Supplemental Study Material Solutions

1. (BH) Calculate the matrix A which has the following properties:

$$\lambda_1(A) = 2, \qquad \lambda_2(A) = -5, \qquad \mathbf{z}_1 = \begin{pmatrix} 1\\ 3 \end{pmatrix}, \qquad \mathbf{z}_2 = \begin{pmatrix} 2\\ 7 \end{pmatrix}.$$

Solution. Using the given statements, we have that

$$\Lambda = \begin{pmatrix} 2 & 0 \\ 0 & -5 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix} \implies S^{-1} = \frac{1}{1} \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}.$$

Therefore, we have that

$$A = S\Lambda S^{-1} = S\begin{pmatrix} 2 & 0\\ 0 & -5 \end{pmatrix}\begin{pmatrix} 7 & -2\\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2\\ 3 & 7 \end{pmatrix}\begin{pmatrix} 14 & -4\\ 15 & -5 \end{pmatrix} = \begin{pmatrix} 44 & -14\\ 147 & -47 \end{pmatrix}.$$

2. Consider the following matrix and vector:

$$A = \begin{pmatrix} -5 & -3 \\ 6 & 4 \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}.$$

(a) (BH) Find the eigenvalues of A.

Solution. Calculating the characteristic polynomial, we have

$$\det(A - \lambda I) = \begin{vmatrix} -5 - \lambda & -3 \\ 6 & 4 - \lambda \end{vmatrix} = -20 + \lambda + \lambda^2 + 18 = \lambda^2 + \lambda - 2 = (\lambda - 1)(\lambda + 2).$$

Setting the characteristic polynomial equal to zero, we have that $\lambda_1 = 1$ and $\lambda_2 = -2$.

(b) (BH) Find the corresponding eigenvectors of A.

Solution. Solving for the eigenspaces, we obtain

$$(A - \lambda_1 I)\mathbf{z}_1 = \begin{pmatrix} -6 & -3\\ 6 & 3 \end{pmatrix} \mathbf{z}_1 = \mathbf{0}.$$

The rows are multiples of one another, so we see that 6x + 3y = 0, so a typical eigenvector is $(1, -2)^T$. Similarly, we have

$$(A - \lambda_2 I)\mathbf{z}_2 = \begin{pmatrix} -3 & -3 \\ 6 & 6 \end{pmatrix} \mathbf{z}_2 = \mathbf{0}.$$

Copyright ©2024 D. A. Edwards

All Rights Reserved

The rows are multiples of one another, so we see that 6x + 6y = 0, so a typical eigenvector is $(-1, 1)^T$.

(c) (BH) Write the spectral decomposition $A = S\Lambda S^{-1}$.

Solution. IMPORTANT: The answer to this problem is dependent on the ordering of the eigenvalues and the choice of eigenvectors. Using our answers from (a) and (b), we have

$$\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix} \implies S^{-1} = -\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}.$$

(d) (BH) Calculate $[A\mathbf{x}]_Z$ and $\Lambda[\mathbf{x}]_Z$. Verify that they are equal.

Solution. To calculate the coordinates in the Z basis, we need the transition matrix, which is simply the inverse of the matrix of eigenvectors. Thus the transition matrix is S^{-1} . So we have

$$[A\mathbf{x}]_{Z} = S^{-1} \begin{pmatrix} -5 & -3 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix} = - \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ -10 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \end{pmatrix},$$

$$\Lambda[\mathbf{x}]_{Z} = \Lambda \begin{bmatrix} -\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{bmatrix} \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}.$$

(e) (BH) Use your answer to part (c) to calculate $A^{10}\mathbf{x}$. Solution.

$$A^{10}\mathbf{x} = (S\Lambda S^{-1})^{10}\mathbf{x} = S\Lambda^{10}S^{-1}\mathbf{x} = S\Lambda^{10}[\mathbf{x}]_Z = S\left[\begin{pmatrix}1^{10} & 0\\0 & (-2)^{10}\end{pmatrix}\begin{pmatrix}3\\-2\end{pmatrix}\right]$$
$$= \begin{pmatrix}1 & -1\\-2 & 1\end{pmatrix}\begin{pmatrix}3\\2^{11}\end{pmatrix} = \begin{pmatrix}3-2^{11}\\-6+2^{11}\end{pmatrix} = \begin{pmatrix}-2045\\2042\end{pmatrix}.$$

(f) (MP) Calculate $A^{10}\mathbf{x}$ and check your answer with (e).

