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Quasisteady models for weld temperatures in fused filament fabrication
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During fused filament fabrication (FFF), strands of hot extruded polymer are layered onto a cooler
substrate. The bond strength between layers is related to the weld temperature at the polymer/substrate
interface, and hence understanding temperature evolution is of keen interest. A series of increasingly
sophisticated models is presented: a standard heat equation, an unsteady fin equation and a fin equation
with a heat-loss jump condition. Each is analytically tractable and uses a quasisteady approximation for
the temperature in the growing substrate. The jump condition introduces the complication of a non-self-
adjoint problem, but fits the experimental data very well.

Keywords: 3-D printing; fused filament fabrication; heat equation; weld temperature; non-self-adjoint
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1. Introduction

Additive manufacturing is incredibly popular for various types of production in many industries, such as
aerospace (Najmon et al., 2019), consumer devices and gadgets (Gibson et al., 2009), medical and dental
devices (Arslan-Yildiz et al., 2016; Noort, 2012) and housing construction (Hager et al., 2016; Wu et al.,
2016). In the process called fused filament fabrication (FFF, commonly called 3-D printing), the desired
object is composed of extruded polymer layers stacked on top of one another. Not surprisingly, the
primary mode of failure for such objects is delamination of the layers. Therefore, in order to guarantee
strength of the object as a whole, the individual layers must be securely bonded to one another (Coasey
et al., 2020; Davis et al., 2017).

The strength of the bond is related to the weld temperature; that is, the temperature at the interface
between adjacent layers. The extruded layers have high curvature (Coasey et al., 2020; Seppala &
Migler, 2016), so initially the contact area between the new layer and the previously extruded layers
(which we shall call the substrate) is quite small. However, at a hotter weld temperature, the molecules
relax more quickly, creating a bonding region that is more pliable and fluid-like. When combined
with processing conditions that press the new layer onto the substrate, this increases the number of
entanglements formed across the layer-substrate interface driven by the reconfiguration of molecules:
hence the layers fuse together more tightly (Luo et al., 2021; Rashid & Koç, 2021; Sun et al., 2008;
Turner et al., 2014; Yang & Pitchumani, 2002).

Much work has been devoted to intricate computer simulations of temperature profiles throughout
the substrate (Baeza-Campuzaño & Castano, 2021; Behdani et al., 2020; Costa et al., 2015; D’Amico
& Peterson, 2020; Das et al., 2021; Lotero et al., 2017; Mu et al., 2015; Nath et al., 2020; Rashid &
Koç, 2021; Xia et al., 2018). Though these efforts provide detailed results, it can be difficult to interpret
their dependence on material and experimental parameters, which is key to process optimization. For
such purposes, more tractable analytical models can provide useful results (Edwards & Mackay, 2020;
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Edwards et al., 2019; Luo et al., 2020; Percoco et al., 2021; Sitison & Edwards, 2020; Thomas &
Rodríguez, 2000).

Following the successful work in Coasey et al. (2020), we present a series of one-dimensional
models for a single stack of extruded layers. (Though this is not the typical production geometry (Costa
et al., 2015; Xia et al., 2018), we use it so that we may compare our results to the experimental data
in Seppala et al. (2017).) At regular intervals, another layer is deposited, extending the domain. At that
point, the problem is ‘reset’ with a new initial condition. Since the time scale for deposition is longer
than for diffusion, we assume a quasisteady approximation where the substrate comes into thermal
equilibrium before the next layer is applied.

In section 2 we present a basic model consisting of the heat equation within the layers that can be
solved using separation of variables. The calculated weld temperatures do not match with experimental
data, in large part because heat loss from the sides of the substrate is ignored. However, the mathematical
computations from this section provide the foundation for the more sophisticated models.

In section 3 we incorporate heat loss from the sides of the substrate by using the fin equation.
Using this more sophisticated model aligns the computations with the experimental data for most of the
duration of the experiment. However, there is still a discrepancy for small time which we hypothesize is
related to heat loss due to curvature in the applied layer.

Therefore, in section 4 we incorporate a more realistic layer cross section to the fin model. By
imposing a jump condition at the top weld, we encounter an eigenvalue problem that is no longer self-
adjoint. We compute the adjoint eigenfunctions en route to performing the weld calculations. The results
fit well with the experimental data, yielding material parameters which are consistent with values given
in the literature.

These results can help practitioners better understand the relationship between weld temperature and
laminate strength, with an eye to enhancing the durability of materials fabricated using FFF.

2. The basic model

During the FFF process, polymer layers (height L) extruded from the ‘hot end’ of the 3-D printer
are pressed onto a substrate consisting of previously applied layers (see Fig. 1). Though often in the
production of a 3-D printed object, several stacks are placed side-by-side to increase durability, in the
experimental data we wish to fit, the layers form a single stack of length w (Seppala et al., 2017).
When exiting the hot end, the polymer has a circular cross section (Phan et al., 2018) which is then
deformed into a more capsule-like form (Coogan & Kazmer, 2020) as the hot end presses it into the
substrate. Different models for the layer shape may be found in the literature (Bellehumeur et al., 2004;
Gilmer et al., 2019). Following the successful analysis in Coasey et al. (2020), we use a one-dimensional
geometry, with z̃ measuring the height of the stack (note this is equivalent to choosing a rectangular cross
section, as in Gilmer et al. (2021)).

