007 to the second quarter 
of 2008, the yield curve moved up on the whole. After that, it entered a great bull market 
for nearly a year, with yields close to historic lows. After the third quarter of 2009, the 
yield curve moved up. The bond market re-entered a bull market in the third quarter of 
2011. Since the third quarter of 2012, the yield curve moved up slowly and entered a bear 
market. The bond market entered a bull market again in the fourth quarter of 2013, and 
then entered a bear market in the third quarter of 2016. After 2018, the bond market 
entered a bull market again. 

Figure 1 Interest rates with different maturities (see online version for colours) 
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In addition, with more than a dozen maturities, it is difficult for us to use them all in 
empirical analysis at the same time. Therefore, we need to extract important factors from 
the term structure of interest rates to facilitate subsequent analysis. In statistics, principal 
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component analysis (PCA) is usually used to extract yield curve features to reduce 
dimensions, so as to obtain the principal components that can explain the variance of the 
yield curve. However, as yield curves at different time points usually change in the same 
direction (especially for those yield curves with very close maturities), the data is likely 
to be non-stationary. Therefore, the applicability of the PCA method is still questionable. 
Another method to fit the yield curve is the Nelson-Siegel model or its extended models. 
Those models not only have a strong theoretical basis, but also have a wide range of 
application. Therefore, this paper uses the Diebold-Li model (which is the re-
parameterised Nelson-Siegel model) to fit the term structure of Treasury bonds. The 
formula is as follows: 

( ) ( ) ( ) ( )1 exp 1 exp
 exp  t t t ty L S C

λτ λτ
τ λτ

λτ λτ
− − − −⎛ ⎞ ⎛ ⎞

= + + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2) 

where t is the observation date; τ is the time to maturity; ( )ty τ  is the observed yield; tL  
is the level factor (or long-term rate); tS  is the slope factor (or short-term rate); tC  is the 
curvature factor (or medium-term rate); and λ  is a parameter which determines the 
maturity at which the loading on the curvature is maximised, and governs the exponential 
decay rate of the model. 

We estimate the parameters using a two-step approach. First, it is customary to set 
λ = 0.0609, which means that the loading on the curvature is maximised at 30 months. 
Then, we use the ordinary least square (OLS) method to estimate level, slope, and 
curvature factors. This OLS is repeated for all observed yield curves to accumulate a 3D 
time series of estimates. Then we fit all 3 factors to a VAR (1) model simultaneously. 

As shown in Table 2, the mean value of tL  is 4.1527%. As a level factor, tL  
represents the level of long-term interest rates, indicating that the long-term interest rate 
of Treasury bonds is about 4.1527%. The mean value of slope factor tS  is –1.6423%, 
which represents the difference between short-term and long-term interest rates. t tL S+  
represents the short-term interest rate. According to Table 2, the sum of the two is 
2.5104%, indicating that the short-term interest rate of treasury bonds is about 2.5104%. 

tC  is the curvature factor whose mean value is –1.4925. As can be seen from Figure 2, 
 tL  has the most stable trend with the least fluctuation, indicating that the long-term 

interest rate of treasury bonds is relatively stable. The curvature factor tC  fluctuates the 
most. 

Table 2 Parameter estimates for DL model 

 Lt St Ct 
Mean 4.1527 –1.6423 –1.4925 
Median 4.1571 –1.4885 –1.4561 
Maximum 5.3975 1.4999 1.1018 
Minimum 3.0928 –3.5696 –6.9688 
Std. Dev 0.4165 0.7556 1.0961 
Skewness 0.2569 –0.7350 –0.5800 
Kurtosis 3.2462 3.4221 3.7623 
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Figure 2 Parameter Estimates (graph) (see online version for colours) 
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From Table 3, it can be seen that tL , tS  and tC  are correlated, and tS  and tC  are 
positively correlated, indicating that the difference between long-term and short-term 
interest rates and the curvature have a certain positive relationship. In addition, it also 
shows that the three factors affect each other. 

Table 3 Correlation analysis 

 Lt St Ct 
Lt 1   
St –0.208570 1  
Ct –0.079057 0.321609 1 

Following Diebold et al. (2006), we construct proxy variables by using market short-term 
(6 months), medium-term (5 years) and long-term (30 years) spot rates to test whether 

tL , tS  and tC  factors can well represent the shape of the term structure of interest rates. 

The proxy variable of level factor： ( ) ( )6 3 (20 )
 

3t

R m R y R y
Proxy L

+ +
=  

The proxy variable of slope factor： ( ) ( )6 20tProxy S R m R y= −  

The proxy variable of curvature factor： ( ) ( )2 3 (6 ) 20tProxy C R y R m R y= − −  

The correlation coefficient between proxy tL  and tL , proxy tS  and tS  proxy tC  and tC  
are 0.618475, 0.968113 and 0.796468 respectively. It can be seen from Figures 3–6 that  
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the trend of tL , tS  and tC  and the corresponding proxy variables is relatively consistent 
and highly correlated, so it is feasible to describe the term structure of interest rates by 
using tL , tS  and tC . 

Figure 3 Comparison between proxy Lt and Lt (see online version for colours) 
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Figure 4 Comparison between proxy St and St (see online version for colours) 
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Figure 5 Comparison between proxy Ct and Ct (see online version for colours) 
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Figure 6 Comparison between proxies and yield curve factors (see online version for colours) 
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4 Empirical analysis 

The design and selection of early warning indicators are critically related to the success 
of financial crisis prediction. Based on the survey of references on early warning 
indicator system of financial crises at home and abroad (Samiras et al., 2020; Wang et al., 
2020; Klopotan et al., 2018), this paper divides the early warning indicators of financial 
crises into the following three categories. The first category is macroeconomic indicators, 
including GDP growth rate, CPI, growth rate of industrial added value, rate of export 
change, etc. The second category involves performance and operations of financial 
system, including the following indicators: domestic credit/GDP, real interest rate, 
M2/GDP, M2 multiplier (M2/M1), loan-to-deposit ratio, savings deposit/M2, Banks’ 
foreign currency liabilities/GDP, growth rate of state foreign exchange reserves, 
M2/foreign exchange reserve, real effective exchange rate and foreign direct 
investment/GDP, etc. Lastly, financial bubble indicators are included: stock 
price/earnings ratio, securitisation ratio (market value of shares/GDP), change in rates of 
house price index and construction loan/bank loan, etc. 

