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Abstract

In this paper, a novel algorithm for determining the free exercise boundary for high-dimensional
Bermudan option problems is presented. First, a rough estimate of the boundary is constructed on a
fine (daily) time grid. This rough estimate is used to generate a more accurate estimate on a coarse
time grid (exercise opportunities). Antithetic branching is used to reduce the computational
workload. The method is validated by comparing it with other methods of solving the standard
Black—Scholes problem. Finally, the method is applied to two cases of Bermudan options with a
second stochastic variable: a stochastic interest rate and a stochastic volatility.

Keywords: Simulation; Bermudan options; exercise boundary; antithetic branching; stochastic interest
rate; Heston model.

1. Introduction

European options are financial contracts that grant the contract holder the right to
exercise the contract (i.e., sell or purchase the underlying asset) at a specified strike
price K only at the expiration date T of the contract. This lack of flexibility spurred
the creation of American options, which allow early exercise at any time t < T.

$Corresponding author.
Email addresses: Sdedwards @udel.edu

2250013-1


https://dx.doi.org/10.1142/S242478632250013X

D. Xie, D. A. Edwards & X. Wu

The added convenience and flexibility of an American option has a mathematical
downside: the values of American options are difficult to determine.

Consequently, it may not be easy to decide the time ¢ and asset price S, at which
the option should be exercised. In particular, there is an early exercise boundary
S, = B(t) which determines the hold and exercise regions; this boundary casts the
system as a moving boundary problem. The location of the early exercise
boundary is important for practitioners because it contributes to the price of
American-style financial derivatives, which are the most widely traded worldwide.
Due to this derivative’s significance and complexity, practitioners and researchers
have continuously studied the moving boundary problem for American options.

The optimal exercise boundary for an American option has been much studied,
particularly in the case of plain vanilla American options. The resulting ideas and
numerical methods can be divided into three approaches. One approach is to
formulize the problem with partial differential equations (PDEs), which are solved
backwards in time from the point of maturity. Using this approach, Barles (1995),
Kuske and Keller (1998), Stamicar et al. (1999), and Chen and Chadam (2007)
provide analytical asymptotic equations for the optimal exercise boundary. The
second approach is called the lattice method, and involves discretizing both ¢ and
S;; the binomial tree from Cox ez al. (1979) and the trinomial tree from Boyle ef al.
(1989) are the most commonly discussed variations of this method. Although these
two celebrated approaches have been widely applied to problems with low
dimensions, they have not been used in problems with high dimensions because
the computational time increases exponentially with dimension. To solve this
“curse of dimensionality”, a simulation approach was suggested in Boyle (1977),
and subsequently was analyzed by Bossaerts (1989), Grant er al. (1997), Andersen
(1999), and Ibanez and Zapatero (2004), among others. Our approach is a
breakthrough in that it combines the simulation of a forward-looking property and
dynamic programming with backward induction.

For the case of plain vanilla American put options, Fu (2001) provides nu-
merical comparisons of different algorithms using the simulation approach,
whereas Chen and Chadam (2007) stress different asymptotic results using PDEs,
especially for near-expiry scenarios. It is generally agreed that the most successful
method for this basic case appears to be the classical binomial tree method, as
assessed by the criteria of stability, convergence, accuracy, and the insensitivity to
extreme parameters (Sauer, 2012).

Bermudan options offer a compromise between the rigidity of the European
option and the mathematical complexity of the American option. In a Bermudan
option, early exercise is limited to a series of predetermined dates 7. In this paper,
we solve for the early exercise boundary of the Bermudan option using a simu-
lation approach. We provide a convenient but realistically powerful tool to

2250013-2



Optimal exercise frontier of Bermudan options by simulation methods
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Fig. 1. Nlustration of grids. The coarse estimate b will be calculated at each daily grid point ;.
The refined estimate B will be calculated only at the exercise dates 7, which correspond to every gth
daily point. (In this figure, g = 10.)

accurately estimate B(f) by using a two-step process. First, we construct a fine
daily mesh # on which we produce a rough estimate B(t;) = b; for the exercise
boundary. Then we calculate a more refined estimate B(7;) = B; on a coarse
(exercise) mesh consisting only of the early exercise dates (see Fig. 1).