The temperature obeys the dimensional heat equation

ρcp
∂T̃

∂ t̃
= k

∂2T̃

∂ z̃2 , (2.1)

where T̃ is the temperature, ρ is the density, cp is the heat capacity and k is the thermal conductivity.
The layers are stacked on top of a build plate, which occupies the region z̃ < 0 and is maintained at a
temperature T̃p, where the subscript ‘p’ stands for ‘plate’. Therefore, we require that (2.1) hold only for
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Fig. 1. Schematic of stack. Left: Three-dimensional idealization. Right: One-dimensional model .

positive z̃, and impose the boundary condition

T̃(0, t̃) = T̃p. (2.2)

As it exits the hot end, each deposited layer is heated to some temperature T̃h, where the subscript
‘h’ refers to ‘heater’. The layers are laid down at regular intervals, spaced tl apart, where the subscript
‘l’ refers to ‘layer’. Thus the spatial domain for the problem increases stepwise in time (see Fig. 2).

This discussion motivates the following scalings:

t = t̃

tl
, z = z̃

L
, T(z, t) = T̃(z̃, t̃) − T̃p

ΔT
, ΔT = T̃h − T̃p. (2.3)

Substituting (2.3) into (2.1) and (2.2), we obtain

∂T

∂t
= α2 ∂2T

∂z2
, α2 = ktl

ρcpL2
= printing interval

diffusion time
, (2.4a)

T(0, t) = 0. (2.4b)

Here α2 is the thermal diffusivity.
If n layers have been applied, then z̃ = nL is the surface where the topmost layer is exposed to the

room air. At that surface, a Robin-type radiation condition applies:

−k
∂T̃

∂z
(nL, t̃) = h[T̃(nL, t̃) − T̃e],



294 D. A. EDWARDS

Fig. 2. Sequence of layers as applied (dimensionless).

where h is the heat transfer coefficient and T̃e ≤ T̃p is the external temperature (hence the subscript ‘e’).
Note the negative sign on the left-hand side to make the signs of the fluxes balance. Substituting (2.3)
into the above equation, we have

∂T

∂z
(n, t) = −ν[T(n, t) − Te], n − 1 < t < n; ν = hL

k
, (2.5)

where we have used the same convention as in (2.3) to remove the tilde from Te, which is negative. Also
note the range of time for which (2.5) holds is limited, ending as the next layer is added.

Similarly, the problem ‘resets’ after every unit of time, with a new ‘initial’ condition being imposed
as the result of adding the layer. In particular, the nth layer is added at time t = n−1 (see Fig. 2). Hence
the temperature at that time is given by the previous temperature in the substrate, and the heated value
in the added layer:

T(z, (n − 1)+) =
{

T(z, (n − 1)−), 0 < z ≤ (n − 1),
1, n − 1 < z ≤ n,

(2.6)

where we have used (2.3) to simplify the second line. (We note that all of our analysis will hold in the
case where n = 1 and the first line of (2.6) is neglected.)

2.1 The quasisteady approximation

In order to understand better the dependence of our solutions on the material and experimental
parameters in the problem, we want those solutions to be as analytically tractable as possible. To
that end, we introduce the quasisteady approximation. To wit, we note from the Appendix that in
the experiment we are attempting to match, the layers are laid down around 7 s apart. This gives the
temperature in the substrate time to equilibrate before the next layer is laid down.
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Therefore, we approximate the temperature of the substrate at time n by its steady state:

T(z, (n − 1)−) = T(z, ∞) ≡ σn−1(z), 0 < z < n − 1. (2.7)

Here the subscript n − 1 refers to the fact that it is the steady state for n − 1 layers occupying the region
0 < z < n − 1.

For later purposes, it is more convenient to solve for σn; substituting T(z, t) = σn(z) into (2.4a) and
(2.5), we have

d2σn

dz2
= 0,

σn(0) = 0, (2.8a)

dσn

dz
(n) = −ν[σn(n) − Te], (2.8b)

the solution of which is

σn(z) = νTez

1 + nν
.

2.2 The Fourier solution

Given that the problem ‘resets’ with a new initial condition every time a new layer is applied, it is
convenient to introduce the new variable

τ = t − (n − 1). (2.9)

(Technically, we should call the variable τn, but for simplicity of interpretation, we suppress the
subscript n unless necessary.) Moreover, since we have solved for the steady-state solution separately,
we introduce the new variable ψ , which tracks the transients:

T(z, t) = σn(z) + ψ(z, τ). (2.10)

Substituting (2.10) into (2.4a) and (2.5) yields the following:

∂ψ

∂τ
= α2 ∂2ψ

∂z2 , 0 ≤ z ≤ n, τ > 0, (2.11)

ψ(0, τ) = 0,
∂ψ

∂z
(n, τ) = −νψ(n, τ). (2.12)
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The system for ψ is homogeneous; letting ψ(z, τ) = F(τ )u(z), we obtain

F′ + α2λ2F = 0 �⇒ F = exp
(
−α2λ2τ

)
, (2.13)

where the eigenvalues λ are determined by the system

u′′ + λ2u = 0, (2.14)

u(0) = 0, (2.15a)

u′(n) = −vu(n). (2.15b)