Although the number of indicators listed above is large, many of them are highly 
correlated. In addition, limitations such as data availability and comparability (between 
different countries and periods) often make it unrealistic for some indicators to be 
included in the early warning system. In general, 1–3 indicators are selected from each 
category based on the content. Moreover, the results show that the quality of the early 
warning system of financial crises is not highly correlated with the quantity of indicators, 
but rather depends on the quality of the selected indicators and whether they can convey 
more valuable information. In summary of the above considerations, this paper selects the 
following five early warning indicators and further studies their effects on the term 
structure of Treasury bonds. 

1 CPI: It is a significant indicator measuring inflation, which is a general and sustained 
rise in the price level. In addition, CPI is also a significant indicator measuring the 
effectiveness of government policies. 

2 Loan-to-deposit ratio: It is one of the indicators measuring the liquidity risk of 
banks. The higher the ratio is, the more loan assets correspond to liabilities, the lower 
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the liquidity of the bank, and the more vulnerable the banking system as banks do 
not have sufficient current assets to cope with external shocks. 

3 M2 multiplier (M2/M1): An increase in the monetary multiplier means that the 
monetary base is amplified by monetary derivatives and the economic bubble is 
larger. 

4 Real effective exchange rate: It reflects the stability of currency value and the 
exchange rate risk. External vulnerability and currency overvaluation will increase 
the vulnerability of the banking industry, because the loss of competitiveness in the 
external market will lead to economic recession, business failure and decline in loan 
quality. A banking crisis can lead to a currency crisis. 

5 Price/Earnings ratio (Shanghai Main Board Market P/E Ratio): The accumulation 
and release of financial risks will be reflected through the stock market, and the 
outstanding manifestation is the abnormal fluctuation of asset prices. If asset prices 
fall sharply, financial assets will shrink and financial asset bubbles will burst, 
forming a large number of non-performing assets at financial institutions, worsening 
the economy, and triggering a financial crisis. 

This paper selects monthly data from 2007 to 2019 for empirical analysis. The data are 
from the official websites of the National Bureau of Statistics, the Shanghai Stock 
Exchange, the People’s Bank of China and the Bank for International Settlements. In 
order to eliminate the seasonal effect, the growth rate data used in this paper are all year-
on-year growth rates; that is, the percentage change of each variable over the same period 
of last year. In addition, in order to maintain the consistency of the data, the daily data 
used in Section 3 are converted into monthly data. Before building the VAR model, we 
need to test the stationarity of the time series so as to avoid spurious regression. This 
paper uses the ADF test for stationarity, the results of which are as follows: 

As can be seen from Table 4, the series of Lt, St and Ct are stationary at the 
significance level of 10%. The other five series are not stationary in themselves, but are 
stationary in the first-order difference. Therefore, the first-order differenced data are used 
for these five series. 

Table 4 ADF test results 

Level 1st difference 

 
t-

Statistic Prob.* 
Significance 
level of 10% t-Statistic Prob.* 

Significance 
level of 10% 

Lt –3.0240 0.0349 Stationary – – – 
St –2.8154 0.0584 Stationary – – – 
Ct –4.5089 0.0003 Stationary – – – 
CPI –2.4944 0.1188 Non-stationary –8.9445 0.0000 Stationary 
Loan-to-deposit 
ratio 

–1.6236 0.7793 Non-stationary –6.4124 0.0000 Stationary 

M2/M1 –1.5731 0.4939 Non-stationary –13.3082 0.0000 Stationary 
Real effective 
exchange rate 

–1.7952 0.3818 Non-stationary –7.7887 0.0000 Stationary 

Market P/E ratio –2.0679 0.2581 Non-stationary –5.7865 0.0000 Stationary 
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Next, we use Lt, St, Ct, DCPI (CPI after the first-order difference), DLDR (Loan-to-
deposit Ratio after the first-order difference), DM2/M1(M2/M1 after the first-order 
difference), DREER (Real Effective Exchange Rate after the first-order difference) and 
DP/E (Shanghai Main Board Market P/E Ratio after the first-order difference) to build 
our VAR (p) model. Through repeated comparison of information criteria such as AIC 
and SC as shown in Table 5, it is found that the VAR (2) model is most suitable. 

Table 5 VAR lag order selection criteria 

Lag LogL LR FPE AIC SC HQ 
0 –1107.300 NA 0.000537 15.17415 15.33689 15.24027 
1 –683.3351 796.0156 4.02e–06 10.27667 11.74137* 10.87179* 
2 –604.1481 140.0587 3.29e–06* 10.07004* 12.83670 11.19417 
3 –547.2667 94.41533 3.69e–06 10.16689 14.23551 11.82002 
4 –497.2274 77.61201 4.63e–06 10.35684 15.72741 12.53896 
5 –432.2117 93.76419 4.84e–06 10.34302 17.01555 13.05414 
6 –379.5418 70.22655 6.18e–06 10.49717 18.47165 13.73729 
7 –302.4842 94.35616* 5.90e–06 10.31951 19.59596 14.08863 
8 –238.3207 71.58386 7.06e–06 10.31729 20.89569 14.61541 

The vector autoregression estimates of the VAR (2) model are shown in the Appendix 
Table A1. As can be seen from that table, the estimates are significant at the 90% 
confidence level, and the R-square value of , ,t t tL S C  are 0.887952, 0.843516 and 
0.672894 respectively. We also need to determine the stationarity of the VAR (2) model. 
Only a stationary VAR model can carry out subsequent impulse response and variance 
decomposition. As can be seen from Figure 7, the reciprocal absolute values of the 
characteristic roots are all less than 1, and all the reciprocal values of the characteristic 
roots are within the unit circle, indicating that the model is stationary. 