Though the idea of using a Monte Carlo simulation is rather simple, its successful
implementation in this paper requires a novel algorithm design, as we pay careful
attention both to computing speed and convergence. For this purpose, an error
reduction scheme utilizing antithetic branching is applied in our algorithm.

In order to validate our approach, we use the standard Black—Scholes Bermudan
option to provide thorough numerical comparisons of our algorithm with both the
binomial tree method and asymptotic solutions of the PDE approach. This allows
us to establish the algorithm’s lower implementation cost and region of validity.

Accordingly, this paper is organized as follows. Section 2 introduces the
problem in the framework of the free boundary setting. Section 3 presents the
Monte Carlo simulation approach to find the optimal exercise boundary of Ber-
mudan options. The algorithm is formulated from a stochastic control perspective
and improved by an error reduction scheme, namely, antithetic branching. Then
Sec. 4 applies our method to an example of the Bermudan put option under the
Black—Scholes model, and provides comparisons of our simulation method to the
existing asymptotic and binomial-tree results. In Sec. 5, we use our model to
analyze the more complicated cases of Bermudan options with two stochastic
variables: either a stochastic interest rate or a stochastic volatility under the Heston
model (Heston, 1993). Our concluding remarks are given in Sec. 6.

2. Model Setup

We briefly outline the setup in the continuous-time context before introducing our
numerical scheme. At time ¢, denote the underlying asset price by S,. (We make the
standard assumption that S, is Markovian, i.e., the future asset prices depend on the
current time but not on prior times.) When the underlying asset price S, is equal to
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Table 1. Notation dependent on grid.

Notation
Continuous Time Daily Grid Exercise Grid Description
t 7 Ty =ty time
J J time index
B(1) b; B, exercise boundary
m = qM M time units at expiration
n N number of realizations/paths
i I index for realizations/paths
P,(s) p;(s) Py(s) payoff with asset price equal to s
R(t) R; exercise region
S, S; asset price
Vi(s) V,(s) option value underlying asset price equal to s
v(b ) option value with boundary starting at b :
6(}) €;(8) error value used to compute boundary

s, we denote the value and payoff of the option at time 7 by V,(s) and P,(s),
respectively.

At any possible exercise time 7, the option holder must compare V;(s) and P,(s).
If the option is worth more exercised than held, the buyer will exercise; this
relationship defines an exercise region R(t):

R(1) = {s|P,(s) > Vi(s)} (1)
which is bounded by an exercise boundary s = B(t):
B(1) = {s|P,(s) = Vi(s)}. (2)

The focus of this paper is to estimate B(¢) numerically for Bermudan options;
hence it is convenient to introduce two grids for time. First we construct a fine (daily)
mesh 7;, assumed to be spaced one day apart, for j =0,1,...,m (so t, is the
expiration date). Then we construct a coarse (exercise) mesh 7; of the exercise dates,
forJ =0,1,...,M (so Ty, is the expiration date). We assume that the exercise dates
are spaced g days apart, so T; = 1,;. We retain throughout this convention that capital
letters pertain to the exercise grid, while small letters pertain to the daily grid: see
Table 1. (The remaining notation is listed in Table 2.)

3. Computing the Optimal Exercise Boundary

Though the exercise boundary B(t) is defined for all time in the case of an
American option, for the case of a Bermudan option, we need only the values
B; = B(T)) at the exercise dates. However, since the exercise dates are widely
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Table 2. Other notation.

Notation Description

volatility in stochastic models

o o

realization set
transformed exercise boundary in asymptotic results

—~
B
~—

ratio of interest rate to volatility effects
time index for realization sets

time index

number of days between exercise dates

S QT S xS

interest rate

[

given asset price

)
=
2

boundary function in asymptotics

mean reversion rate in stochastic models
transformed time in asymptotics

correlation in stochastic models

volatility

scaled time to expiration

as a subscript on €, used to represent a threshold

% 3 QD M ox

used to refer to a long-term mean

used to refer to provisional values

used to refer to a discounted payoff

() used to refer to paths, realizations, or experiments

spaced, to obtain an accurate approximation, we need information about the values
b; = B(t;) on the daily mesh.