Solving (2.14) subject to (2.15a) yields

u(z) = sin λz, tan λn = −λ

ν
, (2.16)

which has an infinite number of positive solutions, as required.
Then using the standard separation-of-variables form, we have

ψ(z, τ) =
∞∑

m=1

cm exp
(
−α2λ2

mτ
)

sin λmz, (2.17)

cm = 1

||um||2
∫ n

0
ψ(z, 0) sin λmz dz, (2.18a)

||um||2 =
∫ n

0
sin2 λmz dz = 1

2

(
n + cos2 λmn

ν

)
. (2.18b)

Substituting (2.7) and (2.10) into (2.6), we obtain

ψ(z, 0) =
{
σn−1(z) − σn(z), 0 < z ≤ n − 1,
1 − σn(z), n − 1 < z ≤ n.

(2.19)

Then computing the cm, we have

||um||2cm = H(n − 1) − H(n), H(y) = νTe

1 + yν

∫ y

0
z sin λmz dz + cos λmy

λm
, (2.20)

H(n) = (1 − Te) cos λmn

λm
, (2.21a)

H(n − 1) = νTe sin λm(n − 1)

λ2
m[1 + (n − 1)ν]

+ [1 + ν(1 − Te)(n − 1)] cos λm(n − 1)

λm[1 + (n − 1)ν]
. (2.21b)

It can be shown that (2.20) holds even in the case where n = 1.
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2.3 Data fitting

To validate our model, we compare to experimental data from Seppala et al. (2017). In keeping with the
notation used in that paper, let W1 be the temperature of the topmost weld (z = n − 1) and W2 be the
temperature of the next weld (z = n − 2; see Fig. 2). In an experiment, the weld temperature cannot be
measured directly; instead, it is inferred as the average of the midpoint temperatures of the layers above
and below. Therefore, the weld temperatures are given by

W1(τ ) = T(n − 1/2, τ) + T(n − 3/2, τ)

2
, (2.22a)

W2(τ ) = T(n − 3/2, τ) + T(n − 5/2, τ)

2
, n > 2. (2.22b)

Substituting (2.10) and (2.17) into (2.22a), we have

W1(τ ) = σn(n − 1) +
∞∑

m=1

cm exp
(
−α2λ2

mτ
)

sin λm(n − 1) cos
λm

2
. (2.23a)

Here the first term simplifies because σn(z) is linear, while the summands simplify due to a trigonometric
identity. Similarly, (2.22b) becomes

W2(τ ) = σn(n − 2) +
∞∑

m=1

cm exp
(
−α2λ2

mτ
)

sin λm(n − 2) cos
λm

2
, n > 2. (2.23b)

The experimental data we fit come from Seppala et al. (2017), Fig. 2a, with n = 9 and adjustments
as discussed in the Appendix. For all the data fitting, we used 15 modes of the Fourier solution and
the lsqcurvefit function in Matlab. Moreover, since the convergence of the Fourier series slows
noticeably for smaller values of τ , we fit only those data points with τ > 0.02.

A data fit for two welds is shown in Fig. 3. In this simulation, ν is fit and α is chosen to be the lower
bound in Table A2. Note that in contrast to the experimental data, there is a wide gap in the solution
between the first and second weld temperatures. Hence we conclude that this model, though it may seem
to fit the data for a single weld (Coasey et al., 2020), is not sophisticated enough to model multiple weld
temperatures. (We present it nevertheless because much of the mathematical work will be used in the
more refined models to follow.)

3. The unsteady fin equation

In the model (2.4a), the only mechanism for heat loss is at the exposed end z = n. This then leads to a
build-up of heat in lower levels of the substrate, which causes the behaviour seen in Fig. 3. In particular,
the weld temperature lower in the stack is higher than the weld temperature involving the top layer.

But recall that in the real experiment, the layers form a stack which is exposed to room air not only
at x = n, but all along the sides (see left of Fig. 1). In order to model this additional heat loss, we may
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Fig. 3. Plot of two-weld, one-parameter fit of (2.23a) to data in Seppala et al. (2017) with n = 9. Here α is fixed at the lower
bound in Table A2.

use a fin-equation model (Bird et al., 1960, §9.7):

ρcp
∂T̃

∂ t̃
= k

∂2T̃

∂ z̃2
− P

A
h(T̃ − T̃e),

where P is the perimeter and A the area of the fin cross section orthogonal to the z̃-axis. Bellehumeur
et al. (2004) use a travelling-wave frame to reduce the PDE to the steady version. However, as we want
to track the temperature variations as each layer is applied, we solve the full unsteady version.

Therefore, if we assume that each layer has a square cross-section as it exits the extruder (see left of
Fig. 1), then P = 2L + 2w, A = Lw, and we have

ρcp
∂T̃

∂ t̃
= k

∂2T̃

∂ z̃2 − 2L + 2w

Lw
h(T̃ − T̃e). (3.1)

We again remark that the true cross section of the extruded polymer is circular; however, it is common
to approximate the cross section as a square for computational simplicity (Nath et al., 2020).