Figure 7 Unit root test (see online version for colours) 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Inverse Roots of AR Characteristic Polynomial

 



   

 

   

   
 

   

   

 

   

   598 M. Zhao et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

The VAR model does not let us directly observe the effect of early warning indicators of 
financial crises on the factors  ,  , t t tL S C . Our purpose is to know in what direction these 
indicators effect the factors ,  , t t tL S C  and how much the effect can be, so we need to use 
the impulse response and variance decomposition method. We conduct the impulse 
responses with 12 periods, the results of which are shown in Figure 8. 

Figure 8 Impulse responses and the 0.95 confidence levels (see online version for colours) 
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As can be seen from Figures 8 and 9 and Table 6, the impact of DCPI, DLDR, DM2/M1, 
DREER and DP/E on , ,  t t tL S C  varies from each other. tL  has the largest response to 
DP/E, which reaches the maximum in the fourth period, and the smallest response to 
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DLDR, which reaches the minimum in the fifth period. When DCPI gives tL  a one-unit 
positive impact, tL  always responds negatively, and reaches the maximum response in 
the tenth period. When DLDR gives tL  a one-unit positive impact, tL  responds 
positively at first, then responds negatively and reaches the maximum response in the 
fourth period. Only a weak negative response exists in the twelfth period. When 
DM2/M1 gives tL  a one-unit positive impact, tL  responds negatively at first, then 
responds positively in the third stage, and reaches the maximum degree of the positive 
response in the fourth period. When DREER gives tL  a one-unit positive impact, tL  
responds negatively at first and reaches the maximum degree of response in the third 
period, and then responds positively in the fifth period. When DP/E gives tL  a one-unit 
positive impact, tL  responds negatively at first, then responds positively in the third 
period, and reaches the maximum degree of the positive response in the fifth period. 

Table 6 Impulse responses (table) 

Response of LT      
Period DCPI DLDR DM2⁄M1 DREER DP/E 
1 0.000000 0.000000 0.000000 0.000000 0.000000 
2 –0.009036 0.002972 –0.002992 –0.008230 –0.006069 
3 –0.005006 0.002956 0.017606 –0.012010 0.015801 
4 –0.000798 –0.004087 0.021871 –0.006606 0.015723 
5 –0.001221 1.59E–05 0.019982 0.000925 0.019486 
6 –0.004272 –0.000134 0.016966 0.005863 0.019361 
7 –0.008773 –0.000829 0.013078 0.008243 0.018075 
8 –0.011501 0.000353 0.010848 0.008793 0.016337 
9 –0.012867 0.000846 0.008972 0.008934 0.014699 
10 –0.013215 0.000854 0.007284 0.008759 0.012855 
11 –0.012789 0.000927 0.006116 0.008120 0.011315 
12 –0.011812 0.000845 0.005204 0.007130 0.009950 
Response of ST      
1 0.000000 0.000000 0.000000 0.000000 0.000000 
2 –0.006189 –0.027307 –0.032772 0.025941 0.017734 
3 0.000538 –0.015928 –0.053563 –0.031948 0.010256 
4 0.021490 –0.014384 –0.037348 –0.083008 0.022355 
5 0.047414 –0.015150 –0.032218 –0.098512 0.014619 
6 0.063532 –0.011056 –0.028745 –0.095094 0.016180 
7 0.068815 –0.013841 –0.025746 –0.087689 0.015185 
8 0.067036 –0.014411 –0.023287 –0.080988 0.014517 
9 0.063102 –0.012457 –0.020386 –0.074287 0.013569 
10 0.057541 –0.011014 –0.018593 –0.066255 0.012281 
11 0.051089 –0.009643 –0.017188 –0.057723 0.010588 
12 0.044428 –0.008210 –0.015619 –0.049660 0.009037 
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Table 6 Impulse responses (table) (continued) 

Response of CT 
Period DCPI DLDR DM2⁄M1 DREER DP/E 
1 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.111571 0.063919 0.005611 –0.107427 –0.017808 
3 0.145258 –0.074528 0.001839 –0.202480 0.009352 
4 0.181949 –0.045966 0.003944 –0.209137 –0.007140 
5 0.190662 –0.008145 0.004769 –0.176488 0.018902 
6 0.163807 –0.031290 –0.014874 –0.139147 0.017363 
7 0.129677 –0.027022 –0.019241 –0.114725 0.017339 
8 0.103052 –0.015524 –0.014893 –0.095559 0.018645 
9 0.079523 –0.013558 –0.016359 –0.075455 0.016252 
10 0.059967 –0.010421 –0.016472 –0.057695 0.012873 
11 0.044560 –0.007108 –0.014596 –0.043787 0.010447 
12 0.032759 –0.005568 –0.013105 –0.033409 0.007881 

tS  has the largest response to DREER, which reaches the maximum in the fifth period, 
and the smallest response to DP/E, which reaches the minimum in the twelfth period. 
When DCPI gives tS  a one-unit positive impact, tS  responds negatively at first, then 
responds positively in the third stage, and reaches the maximum degree of the positive 
response in the seventh period. When DLDR gives tS  a one-unit positive impact, tS  
always responds negatively, and reaches the maximum degree of response in the second 
period. When DM2/M1 gives tS  a one-unit positive impact, tS  always responds 
negatively, and reaches the maximum degree of response in the third period. When 
DREER gives tS  a one-unit positive impact, tS  responds positively at first, then 
responds negatively in the third period, and reaches the maximum degree of response in 
the fifth period. When DP/E gives tS  a one-unit positive impact, tS  always responds 
positively, and reaches the maximum degree of response in the fourth period. 

tC  has the largest response to DREER, which reaches the maximum in the fourth 
period, and the smallest response to DP/E, which reaches the minimum in the fourth 
period. When DCPI gives Ct a one-unit positive impact, tC  always responds positively, 
and the degree of response reaches the maximum in the fifth period. When DLDR gives 

tC  a one-unit positive impact, tC  responds positively at first, then it responds negatively 
and reaches the maximum degree of response in the third period. When DM2/M1 gives 

tC  a one-unit positive impact, tC  responds positively at first, then responds negatively in 
the sixth period. It reaches the maximum degree of response in the seventh period. When 
DREER gives tC  a one-unit positive impact, tC  always responds negatively and reaches 
the maximum degree of response in the fourth period. When DP/E gives tC  one-unit 
positive impact,  tC  responds negatively at first, then it rises and falls in the first five 
periods, and reaches the maximum degree of the positive response in the fifth period. 