In this paper, we take a two-pronged approach. Since they are not the dates of
interest, on the daily mesh we construct only a rough estimate b;—we don’t waste
computational effort generating a highly accurate estimate. There are fewer exer-
cise dates, so we save our computational effort to generate highly accurate
boundary estimates there. That’s because these few dates are the only ones where
actual financial decisions must be made. Hence, we have balanced the computa-
tional cost between the two grids.

To calculate the boundary values, we use a method of backward induction (dy-
namic programming recurrence). In other words, we work backwards from the ex-
piration date, calculating the boundary along the way. As an introduction to the
algorithm, we consider the last early exercise date before maturity: / = M — 1. (Since
it is the final one, in this interval the Bermudan option behaves like a European one.)

3.1. Rough estimate: Final interval

We begin by computing the rough estimate for the boundary b;. For now, we focus
on the final interval between exercise dates: t € [Ty, Tyl = [typr—1)> tml-
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Suppose that we are given an asset price Sy_; = § (how we obtain the value will
be discussed in the next section). Given §, we then generate n separate realization
paths S S) of the asset price on the daily mesh (here i indexes the paths).

To find the boundary b; on the daily mesh for 7 € [f,/_1), %], We work
backwards from #,,. Therefore, at time ¢ we assume that all the b, have been
estimated for p > j. We next propose a value b; for b;. This sequence of boundary

values generates a proposed exercise region f?, for 1 > 1;:
Rj:R(bjabj+labj+29"'5bm—laK)7 (3)

where we have used the fact that b,, = K, since the exercise boundary always
terminates at the strike price.

Then for each realization S I(,i>, we need to know at what point 7, the option
would be exercised. In particular, we find the exercise set E, of all realizations for
which the option would be exercised at ,:

(b)

E

(b)) = {i|tp is the first time ¢ that S\ € Rj}

- {i|s,(j> ER, i & Ey(b;) forj< (< p}. (4)

We note that E, is specifically dependent on the choice of l;j. This may seem
strange since for any p > j, the boundary b, has already been determined. But the
realizations ip E,, will be determined by those not in Ej, and this latter set definitely
depends on b;.

This process is illustrated in Fig. 2 for a put option, where the exercise region is
below the boundary. In this case, i = 1 would then belong to Eysg(bayg), i = 2
would belong to Eass(byag), and so on.

Boundary and Realizations

100 F[— Realizations (Numbered)
=—o0—Boundary

95

90

Price

85

80

225 230 235 240 245 250
Time in Days

Fig. 2. One candidate for the rough boundary estimate b, along with four realizations of the asset
walk. Here j = 226, m = 250. We use the parameters in Eq. (12a) along with § = 87.5.
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Given this expression, we may compute the value of the option at #;, averaged
over all the realizations. In particular, we add up the values of the option under
each realization (indexed by i) and compute the average, which we denote v(b;):

~ 1 m B :
Wby ==>" > P(s)). (5)

P=J i€E, (b))
Some remarks about Eq. (5) are appropriate.

o Technically, v(b j) = Vi=,,(3), given that the boundary is b bty ..., by, We use
our notation since the variable of interest here is b;.

o The inner sum represents the payoffs of all realizations exercised at z,. If p > j,
the payoff value must be discounted back to #;. We use the tilde notation to
indicate that discounting.

From Eq. (2), we know that at the actual exercise boundary, V,(s) = P(s).
Therefore, it is natural to calculate the following error e:

~

e(by) = v(b)) — P(3). (6)

Then the estimated optimal exercise boundary b; is chosen to be the value lA)j such

~

that €(b;) is arbitrarily close to 0, i.e.,

where €, is an arbitrarily small number.
Therefore, the algorithm for the rough estimate is as follows:

1. Start with / = M — 1 and generate n realizations for the asset paths.

2. Start constructing the boundary with j = m — 1.

3. Construct an interval that contains the boundary values 1},- we wish to test. (In
practice,Athis interval is taken as [0, ;] since the boundary is monotonic.)