The one-dimensional model is obtained by taking w → ∞. Using the scalings from before in that
limit, we obtain

∂T

∂t
= α2 ∂2T

∂z2 − 2α2ν(T − Te), (3.2)



QUASISTEADY MODELS FOR WELD TEMPERATURES IN FUSED FILAMENT FABRICATION 299

where we have used the parameter definitions in (2.4a) and (2.5). We note that a typical 3-D printed
object may consist of several layers applied side-by-side (Bellehumeur et al., 2004; Costa et al., 2015),
limiting heat loss to just one side. This would then change the coefficient 2 in the last term of (3.2) to 1.

3.1 Computing the solution

All of the other boundary and initial conditions remain the same, so we again look for a steady state,
replacing (2.10) with

T(z, t) = s(z) + e−2α2νtψ(z, t), (3.3)

where the form of the second term is motivated by the new sink term. Substituting (3.3) into the fin
equation (3.2), we have

α2 d2s

dz2
− 2α2ν(s − Te) = 0, (3.4)

which holds subject to (2.8). Solving (3.4) subject to (2.8a), we obtain

sn(z) = Te

[
1 − cosh(

√
2ν(n − z) + θ)

cosh(n
√

2ν + θ)

]
, (3.5)

where θ is a constant obtained by substituting (3.5) into the remaining boundary condition (2.8b):

tanh θ =
√

ν

2
. (3.6)

Equation (3.6) has a real positive solution for ν < 2, which is consistent with the parameters in the
Appendix.

Now substituting (3.3) into (3.2), we obtain the following:

∂ψ

∂t
= α2 ∂2ψ

∂z2 ,

which is exactly (2.11). Similarly, since (3.5) satisfies the boundary conditions in (2.8), the conditions
in (2.12) also hold. So (2.17) holds.

In (2.19), we must replace σ by s:

u(z, 0) =
{

sn−1(z) − sn(z), 0 < z ≤ n − 1,
1 − sn(z), n − 1 < z ≤ n.

Then computing the cm, we have

||um||2cm =
∫ n−1

0
[sn−1(z) − sn(z)] sin λmz dz +

∫ n

n−1
[1 − sn(z)] sin λmz dz (3.7a)
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= Te[K(n) − K(n − 1)] + (1 − Te)[cos λm(n − 1) − cos λmn]

λm
, (3.7b)

K(y) = 1

cosh(
√

2νy + θ)

∫ y

0
cosh(

√
2ν(y − z) + θ) sin λmz dz. (3.8)

Computing the K terms, we find the following:

K(n) − K(n − 1) = (ν sin λm(n − 1) + λm cos λm(n − 1)) cosh θ

(2ν + λ2
m) cosh(

√
2ν(n − 1) + θ)

. (3.9)

3.2 Data fitting

Next we consider the weld temperature. Given that the steady state is no longer linear, the sn terms must
retain their arguments, while the sum term simplifies as before. Thus we have

W1(τ ) = sn(n − 1/2) + sn(n − 3/2)

2
+ e−2α2νt

∞∑
m=1

cm exp
(
−α2λ2

mτ
)

sin λm(n − 1) cos
λm

2
, (3.10a)

W2(τ ) = sn(n − 3/2) + sn(n − 5/2)

2
+ e−2α2νt

∞∑
m=1

cm exp
(
−α2λ2

mτ
)

sin λm(n − 2) cos
λm

2
. (3.10b)

We compare the solutions with experimental data in Fig. 4. In this case, we fit both ν and α. Note
that with this model, the two weld temperatures converge to nearly the same temperature, as expected.
The fit heat transfer coefficient is much smaller in Fig. 4 than in Fig. 3. This is also expected, since in
the previous model heat could escape only through the exposed surface z = n, which forced the heat
transfer coefficient larger to accommodate the heat loss. In the fin model, with heat being lost along the
entire height of the stack, the heat transfer coefficient is much lower, and is consistent with the values
in the Appendix.

4. Leakage at the first weld

The remaining deficiency in the fit is the overshoot in the second weld temperature for small time. In
other words, the fin model overstimates the heat flowing from the applied layer to the substrate.

The reason for this as follows. In contrast to the left of Fig. 5, the layer does not come out of the
extruder in a square shape, though it is often modelled that way (Nath et al., 2020). Rather, it comes
out in a circular shape which is then pressed into the substrate below, deforming both parts (Coogan &
Kazmer (2020); Luo et al. (2021); see right of Fig. 5). Thus, only a portion of the width of the layer is
in contract with the substrate, which reduces the heat transfer.
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Fig. 4. Plot of two-weld, two-parameter fit of (3.10). Here α is fit as well.

Fig. 5. Schematic of weld structure. Left: first idealization. Right: second idealization.

This contact can be modelled by changing the assumed shape of the layer (Bellehumeur et al.,
2004; Gilmer et al., 2019). However, we prefer to retain the assumed square shape while imposing an
additional boundary condition on the solution at z = n − 1:

∂T

∂x
((n − 1)−, t) = β

∂T

∂x
((n − 1)+, t), 0 ≤ β ≤ 1. (4.1)
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Here β is the heat retention coefficient, which is one in the case of continuity of flux, which we assumed
previously. For β < 1, the ‘missing’ heat can be thought of as leaking out through the portion of the
lower surface of the layer not in contact with the substrate. Naturally, T is assumed to be continuous at
z = n − 1.