Finally, we carry out the variance decomposition for the VAR (2) model, and the 
results are shown in Table 7. 
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Figure 9 Impulse responses (combined graphs) (see online version for colours) 
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The largest contribution to the variance of Lt is always Lt itself, which contributes 100% 
in the first period and decreases gradually after that. However, it still contributes 
94.18865% until the twelfth period, far higher than the contribution degree of any other 
variable. Among the five early warning indicators, the contribution of DP/E is the 
highest. It shows an upward trend in each period, and reaches the maximum value of 
1.320472% in the twelfth period. DLDR has the lowest contribution degree, and its 
contribution degree is the highest in the fourth period, with the maximum value being 
only 0.031563%. The largest contribution to the variance of St is always St itself, which 
contributes 95.42593% in the first period and decreases gradually after that. However, it 
still contributes 66.91858% until the twelfth period, far higher than the contribution 
degree of any other variable. Among the five early warning indicators, the contribution of 
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DREER is the highest. It shows an upward trend in each period, and reaches the 
maximum value of 9.414752% in the twelfth period. DP/E has the lowest contribution 
degree, and its contribution degree is the highest in the twelfth period, with the maximum 
value being only 0.388671%. The largest contribution to the variance of Ct is always Ct 
itself, which contributes 71.06433% in the first period. It still contributes 54.97702% in 
the twelfth period, far higher than the contribution degree of any other variable. Among 
the five early warning indicators, the contribution of DREER is the highest. It shows an 
upward trend in each period and reaches the maximum value of 14.44413% in the twelfth 
period. DM2/M1 has the lowest contribution degree, and its contribution degree is the 
highest in the twelfth period, with the maximum value being only 0.144342%. 
Additionally, we can find that the five early warning indicators have the largest impact on 
the curvature factor Ct, followed by the slope factor St. Therefore, we may find signs of a 
financial crisis by analysing the change of the slope factor St and curvature factor Ct. 

Table 7 Variance decomposition 

Variance decomposition of LT 

Period S.E. LT ST CT DCPI DLDR DM2⁄M1 DREER DP/E 

1 0.144912 100.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.227552 98.65013 0.304369 0.651514 0.157679 0.017064 0.017290 0.130817 0.071135 

3 0.287237 98.04632 0.281152 0.531188 0.129330 0.021303 0.386542 0.256917 0.347243 
4 0.329548 97.78470 0.220041 0.403952 0.098839 0.031563 0.734113 0.235367 0.491429 
5 0.359125 97.43627 0.219734 0.398174 0.084384 0.026578 0.927764 0.198858 0.708238 

6 0.380888 96.90937 0.346127 0.521590 0.087599 0.023640 1.023192 0.200481 0.888006 
7 0.396979 96.32061 0.535232 0.689548 0.129482 0.022199 1.050460 0.227670 1.024798 
8 0.409050 95.74493 0.728982 0.859035 0.201006 0.020982 1.059709 0.260634 1.124721 

9 0.418169 95.23238 0.904248 1.001053 0.287009 0.020487 1.060028 0.295037 1.199760 
10 0.425077 94.80384 1.057494 1.108300 0.374400 0.020230 1.055221 0.327986 1.252534 
11 0.430307 94.45796 1.188652 1.182486 0.453680 0.020205 1.049928 0.355667 1.291420 

12 0.434267 94.18865 1.300177 1.229663 0.519425 0.020217 1.045226 0.376166 1.320472 

Variance decomposition of ST 

1 0.317765 4.574074 95.42593 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.449315 5.536106 91.86268 1.191774 0.018975 0.369370 0.531986 0.333318 0.155788 
3 0.531395 5.601884 88.54126 3.344554 0.013668 0.353917 1.396333 0.599758 0.148631 
4 0.589606 5.304508 83.74054 6.194780 0.143952 0.346997 1.535480 2.469257 0.264482 

5 0.635368 4.855401 78.97916 8.738534 0.680844 0.355665 1.579388 4.530312 0.280694 
6 0.672868 4.468079 75.23981 10.51379 1.498581 0.344126 1.590758 6.036748 0.308104 
7 0.703370 4.168270 72.54173 11.61063 2.328616 0.353648 1.589764 7.078777 0.328568 

8 0.727646 3.959670 70.58030 12.27797 3.024581 0.369666 1.587882 7.853118 0.346810 
9 0.746566 3.820908 69.15612 12.66062 3.587637 0.379007 1.582984 8.450237 0.362487 
10 0.761047 3.734693 68.13672 12.87139 4.024057 0.385664 1.583000 8.889616 0.374864 

11 0.771947 3.688444 67.42086 12.98016 4.349225 0.390455 1.588188 9.199503 0.383166 
12 0.780046 3.672783 66.91858 13.03250 4.583777 0.393466 1.595471 9.414752 0.388671 
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Table 7 Variance decomposition (continued) 

Variance decomposition of CT 

Period S.E. LT ST CT DCPI DLDR DM2⁄M1 DREER DP/E 

1 0.643582 13.30133 15.63435 71.06433 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.761168 10.12741 11.37862 73.58821 2.148515 0.705189 0.005433 1.991891 0.054737 

3 0.870301 7.775774 8.769348 70.75841 4.429203 1.272741 0.004602 6.936502 0.053417 
4 0.954436 6.468885 7.544207 66.75537 7.316921 1.290189 0.005534 10.56889 0.050012 
5 1.012850 5.763487 7.408074 63.12790 10.04082 1.152129 0.007132 12.42122 0.079239 

6 1.052192 5.373083 7.997213 60.36019 11.72767 1.156017 0.026592 13.25858 0.100656 
7 1.078104 5.128881 8.726215 58.42328 12.61748 1.163936 0.057180 13.76128 0.121741 
8 1.095015 4.973119 9.360307 57.07975 13.11645 1.148363 0.073926 14.10108 0.147002 