4. Choose b; as the midppint of the interval, and perform the procedure outlined
above to determine €(b;). A

5. If Eq. (7) is not satisfied, use the sign of ¢(b;) to bisect the interval of con-
sideration, and repeat until convergence.

6. Decrement j until we have covered all j values down to j = g(M — 1), which

corresponds to J = M — 1, the first early exercise date.

3.2. Refined estimate: Final interval

When the algorithm outlined above has been completed, we will have the complete
rough estimate for b; (and hence R;) on the daily mesh for the interval [tq(M_l), tm]
between the last two exercise dates. The left endpoint is also Tj,_;; we create a
more accurate estimate B),_; as follows.
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Given some value § of the asset price at the left endpoint S,,_1), we again
create a set of realizations for S on the daily mesh in this time period, this time N
separate realization paths S(/). With all the R; known, we calculate the average
option value as before:

Vi ( i 13(5,(,’)). (8)
Eq.

€E1J<bq(M4

Note the following differences from

)

o Note that j = g(M — 1), as we are solving on the exercise mesh.
o The hat is gone from the argument of the E sets, since b; is now assumed known.
Hence the arguments of the E sets are fixed, as we are now optimizing over &.

Then analogous to Eq. (6), we define a new error

em—1(8) = Vi1 (8) — P(5), )
and choose the estimated optimal exercise boundary B,,_; to be the asset price §
such that €,,_;(8) is arbitrarily close to 0, i.e.,

lem—1(By—1)| < €. (10)

3.3. The algorithm
Thus, the complete algorithm for the final interval is as follows:

(i) Construct an interval that contains the asset values § we wish to test. (In
practice, this interval is taken as [0, B, ] since the boundary is monotonic.)
(i1) Choose § as the midpoint of the interval, and run the algorithm in Sec. 3.1 to
determine b; for j € [¢(M — 1), m].
(iii) Then run the procedure outlined above to determine €,_(5).
(iv) If Eq. (10) is not satisfied, use the sign of €,,_;(§) to bisect the interval of
consideration for §, and repeat until convergence.

After the computation for the final period, we now have a refined estimate
By;_1, which is an approximation to B(Ty,_;). But now we can repeat the process
outlined above for the larger interval #; € [7,y_2), ], which will yield a refined
estimate of B,,_,. This process can be repeated worklng backwards until we reach
time ¢ = 0.

Note that there is no formal interpolation or projection of the results between
grids. Rather, the rough estimates for the b; are used directly in the algorithm in
Sec. 3.2 to generate the refined estimate B;.

We have to do n simulations on the daily mesh for each rough simulation; hence
computational efficiency is essential. Therefore, for the rough simulations, we use
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antithetic branching (Kroese et al., 2013, Sec. 9.2). In this method, simulations are
computed in pairs. The first is computed by a typical procedure with Wiener
process(es) dW, while the second is computed by replacing dW with —dW. Hence,
we need to generate only n/2 realizations to create n paths.

4. Numerical Results of Bermudan Put Option Under
the Black—Scholes Model

Though we eventually want to use our method when the volatility or interest rate is
stochastic, for validation purposes we begin by specializing to the case of standard
Black—Scholes. In particular, we consider a Bermudan put option with standard
payoft function

P(s) =max(K —5,0)= (K —s5)T = P(s)=e "™ (K—s5)", (lla)

from which we have that the exercise region is given by

R(t) = {s|s < B(1)}. (11b)
We choose the following Black—Scholes parameters:
K =100, r=0.05, o=023. (12a)

We assume that the option has an expiration date 250 days in the future, and the
option can be exercised every 25 days:

dt=——, m=250, q=25 = M=10. (12b)

Thus, the exercise boundary values that need to be estimated are {bj},zig and

{B,}}%. For our simulations, we take
n=20000, N =50000, ¢, =103, (12¢)

With these parameters, we first choose an arbitrary S5 = § and 13249; then the
very first step would be the calculation of Eq. (5):

A (i) —r M \*
v(baww) = 55050 .GE% )(100—5249)+.€E% )e d’(100—5250) .
1C€L249(D249 1&L250(D249
(13)

given §. Note the following:

o At expiration, the boundary is the strike price, which is why K is the argument
of the E.
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o In this case, a realization falls in Eyq (5249) if S §29 < byyg, and in E250(I;249)
otherwise: hence there is no 4+ superscript on the first term.