One may ask why we impose such a condition only at z = n − 1, rather than at welds deeper
in the substrate. From an experimental perspective, we note that the discrepancy in the fit holds only
for short times. Therefore, we expect that any errors from adding the new hot layer would swamp
those percolating upward from the substrate (which would presumably take longer to propagate). From
a physical perspective, we know that as time passes, the contact area for any particular weld should
increase. This is a result of the temperature causing the weld to ‘heal’, as well as the increased pressure
resulting from the placement of additional layers (Coogan & Kazmer, 2020; Gilmer et al., 2019; Luo et
al., 2021). Hence we use the same quasisteady approach as before for the substrate.

4.1 The steady state

For notational convenience, we replace (3.3) by

T(z, t) = S(z) + e−2α2νtψ(z, t). (4.2)

Hence (3.4) and (2.8) hold; satisfying these equations along with continuity of temperature at z = n−1,
we obtain

Sn(z) = sn(z) +
{

Bs>(n − 1)s<(z), 0 < z < n − 1,
Bs<(n − 1)s>(z), n − 1 < z < n,

(4.3)

s<(z) = sinh(z
√

2ν), (4.4a)

s>(z) = cosh(
√

2ν(n − z) + θ), (4.4b)

where B is an as-yet-undetermined constant. For the steady state, (4.1) becomes

S′((n − 1)−) = βS′((n − 1)+). (4.5)

Substituting (4.3) into (4.5) and solving, we have the following:

B = (β − 1)s′(n − 1)

Jn(β)
, (4.6a)

Jn(β) = s>(n − 1)s′
<(n − 1) − βs<(n − 1)s′

>(n − 1). (4.6b)

Note that if β = 1, B = 0 and our results reduce to those in the previous section. To do the computations
for the fitting, we need to work through all the details using (3.5) and (4.4a), yielding

B = β − 1

Jn(β)

Te

√
2ν sinh(

√
2ν + θ)

cosh(n
√

2ν + θ)
, (4.7a)
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Jn(β) = √
2ν

[
cosh(

√
2ν + θ) cosh((n − 1)

√
2ν) + β sinh((n − 1)

√
2ν) sinh(

√
2ν + θ)

]
. (4.7b)

4.2 The transient solution

The same adjustment process has to be used for the eigenfunctions. In particular, the system (2.14),
(2.15) now has to be augmented by

u′((n − 1)−) = βu′((n − 1)+), (4.8)

with continuity of u at z = n − 1. Solving (2.14) subject to (2.15a) and continuity at z = n − 1, we
obtain

u(z) =
{

sin λz sin λ(n − 1 − φ), 0 < z < n − 1,
sin λ(n − 1) sin λ(z − φ), n − 1 < z < n,

(4.9)

where φ is a constant shift factor. Substituting (4.9) into (2.15b) yields

λ cos λ(n − φ) = −ν sin λ(n − φ), (4.10a)

which defines φ for any λ. Similarly, substituting (4.9) into (4.8), we have the following:

tan λ(n − 1 − φ) = β tan λ(n − 1). (4.10b)

Equations (4.10) close the system. As expected, if β = 1, equation (4.10b) says that φ must be 0, in
which case the solution reduces to (2.16).

Now that (2.17) is replaced by

ψ(z, τ) =
∞∑

m=1

cm exp
(
−α2λ2

mτ
)

um(z), (4.11)

the solution is complete once the cm has been determined. Unfortunately, though the operator in (2.14)
is formally self-adjoint, the addition of the condition (4.8) means the underlying eigenvalue problem is
not.

To see this, we proceed in the usual way by taking the inner product of u′′
m with vj, another function

that satisfies (2.14) with eigenvalue μj. Working out the integration by parts, we have∫ n

0
u′′

mvj dz = [u′
mvj − umv′

j]
n−1
0 + [u′

mvj − umv′
j]

n
n−1 +

∫ n

0
umv′′

j dz.

Here the bracketed terms (the bilinear concomitant) must vanish. Requiring that vm also satisfies (2.15)
takes care of the boundary terms, in which case the above equation reduces to

−λ2
m

∫ n

0
umvj dz = −[u′

mvj − umv′
j]

(n−1)+
(n−1)− − μ2

j

∫ n

0
umvj dz,

where we have used (2.14). This form makes it clearer that once the bracketed terms have been made to
vanish, um and vj will be orthogonal for j �= m.
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Using continuity of u and (4.8) in the above equation, we see that in order for the bilinear
concomitant to vanish, the following conditions must hold:

v(n − 1)+ = βv(n − 1)−, v′(n − 1)+ = v′(n − 1)−. (4.12)

Hence for the adjoint problem, in contrast to u, v′ is continuous at z = n − 1, and it is v that has a jump.
(In the case that β = 1, these are just continuity conditions and the problem becomes self-adjoint.)

Solving (2.14) subject to (2.15a) and the continuity condition in (4.12), we have

v(z) =
{

sin λz cos λ(n − 1 − φ), 0 < z < n − 1,
cos λ(n − 1) sin λ(z − φ), n − 1 < z < n.