9 1.105875 4.876195 9.872087 56.18247 13.37719 1.140950 0.094363 14.29102 0.165726 
10 1.112739 4.820894 10.26656 55.59748 13.50309 1.135689 0.115115 14.38409 0.177071 
11 1.117070 4.796098 10.55251 55.22056 13.55772 1.130949 0.131297 14.42642 0.184447 

12 1.119841 4.792633 10.74926 54.97702 13.57629 1.127831 0.144342 14.44413 0.188488 

5 Discussion 

The economics factors are often correlated with each other; thus it is unrealistic to 
assume the independence of the error term between different factors in the VAR model. 
For example, an increased average income may drive the consumption to a higher level. 
Also, the fluctuations of stock markets (hence the change of price to earnings ratio) are 
proved to be correlated with the fluctuation of CPI (Cai et al., 2009). Therefore, further 
insights could be achieved when correlations of the error term between factors are added 
into consideration in model diagnostics, the purpose of which is usually accomplished 
with the orthogonalised impulse response and variance decomposition. However, this 
method is known to be sensitive to the ordering of the factors given. To illustrate the 
reasoning for the sensitivity analysis, we follow the presentation similar to Lütkepohl 
(2005). Assume we are considering a VAR(n) model with p factors, or equivalently, a 
recursive relation for ( )1 2 3, , , ,t t t t tpX X X X X= …  where 

( )
1

      ~ 0,Σ  
n

t i t i t t
i

X A X WN−
=

= +∑ εε ε  (3) 

The positive definite property of the covariance matrix allows us to perform the Cholesky 
decomposition, which yields Σ  TLL=ε . We further denote ( ) Λ diag L =  to be the 
diagonal of the lower triangular matrix of L. Multiplying to the both sides of the tX  
equation of by 1Λ  L−  results in 
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( )1 1

1

Λ Λ
n

t p t i t i t
i

X I L X L A X v− −
−

=

= − + +∑  

where the covariance of tv  turns out to be ( ) ( ) ( ) 11 1 2Λ Λ Σ Λ Λ . T
t tv L L Lσ σ

−− −= = =εε  
Therefore, tv  is the uncorrelated noise that we wish to use as the economic shock in 

our experiments. Noticing that ( )1ΛpI L−−  is a lower triangular matrix with 0 on its 
diagonal term, a shock in the term tsX  will not have the instant current time impact for 

  tiX  with i s< . Therefore, 1tX  should be the term which has the immediate effect to all 
term 2 3, , ,t t tpX X X…  when it shocks. Follow this logic, 2tX  should be the term which 
has spontaneous effect on 3 , ,t tpX X… . In summary, the ordering of the factors is 
important to impulse response results and the variance decomposition. As it is hard to 
determine the order precisely, one may switch the order of factors in practice to test if the 
results are sensitive or invariant to the ordering. 

The Cholesky ordering used in our empirical analysis section is, by default,  
LT, ST, CT, DCPI, DM2/M1, DREER. We now change the ordering so that the  
new Cholesky ordering for the experiment is DCPI, DM2/M1, DREER, DLDR, DPE,  
ST, CT, LT, reflecting our conjecture of the chain of the economic force transmission 
under our model. We therefore perform the impulsive response and variance 
decomposition using this ordering and results are shown in Figure 10 and Table 8, 
respectively. 

It is shown from the impulsive response that the behaviours of DCPI, DLDR, DP/E 
change significantly in its pattern when we look at the response of LT, while the response 
pattern of the ST and CT does not vary significantly. Therefore, the results that we can 
still conclude are the shocks of DM2/M1 and DREER for the LT component of the yield 
curve while we should remain cautious for the other shocks which are sensitive to the 
ordering. For the short term and median term rate, all the impulse response remains 
relatively valid. The positive shock of DM2/M1 will drive down the long-term rate for a 
short period of time because the market is experiencing a booming business activity and 
investment and the expectation for the long-term economy is optimistic with high M2. 
However, due to the lack of consumption, the market soon realises that the increase in the 
investment is not proportional to the market consumption and demand with low M1. 
Hence there is a risk of economic bubble, and the long-term rate is driven up quickly. The 
influence of a positive shock in the exchange rate with respect to the rate might be 
explained by the interest rate parity partially, that is, ( )1  (1 )fi FR REER i+ = + , where 
FR represents for forward exchange rate, fi  represents for foreign interest rate. 
Therefore, there is a positive response of short-term rate with respect to the shock of the 
DREER. However, the economic reasons behind the long-term change and the change of 
long term rate after the shock of exchange rate is rather mixed. Therefore, we suggest a 
more careful examination in real practice. 
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Figure 10 Impulse responses (table) with Cholesky ordering of DCPI, DM2M1, DREER, DLDR, 
DPE, ST, CT, and LT (see online version for colours) 
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Another apparent pattern from the impulse response is that the surge of CPI will drive up 
the short-term and long-term rate to a large extent because the lenders are expecting a 
higher risk-free rate to compensate for the high inflation. Additionally, the impulse  
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response of the short term rate results showed that there is a negative relation between the 
stock market shock (P/E) and the short term rate. The results of such negative correlation 
between the stock market and the bond market are consistently empirically proved in 
previous studies, for example Baz et al. (2019). For the variance decomposition part, the 
results remain largely the same except for the long-term part. However, we can see from 
Table 8 by comparing to Table 7 that DM2/M1 remains a good predictive factor for the 
long-term rate while we are not sure of the validity of DP/E to predict LT after sensitivity 
analysis. DCPI and DREER remain the best indicators for ST and CT, as it is invariant to 
the Cholesky ordering. Therefore, we are more confident to use it as prediction. 