To compute b,49, we perform the algorithm as outlined in Sec. 3.1, stopping

when Eq. (7) is satisfied for e, = 1073, or when the interval of possible b is
narrower than 1073, Then by repeating the same process (working backwards) for
trag, 147, - - - » tao5, We obtain the boundary in Fig. 2.

To compute By, let {bj}}j‘;% be the previously calculated boundary shown in
Fig. 2. For simplicity of exposition, suppose only the N = 4 paths shown are
simulated. Then looking at each path individually, observe that paths 1-4 cross
into the exercise region at j = 230, 235, 241, and 250, respectively. In this
case, Eq. (8) becomes

1
Vo(s) = 5 {(100 _ 5513%)@*<2307225)rdt n (100 N 5523)5)67(2357225)”#

+ (100 _ Sgi)l)e—(%l—zzs)rdt i (100 _ Sg‘;)o>e—(250—225)rdt}_

The boundary By is the stock price § such that
| Vo(s) — (K — 8)"| < 0.001, (14)
where we have used the value in Eq. (12c).

In reality, we use N = 50000 paths. Repeating the algorithm described above
(working backwards) for 7;, we obtain the refined estimate {B;} 19, on the ex-
ercise mesh. In order to reduce the possibility of spurious results, we perform the
experiments 40 different times and declare the boundary to be the mean of the
results.

The results for the standard Black—Scholes case are shown in Fig. 3. We note
that the full curve B(7) is constructed using simple linear interpolation; the rough

Refined Estimate on Exercise Mesh

Price

0 50 100 150 200 250
Day

Fig. 3. Refined estimate for full range of ¢.
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Refined Estimate on Exercise Mesh Refined Estimate on Exercise Mesh

100 +
00 fr—— =250 100 [[——7+=10.050
——0 = 0.500 ——r = 0.075
[|——0=0.750 ——7 =0.100

Price
Price

Fig. 4. Left (a): Exercise boundaries with parameters as in Eq. (12a), but with o = 0.25, 0 = 0.5,
and o = 0.75. Right (b): Exercise boundaries with parameters as in Eq. (12a), but with r = 0.05,
r=0.075, and r = 0.1.

estimates b; are not used. The convexity of the curve is justified by many prior
studies. Testing the curve for accuracy is performed in Sec. 4.1.

We illustrate the dependence of the boundary on the Black—Scholes parameters in
Fig. 4. Figure 4(a) shows the effect of the underlying asset volatility o. As expected,
the exercise boundaries with smaller volatility stay above those boundaries that have
larger volatility. That is, given high volatility, the asset prices dramatically fluctuate
and early exercise is preferable only if the asset price is quite low.

In Fig. 4(b), as the value of the risk-free interest rate r increases, so does the
exercise boundary. With a higher interest rate on risk-free assets, it is cost-effective to
exercise the options for higher values of S, even though this means a smaller payout.

4.1. Comparisons with prior results

To establish the suitability of the antithetic branching technique, we compare the
results from a simple Monte Carlo simulation with » = 10000 and N = 50000
realizations to those from the antithetic branching technique, where those same
realizations can be leveraged into n = 20000 paths in a similar computational time.
For each method, we performed 40 experiments, then computed the mean and
standard error in the boundary position.

In Fig. 5, we present the difference between the mean and standard error of the
two methods versus exercise date. The difference is quite small, and of course
the antithetic branching approach gives more simulations in a smaller amount of
time. Hence, for the rest of the paper, we use only antithetic branching for our
approximations.
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Difference Between Antithetic
Branching and MC Results

0.08 B Mean
|
0.06 O Std. Error
0.04 [ ]
u o
0.02 u o o
| ] | |
0 (e} o (o]
L] 50 100 150 200
-0.02 | ]
o (o]
-0.04 |
-0.06
-0.08 ]
-0.1

Fig. 5. Difference between the antithetic branching and simple Monte Carlo approach for the mean
and standard error of B;. Parameters are as in Eq. (12a).