(4.13)

Substituting (4.13) into (2.15b) and the jump condition in (4.12) yields (4.10), as expected. Hence the
adjoint problem has the same eigenvalues.

Since the problem is not self-adjoint, the coefficients cm are calculated by taking the inner product
of ψ(z, 0) with the adjoint functions vm, and then normalizing by the inner product of um and vm. Hence
(3.7a) is replaced by the expression

〈um, vm〉cm =
∫ n−1

0
[Sn−1(z) − Sn(z)]vm(z) dz +

∫ n

n−1
[1 − Sn(z)]vm(z) dz

= M(n − 1) − M(n) +
∫ n

n−1
vm(z) dz, (4.14a)

M(y) =
∫ y

0
Sy(z)vm(z) dz, (4.14b)

in a somewhat analogous notation to (3.9). The first term simplifies greatly due to the boundary
conditions imposed at z = n:

M(n) = νTe

2ν + λ2

[
vm(n) + 2

∫ n

0
vm(z) dz

]
. (4.15a)

In contrast, after much tedious algebra, the other term is found to be

M(n − 1) = − (1 − β)vm(n − 2)

2ν + λ2

s′
n−1(n − 2)Jn−1(1)

Jn−1(β)
+ 2νTe

2ν + λ2

∫ n−1

0
vm(z) dz

−
{

Sn−1v′
m + [ν(Sn−1 − Te)]vm

2ν + λ2

}
z=(n−1)−

. (4.15b)
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If we define the right-hand side of (4.14a) as R, then combining (4.15) and computing the integral,
we obtain

R =
(

1 − 2νTe

2ν + λ2

)
v′

m((n − 1)+

λ2
−

{
Sn−1v′

m + [ν(Sn−1 − Te)]vm

2ν + λ2

}
z=(n−1)−

+ ν(1 − Te)vm(n)

λ2 − (1 − β)vm(n − 2)s′
n−1(n − 2)Jn−1(1)

(2ν + λ2)Jn−1(β)
,

which may be simplified using (3.5) and (4.7b) to obtain

R =
(

1 − 2νTe

2ν + λ2

)
v′

m((n − 1)+

λ2 −
{

Sn−1v′
m + [ν(Sn−1 − Te)]vm

2ν + λ2

}
z=(n−1)−

+ ν(1 − Te)vm(n)

λ2 − 2ν(1 − β)Tevm(n − 2) sinh(
√

2ν + θ)

(2ν + λ2)Jn−1(β)
. (4.16)

The computation of cm can then be completed using (4.3), (4.7b), (4.13), and the normalization factor,
which is given by

〈um, vm〉 = (n − 1) sin(2λm(n − 1 − φm))

4
+ sin(2λm(n − 1))

4

[
1 − sin 2λm(n − φm)

2λm

]
. (4.17)

The system (4.10) must be solved numerically, and has multiple solutions. From a computational
perspective, to ensure we did not miss any roots in Matlab, we used both the fsolve and fmincon
algorithms (due to deficiencies in each).

From a theoretical perspective, if (λ, φ) is a solution, so is (λ, φ+ jπ/λ) because of the periodicity of
the tangent. If j is an even integer, all of our expressions are the same. If j is an odd integer, (um, vm) �→
−(um, vm). Hence the normalization factor is unchanged, but R �→ −R, which means that cm �→ −cm.
Thus cmum is of the same sign, as expected.

4.3 Data fitting

To fit the experimental data, we again calculate the weld temperatures. Because the functions in this
section are defined piecewise, some of these are more complicated. For W2, since both measurements
occur for z < n − 1, um(z) is given by the top line in (4.9). Thus we may use (3.10b) with sn replaced
by Sn, and the extra coefficient that distinguishes the top line of (4.9) from the expression in (2.16):

W2(τ ) = Sn(n − 3/2) + Sn(n − 5/2)

2

+ e−2α2νt
∞∑

m=1

cm exp
(
−α2λ2

mτ
)

sin λm(n − 2) cos
λm

2
sin λm(n − 1 − φm). (4.18a)
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Fig. 6. Plot of two-weld, three-parameter fit of (4.18).

For W1, since the measurements occur on either side of z = n − 1, we revert to (2.22a) and use (4.2),
(4.9) and (4.11):

W1(τ ) = Sn(n − 1/2) + Sn(n − 3/2)

2
+ e−2α2νt

∞∑
m=1

cm exp
(−α2λ2

mτ
)

2
×

[
sin λm

(
n − 1

2
− φm

)
sin λm(n − 1) + sin λm

(
n − 3

2

)
sin λm(n − 1 − φm)

]
, (4.18b)

where we have used (4.9).
We illustrate the data fitting in Fig. 6. In contrast to Fig. 4, the solution for the second weld has the

peak at the proper magnitude and the correct place. The values for ν and α are comparable to those
found in §3, which indicates that introducing the jump condition merely complements the previous
model, rather than introducing large deviations. We also note that the value of β is close to 1, which
indicates that though there is some heat loss at the weld, it is not large. Hence the layer and substrate are
in near-complete contact, which is more consistent with more sophisticated models of the layer shape
(Coogan & Kazmer, 2020; Luo et al., 2021).