Table 8 Variance decomposition with Cholesky ordering of DCPI, DM2M1, and DREER 

Variance decomposition of LT 

Period S.E. LT ST CT DCPI DLDR DM2/M1 DREER DP/E 
1 0.144912 73.78169 4.882159 19.98622 0.041658 0.035443 0.012436 0.012897 1.247500 
2 0.227552 75.87091 6.777522 15.31175 0.069003 0.016096 0.025431 0.213077 1.716210 
3 0.287237 76.22376 6.468573 15.47279 0.045298 0.053581 0.345045 0.299150 1.091798 

4 0.329548 75.66508 6.004462 16.44164 0.040184 0.188186 0.587939 0.238636 0.833879 
5 0.359125 74.91707 5.432271 17.76174 0.035518 0.194674 0.725711 0.221756 0.711264 
6 0.380888 74.00705 4.918984 19.13449 0.034650 0.192411 0.774864 0.288134 0.649410 

7 0.396979 73.14772 4.545108 20.27061 0.063207 0.189873 0.772096 0.394883 0.616503 
8 0.409050 72.39148 4.282140 21.16427 0.120008 0.182613 0.763463 0.498905 0.597123 
9 0.418169 71.77677 4.097600 21.82530 0.192611 0.175829 0.752729 0.593500 0.585656 

10 0.425077 71.30207 3.967412 22.29672 0.268797 0.170548 0.740998 0.676119 0.577342 
11 0.430307 70.95168 3.875574 22.62212 0.339206 0.166530 0.730917 0.742403 0.571577 
12 0.434267 70.70469 3.811074 22.84084 0.398216 0.163559 0.722600 0.791524 0.567497 

Variance decomposition of ST 

1 0.317765 0.000000 97.19411 0.000000 0.056531 0.001179 1.512465 1.210809 0.024910 
2 0.449315 0.045922 92.44102 1.355939 0.120458 0.130481 3.681278 2.105181 0.119717 

3 0.531395 0.255501 89.42818 2.905459 0.097549 0.124805 5.517489 1.566725 0.104292 
4 0.589606 0.720912 85.56735 4.570224 0.159440 0.206872 5.846548 2.739941 0.188711 
5 0.635368 1.292014 81.37517 5.880346 0.610333 0.313760 5.925283 4.411762 0.191327 

6 0.672868 1.788630 77.98180 6.706028 1.348678 0.365433 5.908519 5.697827 0.203088 
7 0.703370 2.152064 75.48662 7.156699 2.113653 0.431230 5.890634 6.558025 0.211070 
8 0.727646 2.371722 73.68071 7.412537 2.759267 0.493087 5.877981 7.184679 0.220019 

9 0.746566 2.487041 72.39422 7.547348 3.283270 0.536327 5.857784 7.664782 0.229223 
10 0.761047 2.535710 71.49101 7.618561 3.689502 0.566696 5.848229 8.012687 0.237606 
11 0.771947 2.544384 70.87239 7.658004 3.991428 0.587038 5.850143 8.252591 0.244024 

12 0.780046 2.531733 70.45392 7.684315 4.208227 0.599868 5.857051 8.415789 0.249096 
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Table 8 Variance decomposition with Cholesky ordering of DCPI, DM2M1, and DREER 
(continued) 

Variance decomposition of CT 

Period S.E. LT ST CT DCPI DLDR DM2/M1 DREER DP/E 
1 0.643582 0.000000 8.497158 88.74292 0.000691 0.006024 0.052512 2.425803 0.274891 
2 0.761168 1.882845 6.074948 82.90035 2.163166 0.349364 0.055845 6.351314 0.222163 
3 0.870301 3.840404 4.976937 73.14902 4.442927 1.681498 0.160514 11.57061 0.178092 
4 0.954436 4.961674 4.714654 65.41829 7.320133 2.063168 0.191085 15.16801 0.162986 

5 1.012850 5.663335 5.255864 59.94415 10.00796 1.964656 0.195241 16.80976 0.159035 
6 1.052192 6.103087 6.187675 56.26871 11.65223 2.041564 0.336713 17.25432 0.155700 
7 1.078104 6.282496 7.129166 53.91245 12.50563 2.085739 0.482510 17.44392 0.158082 

8 1.095015 6.327427 7.925218 52.39233 12.97683 2.083460 0.564964 17.56182 0.167949 
9 1.105875 6.314289 8.543442 51.42876 13.21759 2.081208 0.641311 17.59650 0.176894 
10 1.112739 6.279076 9.012195 50.82741 13.32948 2.075583 0.705426 17.58780 0.183026 

11 1.117070 6.242301 9.355879 50.45370 13.37459 2.068575 0.751075 17.56599 0.187896 
12 1.119841 6.212907 9.597916 50.21976 13.38692 2.063123 0.784803 17.54345 0.191123 
Cholesky One S.D. (d.f. adjusted) 

Cholesky ordering: DCPI DM2/M1 DREER DLDR 
DP/E ST CT LT 

6 Summary and future work 

This paper advocates using dynamic changes in the term structure of interest rates to 
observe and assess the sign of financial and economic downturns, providing a 
computable framework for signalling and monitoring the financial crisis in an economy. 
The study first reviewed existing theories of the term structure of interest rate and the 
early warning indicators of financial crisis and identified key dimensions of the financial 
market for the purpose of financial stability and financial crisis prevention. The data of 
spot rates of Treasury Bonds in China’s market from 2007 to 2019 were used to validate 
the Diebold-Li model in fitting the term structure of interest rates. By constructing proxy 
variables, it is confirmed that the factors Lt, St and Ct are suitable to represent the long-
term interest rate, the difference between long and short-term interest rate and curvature 
respectively. Altogether, they effectively describe the shape of the term structure of 
interest rates. Five representative indicators, namely, CPI, loan-to-deposit ratio, M2/M1, 
real effective exchange rate and P/E ratio, were identified and incorporated in the 
construction of the VAR model for the design of an early warning system for financial 
crises. 

By impulse response analysis and variance decomposition, we found that the early 
warning indicators of financial crises have the most compelling effect on the curvature 
factor Ct, followed by the slope factor St, whereas little effect was observed on the level 
factor Lt. Among these five indicators, DREER (Real Effective Exchange Rate) 
contributed most to the slope factor St and the curvature factor Ct and DM2/M1 has a 
good potential for Lt prediction. In sum, the term structure of Treasury bond interest rates 
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plays a critical role in the early warning of a financial crisis. One can recognise and 
predict the signs of financial crises by analysing the change of the slope factor St and the 
curvature factor Ct of the term structure of interest rates. To be specific, the change of 
CPI and the effective exchange rate can be traced to make useful predictions and 
conclusions for the economic system, which is in line with much published research 
(Cushman, 1988; Gilchrist et al., 2017; Prowantaa and Ratnawati, 2018; Smallwood, 
2019). The negative relation between the medium- or short-term bond rate and the 
DREER, which is our most predictive factor, is consistent with the Table 1 reported by 
Hsing (2015), where the regression coefficient between the government bond yield and 
exchange rate is negative. Ping (2004) demonstrated (Figure 3 of the paper) that the 
impulse response of the inflation rate with respective to M2 is positive in the Ireland 
market, since high inflation expectation has positive correlation with the long-term bond 
rate. The result also implicitly agrees with our finding in the impulse response test of the 
long-term rate with respect to the shock in M2/M1. 