Since the Bermudan put under Black—Scholes has been computed using other
methods, we may use it as a benchmark to demonstrate the accuracy of our
approximation. In particular, we compare our approach (results in Fig. 3) with the
binomial tree from Cox et al. (1979) and approximations made by using the partial
differential equations from Chen and Chadam (2007).

We embed the binomial tree method in Cox er al. (1979) into our algorithm.
That is, when calculating the boundary, we simply replace the Monte Carlo ap-
proach with the binomial tree method. In particular, By is found by continuously
calculating Vy($) until Eq. (14) is satisfied. Once the binomial tree values of B;
have been calculated, they may be compared to our previous estimates (see Fig. 0).

Comparison of Methods

b 114
100 —— Antithetic
—e—Binomial
Il Difference 112
90
10
)
g 80T 18 £
8 3
= 3]
[a 16 k=)
70+ A

4.7152
3693 42266 4.0655
S 4620
3.0667
2.5917

0 50 100 150 200 250
Day

Fig. 6. Plots of exercise boundary using our method and the binomial tree method, using the left
scale. Columns represent the error between the methods, using the right scale.
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After comparing the boundaries obtained by the traditional binomial tree
method and our simulation, we can draw the conclusion that our method is
satisfactory, as the trends of the two boundaries are similar and the gaps between
the two boundaries are small. In particular, the small change in the slope causes the
two boundary estimates to converge as time runs backward from expiration
(though the gap is never more than 5%). Thus, our estimate works better as time
goes on.

Our method provides a conservative estimate for retaining the option: that is,
the gap between the boundaries represents a larger exercise region for our method.
The relatively larger boundary values obtained by our simulation can be blamed on
the nature of the uncertainty caused in the Black—Scholes model. One can see that
the general shape of the two boundaries is similar even though the boundary values
derived from the binomial tree are relatively lower than the corresponding values
derived from antithetic branching.

Though these results are promising, we further test our algorithm by comparing
its approximations to the exercise boundary with asymptotic approximations
obtained from the Black—Scholes equation. Let

2 t —t 2
— % B(t) = Ke '), a(r) = [f(477)] .
Kuske and Keller (1998) derived the result that
22 2a 2r
Imk‘rate™ ~ 1, 7—-0; k=—, (KK)
o

which captures the dominant behavior of «, in particular that

2a(T)
im =
0 | log 7|

Chen and Chadam (2007) proved that as 7 — 0,a(7) has a more general as-
ymptotic expansion based on Merton’s solution for the infinite horizon problem
for the Bermudan put option:

I e + 2kel/*log(1 + k1)
= —a—log (%[) e szz)—i—log( vo folla >, (CC)

where
& =log (\/M)

The error for this estimate is less than 2 x 1073 at any time within 3 years of
expiration.
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Methods Compared

100 (- Antithetic
o--- Binomial

o KK
——CC

95

Price

0 50 100 150 200 250
Day

Fig. 7. Exercise boundaries for the Bermudan put using the parameters in Eq. (12a) for four different
algorithms.

We compared the solution using our antithetic branching algorithm to the an-
alytic solutions in (KK) and (CC); Fig. 7 contains a graph. The boundaries by the
method of CC are viewed as “standard” solutions to the optimal exercise boundary
for the Bermudan put option; note from Fig. 7 that the binomial-tree method is the
most accurate. As observed, the boundary obtained by antithetic branching per-
forms better than the KK method, even though it performed more poorly than the
method of binomial trees.

Overall, these results give us confidence that our novel method can be used to
accurately estimate the exercise boundary for Bermudan options, even in the case
where there is more than one stochastic variable.