4.4 Parameter dependence

Recall from (2.4a) that an experimentalist can adjust the value of α by changing tl for a particular run.
Hence it is important to have an estimate for the sensitivity of our solution to parameters that might
change (D’Amico & Peterson, 2020).
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Fig. 7. Variance of computed solution with α. Other parameters are as in Fig. 6.

Table 1 Parameter sensitivity

Parameter ratio Resnorm/Resnormfit

α/αfit = 0.724 51.04
ν/νfit = 0.689 73.15
ν/νfit = 6.895 3143.9

In Fig. 7, we show how changing the value of α affects the weld temperature. Recall that since time
is always normalized by tl, the correct interpretation of α is the ratio of the printing time to the diffusion
time. As that decreases, we see both a slower rate of cooling, and higher temperatures throughout most
of the print time.

There is another reason why we concern ourselves with parameter dependence. As indicated in the
Appendix, a range of parameter values for cp and h appear in the literature, which translates into a
possible range of values for ν and α. To determine the sensitivity of our results to these parameters, we
performed the following test. Keeping the other two parameters fixed at their value in Fig. 6, we varied
the remaining parameter to the extremes of their ranges in Table A2.

The results are shown in Table 1, which shows how the new resnorm compares to the fit value. (Only
one comparison with α is shown since the fit value lies slightly above the parameter range shown in the
Appendix.) We see that the results have a similar sensitivity to both ν and α, and that the sensitivity is
quite strong.

However, we note from Fig. 3 that the dependences can offset one another, as using a low value of
one parameter and a high value of another gives a relatively good fit. This behaviour counsels caution
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when relying upon just one-parameter fits, as opposed to fitting all parameters where one is unsure of
the appropriate value. (The fit values, of course, must be compared with ranges in the literature.)

5. Conclusions and further research

Over the past several years, items created with additive manufacturing are being used in a wider variety
of applications (Gibson et al., 2009). As a result, increasing the strength of such items is becoming
more important. Items created through FFF are particularly prone to delamination (Coasey et al., 2020);
hence an important way to reinforce such items is to strengthen the weld between layers. Due to
molecular interactions at layer interfaces, welds are strengthened at increased temperatures (Coogan
& Kazmer, 2020; Sun et al., 2008; Turner et al., 2014). As the weld temperature is difficult to measure
experimentally, mathematical models can provide needed insight into the strength of such bonds.

In this work we presented three one-dimensional mathematical models of increasing complexity
for heat transfer in an object created through FFF. Each is amenable to analytic solution, which makes
the interpretation of the results straightforward, as well as understanding the parameter dependence of
those solutions. A key assumption made throughout this manuscript is that, given the delay between the
placing of layers, the substrate temperature reaches a steady state before the next layer is placed. This
allows the computation of the transient Fourier modes to be relatively straightforward.

In the first attempt, we adapted a previously used model (Coasey et al., 2020) which involves
solving the one-dimensional heat equation in a domain which expands as additional layers are placed.
Unfortunately, this basic model assumes that the entire stack is insulated, except for the top of the
applied layer. As such, it overestimates the temperature deep in the substrate, causing poor results (see
Fig. 3). There is a significant gap in the weld temperatures that does not occur in the data. In addition,
the fit parameter ν is several order of magnitudes larger than one would expect (as a result of heat being
dissipated through a very small fraction of the exposed surface).

These defects led us to propose a more realistic quasisteady fin model. We adapted the standard fin
model (which is typically used for steady-state computations) for use in our system, which is naturally
unsteady due to the addition of more layers. The fin model incorporates heat loss throughout the entire
height of the substrate. Though the steady state for this model is somewhat more complicated, the
transients change only through the addition of a decay term.

The results shown in Fig. 4 indicate improved performance. The two weld temperatures are much
closer together, mimicking the experimental data. The value of ν is much smaller (reflecting the larger
surface from which heat loss occurs), in line with values from the literature (see the Appendix). In
addition, the value of α, which is also fit, is close to values found in the literature.

However, Fig. 4 also illustrates a shortcoming: an overshoot in the second weld temperature for
small times. The previous models assumed that the welds encompassed the entire width of the layer;
this was a result of assuming that the layers had a square cross section. In reality, the cross sections have
a capsule-like shape (Behdani et al., 2020; Coogan & Kazmer, 2020; Gilmer et al., 2019; Luo et al.,
2021), which means that the welds do not span the entire width of the layer.

To model this, in our third attempt we imposed the condition (4.1) at the top weld. Essentially, we
assumed that some heat at the weld was being lost to the outside air due to the geometry (see Fig. 5).
With this jump condition imposed, the resulting eigenvalue problem in the z-direction was no longer self-
adjoint. The eigenfunctions for the adjoint problem were closely related, and we were able to construct
(complicated) expressions for the underlying mode coefficients, which could then be converted to weld
temperatures.
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The results shown in Fig. 6 illustrate even better results. The unphysical peak is now gone, and both
simulations closely match their respective welds. The values of ν and α are very close to the previous
continuous model, indicating that the addition of the jump does not fundamentally affect most of the
solution. And the fact that β remains near 1 shows that this is not a dominant effect (as it affects the fit
only for a short time).