The idea of using bond yield dynamics as a barometer for financial markets or the 
economic outlook in general is not brand new. There have been abundant previous 
studies that either implicitly assumed such a premise in research (Demirgüç-Kunt and 
Detragiache, 1997; Zhuang and Dowling, 2002; Ercolani and Natoli, 2020; Samitas and 
Kenourgios, 2020; Suimon et al., 2020) or verified such observations with empirical data 
for various aspects of selected economies or markets (Yang, 2020; Bluwstein et al., 2020; 
Tillmann, 2020). In particular, it has been widely believed that the unusual movement of 
term structures, typically an inverted yield curve, may likely foretell a high probability of 
economic recession (Bauer and Mertens, 2018; Benzoni and Kelly, 2018; Quinn et al., 
2021). One recent example is that the US treasury bond market had seen inverted curves 
in 2019, leading to a downturn in the economic outlook by economists and market 
practitioners alike (Yilmaz, 2019; Tokic, 2019; Gräb and Titzck, 2020), which is largely 
consistent with what had been observed several months later in the economy, including a 
series of stimulus initiatives from the US Fed (Feldkircher et al., 2021). Another major 
world market, the Japanese financial market, also demonstrated similar inverted yield 
curves in recent years, followed by observable signs of recessions. 

Unlike “recession”, the meaning of which is broader and the measurement of which 
has established indices such as the well-known NBER recession index, the term 
“financial crisis” is lacking a strict definition. In reality, a financial crisis is declared 
when various economic parameters, notably GDP growth rate, CPI, and employment rate, 
simultaneously and greatly deteriorate. As such, there have not been many historically 
recognised financial crises. The 1929 and 2008 financial crises are arguably two major 
ones that have elicited the most extensive research. Depending on one’s perspective, 
there could be other incidents, such as the oil crisis and interest hike in late 1970s or the 
stock market crash in 1987, added to the list. Nevertheless, the total number of financial 
crises is definitely small from a standard econometric modelling point of view. In 
addition, economic growth may be influenced by unexpected rare events, possibly not 
considered by endogenous or exogenous models. For instance, the aforesaid 
countermeasures by the US Fed in response to the inverted bond yield curves in 2019 
have likely been overtaken by economic effects of the pandemic in 2020. Thus the real 
effect of the Fed’s response for improving the economy was not as measurable as in other 
economic cycles. 

Given such challenges, the approach introduced in the current paper is not only novel 
but also a realistic choice to shed insights on the economy of the contemporary era. One 
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limitation, though, is that there are many more economic indicators in reality to be 
included. But based on comparability and data availability, only five representative 
indicators among three categories (the macroeconomic indicators, the financial system 
indicators and risk of bubbles indicators) were selected by the current study. It could be 
the case that the selection of indicators is not yet comprehensive. Additionally, 
enhancement of technology in big data analysis and block-chain, for instance, may 
provide supplemental approaches to the early warning of financial crises, the study of 
which is a plausible future direction (Kou et al., 2019; Samitas et al., 2020). 
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Appendix 

Table A1 The vector autoregression estimates 

 LT ST CT DCPI DLDR DM2/M1 DREER DP/E 

LT(–1) 1.239197 0.077354 0.839092 0.212978 0.616159 –0.004942 –0.287350 1.099706 

 (0.08735) (0.19155) (0.38795) (0.28683) (0.38105) (0.03967) (0.63742) (1.85653) 

 [14.18621] [0.40384] [2.16289] [0.74252] [1.61700] [–0.12457] [–0.45080] [0.59235] 

LT(–2) –0.325357 –0.035071 –0.642649 –0.132906 –0.645353 0.031389 0.873750 –1.372032 

 (0.09060) (0.19868) (0.40238) (0.29750) (0.39523) (0.04114) (0.66114) (1.92561) 

 [–3.59104] [–0.17653] [–1.59710] [–0.44674] [–1.63286] [0.76289] [1.32158] [–0.71252] 

ST(–1) –0.013483 1.014051 0.475317 0.202808 0.240369 –0.005932 0.231269 –0.436852 

 (0.04188) (0.09183) (0.18599) (0.13751) (0.18268) (0.01902) (0.30558) (0.89004) 

 [–0.32197] [11.0427] [2.55566] [1.47487] [1.31580] [–0.31192] [0.75681] [–0.49083] 

ST(–2) 0.019860 –0.145731 –0.199614 –0.259181 –0.209678 0.028389 –0.090452 0.673701 

 (0.04303) (0.09437) (0.19112) (0.14131) (0.18772) (0.01954) (0.31403) (0.91462) 

 [0.46150] [–1.54431] [–1.04442] [–1.83416] [–1.11694] [1.45266] [–0.28804] [0.73659] 

CT(–1) 0.031660 0.094564 0.643465 0.283660 –0.010160 –0.007096 –0.054882 –0.554831 

 (0.02068) (0.04536) (0.09186) (0.06792) (0.09023) (0.00939) (0.15093) (0.43959) 

 [1.53069] [2.08496] [7.00489] [4.17662] [–0.11260] [–0.75544] [–0.36362] [–1.26215] 
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Table A1 The vector autoregression estimates (continued) 

 LT ST CT DCPI DLDR DM2/M1 DREER DP/E 

CT(–2) –0.036137 –0.014580 0.020458 –0.194426 0.037719 –0.003472 0.286829 –0.000798 

 (0.02015) (0.04418) (0.08949) (0.06616) (0.08790) (0.00915) (0.14703) (0.42825) 

 [–1.79341] [–0.32998] [0.22861] [–2.93856] [0.42912] [–0.37943] [1.95075] [–0.00186] 