5. Nonstandard Examples of the Exercise Boundary of Bermudan
Options

In the following subsections, we take advantage of our algorithm to obtain the
exercise boundary for the Bermudan put option in two cases of higher dimensions.
First we consider a stochastic interest rate following the CIR model (Cox et al.,
1985). Second, we consider a stochastic volatility following the Heston model
(Heston, 1993). It is worthy to note that there is a tradeoff between the dimension
of the boundary problem, the accuracy of the model and the computational time
required to generate the boundary. For instance, the computational time for the
Heston model is double the corresponding time for the Black-Scholes model, in
part because the dimension of the Heston model is 2 and the Black-Scholes
model’s dimension is 1.
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5.1. Exercise boundaries of Bermudan put options with stochastic interest
rates

Empirical evidence and studies show that the interest rate in the derivative
market is dynamic and follows different stochastic models. Thus, obtaining the
exercise boundary of the Bermudan put option under a stochastic interest rate is
of practical interest. Typically, the interest rate follows the Vasicek model (Vasicek,
1977) or the CIR model (Cox et al., 1985). The latter model is used in this
paper, i.e.,

ds, = r,S, dt + S,a[\/l “p2awV v paw @], Sy=s, (151
dr, = Kk(F — ) dt + cr,dW?, oy >0, (15b)

where {W,<i), t <T}, i=1,2 are two independent Wiener processes. Here p €
[ —1,1] is the correlation between the stochastic asset price and the stochastic
interest rate, 7 is the long-term mean of the interest rate, and x measures the rate at
which a deterministic value would approach it. Lastly, ¢ measures the size of the
stochastic effects, and {7, c, s} all satisfy the conditions that guarantee the exis-
tence of unique positive solutions for S, and ,.

We repeat the computational setup from the previous section, i.e., the Bermudan
put option with 11 exercise opportunities and 40 different experiments. The sto-
chastic interest rate is assumed not to correlate with the underlying asset, i.e.,
p = 0. Hence Eq. (15a) is replaced by

ds, = r,S,dt + oS, aw V. (16)

We present three examples of the stochastic interest rate process: low-mean re-
version and low volatility (x = 0.5, ¢ =0.03), high-mean reversion and low
volatility (x = 1, ¢ = 0.03), and high-mean reversion and high volatility (x = 1,
¢ = 0.06). In order to better compare with the constant-interest case, we took the
initial rate r, to be equal to the long-term rate 7.

The results are shown in Fig. 8. Compared with the boundary for a con-
stant interest rate, the boundary with a stochastic interest rate is nearly identical.
Though not shown, the standard errors are also very close (with a deviation
of less than 0.1 from the constant case). Hence we can conclude that the
parameters of the CIR model have little effect on the optimal exercise boundary.
This result agrees with Ibanez and Zapatero (2004), who concluded that
assuming a stochastic interest rate process does not have a large impact on
the price of put options because it is primarily influenced by the boundary
position.

2250013-15



D. Xie, D. A. Edwards & X. Wu

Mean Boundary Difference, 7 = 0.05

0.06 ——k = 0.50, ¢ = 0.03
——k = 1.00, ¢ = 0.03
—a—k = 1.00, ¢ = 0.06

Difference

0 50 100 150 200 250
Day

Fig. 8. Difference between mean of B; in the stochastic interest rate context Eqs. (15b) and (16) and
the case with constant r. Other parameters are as in Eq. (12a).

5.2. Exercise boundaries of Bermudan put options under the Heston model

Few works in the literature have discussed the exercise boundary for the Bermudan
put option under stochastic volatility models, as the dimension of the problem has
now increased. Such models are of great interest, as empirical research has proved that
the volatility of the asset price in a financial market is not constant. However, such
models are difficult to analyze. The method of partial differential equations is far more
difficult to apply in this case. Levendorskii (2004) prices the Bermudan put option
using Lévy processes, and Beliaecva and Nawalkha (2010) provide a “tree” approach
to price Bermudan options under low-dimensional stochastic volatility models.

We use our algorithm to find the exercise boundary for the Bermudan put under
the Heston model. In this case, the variance of the stock price is no longer constant
but follows a CIR process, i.e.,

ds, = 1S,dt + S,0, /1= pZaw!" + paw |, s,=s,  (17a)
do? = k(62— 02) dt + co,dW, 09> 0, (17b)

where the variables are defined in analogous manner to those in Eq. (15). The only
change is that in order for & to be the long-term mean of o, we change 7 to 52 in
Eq. (17b).