Naturally, an even more realistic model would take into account the fact that the individual layers do
not have a rectangular cross section (Bellehumeur et al., 2004; Gilmer et al., 2019; Luo et al., 2021). In
particular, one can adapt the fin model to the case where the cross section varies with height (Lienhard
& Lienhard, 2019, §4.5). Given the complicated nature of the outer boundary of the stack (somewhat
cylcloidal in nature; Coogan & Kazmer (2020); Percoco et al. (2021)), a numerical simulation would be
appropriate. This is the topic of future research.

Though we have drawn a qualitative relationship between the weld temperature and the bond
strength, this can be quantified through the introduction of the healing parameter (Coogan & Kazmer,
2020; Gilmer et al., 2021; Thomas & Rodríguez, 2000), which relates the temperature history of the
weld to bond strength. Incorporating this factor is also the subject of ongoing research.

The results in this work indicate that a well-crafted one-dimensional model can produce analytical
results that match experimental data, obviating the need for more computationally intensive numerical
simulations. Hence this model should have predictive value in estimating the weld strengths in a wide
variety of FFF applications.
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Appendix

In Table A1, we summarize the relevant parameters from the literature used in this manuscript,
while in Table A2 we calculate the parameters of interest to our model; some remarks are noted
below.

Recall that T̃h is the temperature of the polymer when first applied. Therefore, we do not use
the heater temperature of 210◦C given in Seppala et al. (2017), as there is always cooling after
extrusion (Edwards & Mackay, 2020). Instead, we use the initial condition of the experimental
data.

As discussed above, the layers are laid down in sequence. To compute the time tl between layers,
one must add the printing time for a layer to a delay where the printer resets and moves to the initial
printing position. As discussed in Seppala et al. (2017), the print length is 160 mm and the print speed
is 100 mm (this value from the text is correct; the value listed in the caption to Fig. 2 is not (Seppala,
Sept., 2020)). The delay is 5.45 s (Seppala, Sept., 2020), which yields

tl = 5.45 s + 160 mm

100 mm/s
= 7.05 s,

as indicated in Table A2.

Table A1 Parameters from the literature

Value Reference

cp [J/(kg·K)] 1300–2100 Coasey et al. (2020); Lechner (2018)
h [W/(m2·K)] 2.5–25 Kosky et al. (2021)
k [W/(m·K)] 0.21 Coasey et al. (2020)
L (mm) 0.3 Seppala et al. (2017)
T̃e (◦ C) 23
T̃h (◦ C) 194.6 Seppala et al. (2017)
T̃p (◦ C) 110 Seppala et al. (2017)
ρ (kg/m3) 1030 Coasey et al. (2020)
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Table A2 Calculated parameters

Value Value

Te −1.028 ΔT (◦ C) 84.6
tl (s) 7.05 ν 4.69 × 10−3–4.69 × 10−2

α 2.758–3.505

Nomenclature

Units are listed in terms of length (L), mass (M), time (T) and temperature (θ ). If a symbol appears
both with and without tildes, the symbol with tildes has units, while the one without is dimensionless.
Equation numbers where a variable is first defined is listed, if appropriate.

A: area of transverse cross section, units L2.

B: constant in second fin model (4.3).

c: coefficient in eigenfunction expansion (2.17).

cp: heat capacity of polymer, units L2/(T2θ) (2.1).

F(τ ): separation-of-variables component (2.13).

H(·): integration result for basic model (2.20).

h: heat transfer coefficient, units L/(T3θ).

J(β): intermediate calculation (4.6b).

j: integer, variously defined.

K(·): integration result for first fin model (3.8).

k: thermal conductivity, units ML/(T3θ) (2.1).

L: layer height, units L.

M(·): integration result for second fin model (4.14b).

m: mode index (2.17).

n: number of layers (2.5).

P: perimeter of transverse cross section, units L.

R: intermediate result (4.16).

S(z): steady state solution of second fin model (4.2).

s(z): steady state solution of first fin model (3.3).

T̃: temperature, units θ (2.1).

t̃: time, units T (2.1).

u(z): eigenfunction (2.14).
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v(z): eigenfunction of adjoint problem.

W(τ ): weld temperature (2.22).

w: length of layer, units L (3.1).

y: dummy limit of integration (2.20).

z̃: height along stack, units L (2.1).

ΔT: differential between heater and plate temperatures, units θ (2.3).

α: square root of thermal diffusivity (2.4a).

β: heat retention coefficient (4.1).

θ : phase shift in steady state (3.5).

λ: eigenvalue in separation-of-variables expansion (2.13).

μ: eigenvalue of adjoint problem.

ν: dimensionless heat transfer coefficient (2.5).

ρ: density of polymer, units M/L3 (2.1).

σ(z): steady state solution of basic model (2.7).

τ : shifted time scale (2.9).

φ: phase shift in eigenfunction (4.9).

ψ(z, τ): transient solution (2.10).

Other notation

e: as a subscript on T , used to indicate the external temperature (2.5).

h: as a subscript on T , used to indicate temperature of the applied layer (2.3).

l: as a subscript on t, used to indicate the interval between layer applications (2.3).

n: as a subscript, used to indicate layer number (2.7).

p: as a subscript on T , used to indicate temperature of the build plate (2.2).

>: as a subscript on s, used to indicate above the first weld (4.3).

<: as a subscript on s, used to indicate below the first weld (4.3).
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