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Hamiltonian Systems

In class, we discussed the solutions of the following system:

ẋ =
∂H

∂y
,

ẏ = −∂H
∂x

,

and noted that H, the Hamiltonian function for the system, was constant along trajecto-
ries.

First we consider the case where

ẋ = 2y

ẏ = −8x
=⇒ H = 4x2 + y2 + C.

The only fixed point is at the origin, where the relevant matrix is

A =

(
0 2
−8 0

)
=⇒ λ = ±4i.

Therefore, the origin is a center.
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H = 4x2 + y2 + 3 with contour lines and level curves.

This figure shows the Hamiltonian function with contours in 3-D as well as the level
curves projected onto the xy-plane to show the trajectories.
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Next we consider the case where

ẋ = 2x

ẏ = −2y
=⇒ H = 2xy + C.

The only fixed point is at the origin, where the relevant matrix is

A =

(
2 0
0 −2

)
=⇒ λ = ±2.

Therefore, the origin is a saddle point.
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H = 2xy + 3 with contour lines and level curves.

This figure shows the Hamiltonian function with contours in 3-D as well as the level
curves projected onto the xy-plane to show the trajectories. Note the saddle shape of the
surface near the origin; this is the motivation for the term saddle point.