Again we repeat the computational setup from the previous section, i.e., the
Bermudan put option with 11 exercise opportunities and 40 different experiments.
The stochastic volatility is assumed to correlate exactly with the underlying asset,
i.e., p = 1. Hence, Eq. (17a) is replaced by

ds, = rS,dt + S,0,dw. (18)
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Fig. 9. Difference between mean (left) and standard error (right) of B; in the stochastic volatility
context and the case with constant o. Here we use Egs. (17b) and (18) with ¢, = 0.3; the remaining
stochastic model parameters are in the legend. Other parameters are as in Eq. (12a).

Three examples of the stochastic volatility process with an unchanged long-term
rate of volatility are presented: low-mean reversion and low volatility of volatility
(k = 0.23, ¢ = 0.2), high-mean reversion and low volatility of volatility (x = 0.8,
¢ =0.2), and high-mean reversion and high volatility of volatility (x = 0.8,
¢ = 0.5). In order to better compare with the constant-volatility case, we took the
initial rate o to be equal to the long-term rate 7.

The results are shown in Fig. 9. At left we plot the difference between the mean
boundary in the stochastic volatility and constant volatility cases using the same
procedure as the one illustrated in Fig. 8. The differences are more pronounced
than in the stochastic-interest case, and are generally negative. In other words, due
to the increased variation in the volatility, the buyer should hold the option longer,
in hopes of a further decrease in the asset price. Not surprisingly, the deviations are
largest for the case of high ¢, where the stochastic effects are largest.

This same behavior with increasing ¢ is shown at the right of Fig. 9, which
shows a plot of the difference of the standard error in the same circumstances.
Since oy has the same value as in the constant-volatility case, the deviations start
off small, growing larger over time before resetting to zero at expiration.

To determine the effect of the long-term mean & on the boundary, we consider
the case of low mean reversion and low volatility of volatility (x = 0.23, ¢ = 0.2).
We generate the values of the boundary with both & = 0.2 and & = 0.3; the results
are shown in Fig. 10.

We compute the mean boundary difference as in Fig. 9. Since ¢ is small, we see
that the deviations are small. We note that in the case & = 0.2, g, is quite a bit
larger than the long-term mean at first. Thus there is a larger deviation from the
constant-volatility case where o = 0.3. This mismatch means that the volatility is
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Fig. 10. Difference between mean of B, in the stochastic volatility context and the case with constant
0. Here we use Egs. (17b) and (18) with k = 0.23, ¢ = 0.2, gy = 0.3. Other parameters are as in
Eq. (12a).

larger than the long-term mean for a longer period of time. This period of increased
volatility causes the boundary to shift (slightly) upward, indicating that the buyer
should exercise earlier than in the constant-volatility case.

6. Conclusions and Further Research

In this paper, we described how to determine the optimal early exercise boundary
for a Bermudan option, for which early exercise can happen only at select dates.
We exploit this structure by constructing only a rough boundary estimate on the
daily grid. On the coarse grid of early exercise dates where accurate data is actually
needed, we use extra simulations to generate a more refined estimate. To reduce
the variance and lengthy computational time, antithetic branching is used for the
rough estimates.

To test our method, we consider a Bermudan put option under the Black—
Scholes model. We compare the numerical results from our algorithm with results
from the binomial tree method and certain analytical asymptotic results from the
PDE approach. The comparisons show that our algorithm is both effective and
accurate, though it slightly overestimates the boundary compared to the binomial
tree method. It is important to note that we have limited the exercise opportunities
in this paper, as our algorithm has this problem: the computational time scales
exponentially as the number of exercise opportunities grows.

However, the advantage that our method has is that it can easily be adapted to
more complicated situations where Black—Scholes does not apply, and the bino-
mial method is too computationally expensive. In particular, we studied the case of
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stochastic interest rates under the CIR model and stochastic volatility under the
Heston model. By changing the parameters in the models, we can easily see their
effect on the evolution of the early exercise boundary. The numerical results show
that introducing a stochastic component to the interest rate has hardly any impact
on the values of the exercise boundary. In contrast, introducing a stochastic
component to the volatility induces larger changes to the boundary.

These results indicate that our method can be used to examine the early exercise
boundaries for a wide range of problems. Further research will involve expanding
the number of different models considered, as well as working to optimize our
code’s speed and efficiency.
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