DCPI(–1) –0.023710 –0.003133 0.183897 0.333232 –0.110610 –0.003053 –0.490362 0.266121 

 (0.02480) (0.05439) (0.11016) (0.08145) (0.10820) (0.01126) (0.18100) (0.52718) 

 [–0.95587] [–0.05760] [1.66933] [4.09132] [–1.02225] [–0.27104] [–2.70915] [0.50480] 

DCPI(–2) 0.019124 –0.020042 0.064642 0.005876 –0.104500 0.003772 –0.035754 –0.549856 

 (0.02402) (0.05267) (0.10667) (0.07887) (0.10477) (0.01091) (0.17527) (0.51048) 

 [0.79620] [–0.38054] [0.60599] [0.07450] [–0.99739] [0.34586] [–0.20400] [–1.07714] 

DLDR(–1) 0.005100 –0.029356 0.077297 –0.123167 –0.277206 –0.003827 0.300677 –0.320915 

 (0.01884) (0.04130) (0.08366) (0.06185) (0.08217) (0.00855) (0.13745) (0.40033) 

 [0.27073] [–0.71072] [0.92399] [–1.99136] [–3.37367] [–0.44738] [2.18754] [–0.80162] 

DLDR(–2) –0.016822 –0.011470 –0.135763 –0.028708 –0.247698 –0.006129 –0.273784 0.551724 

 (0.01851) (0.04058) (0.08219) (0.06076) (0.08073) (0.00840) (0.13504) (0.39330) 

 [–0.90902] [–0.28265] [–1.65189] [–0.47245] [–3.06841] [–0.72933] [–202747] [1.40279] 

DM2/M1(–1) –0.022951 –0.592929 0.417190 –0.331712 –1.994877 –0.146180 –2.313501 0.936968 

 (0.19524) (0.42813) (0.86710) (0.64109) (0.85168) (0.08866) (1.42469) (4.14951) 

 [–0.11755] [–1.38494] [0.48113] [–0.51742] [–2.34228] [–1.64871] [–1.62386] [0.22580] 

DM2/M1(–2) 0.306105 –0.268602 0.721544 –0.023716 –1.351949 –0.067257 2.222710 –2.418091 

 (0.19703) (0.43205) (0.87505) (0.64697) (0.85949) (0.08948) (1.43776) (4.18757) 

 [1.55358] [–0.62169] [0.82457] [–0.03666] [–1.57296] [–0.75167] [1.54595] [–0.57744] 

DREER(–1) –0.008600 0.027016 –0.108302 0.124915 0.010700 0.002493 0.442485 –0.166794 

 (0.01160) (0.02544) (0.05153) (0.03810) (0.05061) (0.00527) (0.08467) (0.24660) 

 [–0.74119] [1.06183] [–2.10168] [3.27864] [0.21141] [0.47317] [5.22611] [–0.67637] 

DREER(–2) 0.009922 –0.056487 –0.115205 –0.111530 –0.018587 0.001208 –0.149879 0.083827 

 (0.01219) (0.02673) (0.05413) (0.04002) (0.05317) (0.00554) (0.08894) (0.25905) 

 [0.81403] [–2.11347] [–2.12825] [–2.78670] [–0.34957] [0.21825] [–1.68515] [0.32360] 

DP/E(–1) –0.002012 0.005878 –0.005903 0.017132 0.035166 –0.002002 –0.025743 –0.084562 

 (0.00390) (0.00855) (0.01731) (0.01280) (0.01701) (0.00177) (0.02845) (0.08285) 

 [–0.51602] [0.68764] [–0.34093] [1.33834] [2.06791] [–1.13069] [–0.90497] [–1.02063] 

DP/E(–2) 0.007786 –0.000756 –0.002529 –0.006871 –0.017578 –7.78E–05 0.031129 0.176475 

 (0.00398) (0.00872) (0.01766) (0.01306) (0.01735) (0.00181) (0.02902) (0.08453) 

 [1.95755] [–0.08666] [–0.14317] [–0.52616] [–1.01319] [–0.04307] [1.07261] [2.08777] 

C 0.359774 –0.251802 –0.856038 –0.275052 0.343013 –0.085589 –1.737043 0.474114 

 (0.12835) (0.28144) (0.57001) (0.42144) (0.55987) (0.05828) (0.93655) (272778) 

 [2.80317] [–0.89470] [–1.50180] [–0.65265] [0.61266] [–1.46847] [–1.85472] [0.17381] 
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Table A1 The vector autoregression estimates (continued) 

 LT ST CT DCPI DLDR DM2/M1 DREER DP/E 

R-squared 0.887952 0.843516 0.672894 0.349815 0.260832 0.101698 0.358316 0.124441 

Adi. R-squared 0.874770 0.825106 0.634410 0.273322 0.173871 –0.003985 0.282824 0.021434 

Sum sq. resids 2.855920 13.73255 56.33095 30.79261 54.34522 0.588969 152 0720 1290.034 

S.E. equation 0.144912 0.317765 0.643582 0.475832 0.632137 0.065808 1.057439 3.079861 

F-statistic 67.36028 45.81871 17.48543 4.573194 2.999414 0.962295 4.746395 1.208080 

Loq likelihood 87.45225 –32.68141 –140.6593 –94.45562 –137.9139 208.2286 –216.6322 –380.1945 

Akaike AIC –0.920944 0.649430 2.060905 1.456936 2.025018 –2.49972 3.054016 5.192085 

Schwarz SC –0.584229 0.986146 2.397621 1.793651 2.361733 –2.163005 3.390731 5.528800 

Mean dependent 4.157966 –1.615521 –1.553796 0.001307 0.072876 0.003922 0.158301 –0.194837 

S.D. dependent 0.409495 0.759835 1.064406 0.558191 0.695484 0.065677 1.248654 3.113408 

Determinant  
resid covariance  
(dof adj.) 

1.95E-06        

Determinant  
resid covariance 

7.59E-07        

Log likelihood –658.7554        

Akaike  
information  
criterion 

10.38896        

Schwarz  
criterion   

13.08268        

Number of  
coefficients  

136        

 