3. Let A and B be similar.

(a) (BH) Show that if A is nonsingular, then B is nonsingular. Solution. Let $B = PAP^{-1}$. Then since P is invertible, we have

$$BP = PA$$
$$BPA^{-1} = P$$
$$BPA^{-1}P^{-1} = I.$$

Thus $B^{-1} = PA^{-1}P^{-1}$, and hence B is invertible.

(b) (BH) If A is nonsingular, then A^{-1} and B^{-1} are similar.

Solution. By part (a), we have that $B^{-1} = PA^{-1}P^{-1}$, and hence A^{-1} and B^{-1} are similar.

Now consider the particular matrices

$$A = \begin{pmatrix} 4 & 4 & 2 & 3 & -2 \\ 0 & 1 & -2 & -2 & 2 \\ 6 & 12 & 11 & 2 & -4 \\ 9 & 20 & 10 & 10 & -6 \\ 15 & 28 & 14 & 5 & -3 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}.$$

(Do **NOT** use these matrices for parts (a) and (b); those proofs should be for any A and B.)

- (c) (MP) Verify that A and B are similar and invertible, and compute the matrix P such that $A = PBP^{-1}$.
- (d) (MP) Verify that A^{-1} and B^{-1} are similar, and compute the matrix Q such that $A^{-1} = QB^{-1}Q^{-1}$.
- (e) (BH) Show that it is possible to choose P = Q. Is that true of the matrices in Mathematica? What does that tell you about the uniqueness of P and Q?

Solution. Taking the inverse of both sides of the P equation, we have

$$A^{-1} = (P^{-1})^{-1}B^{-1}(P)^{-1} = PB^{-1}P^{-1},$$

which is exactly the same as the Q equation with Q replaced by P. However, P and Q are not the same in our Mathematica calculation, and hence they most not be unique.


```
In[*]:= Quit[]
In[*]:= $PrePrint = If[MatrixQ[#] || VectorQ[#], MatrixForm[#], #] &;
```

HW1 (Checked)		
HW2 (Checked)		
HW3 (Checked)		
HW4 (Checked)		
HW5 (Checked)		
HW6 (Checked)		
HW7 (Checked)		
HW8 (Checked)		
HW9 (Checked)		
HW10 (Checked)		

SSM (Checked)

Check

Number 2f.

Calculate $A^{10} \mathbf{x}$, where $A = \begin{pmatrix} -5 & -3 \\ 6 & 4 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}.$

```
In[*]:= a2f = \{\{-5, -3\}, \{6, 4\}\}
x2f = \{1, -4\}
MatrixPower[a2f, 10].x2f
Out[*]= \begin{pmatrix} -5 & -3 \\ 6 & 4 \end{pmatrix}
Out[*]= \begin{pmatrix} 1 \\ -4 \end{pmatrix}
Out[*]= \begin{pmatrix} -2045 \\ 2042 \end{pmatrix}
```

Number 3c.

```
Show that the matrices A and B are invertible, where

A = \begin{pmatrix} 4 & 4 & 2 & 3 & -2 \\ 0 & 1 & -2 & -2 & 2 \\ 6 & 12 & 11 & 2 & -4 \\ 9 & 20 & 10 & 10 & -6 \\ 15 & 28 & 14 & 5 & -3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}, \text{ and find the matrix } P \text{ such that } A = P B P^{-1}.
```

In[•]:=

```
In[\bullet]:= A = \{\{4, 4, 2, 3, -2\}, \{0, 1, -2, -2, 2\},\
          \{6, 12, 11, 2, -4\}, \{9, 20, 10, 10, -6\},\
          \{15, 28, 14, 5, -3\}\}
       B = \{\{3, 0, 0, 0, 0\}, \{0, 5, 0, 0\}, \}
          \{0, 0, 5, 0, 0\}, \{0, 0, 0, 7, 0\}, \{0, 0, 0, 0, 3\}\}
Out[•]=
         4
            4 2 3 -2
         0
           1 -2 -2 2
         6 \quad 12 \quad 11 \quad 2 \quad -4
         9 20 10 10 -6
        15 28 14 5 -3
Out[•]=
        3 0 0 0 0
        0 5 0 0 0
        0 0 5 0 0
        00070
       00003
```

First we check that A and B are invertible:

Since B is diagonal, we expect it to be the matrix of eigenvalues of A, which it is:

In[*]:= esys = Eigensystem[A]

Out[•]=

 $\{\{7, 5, 5, 3, 3\}, \{\{1, 0, 0, 3, 3\}, \{-1, 1, 0, -1, 1\}, \\ \{0, -1, 2, 0, 0\}, \{-2, 1, 1, 0, 2\}, \{4, -3, 1, 2, 0\}\}\}$

Then in order to construct the matrix S of eigenvectors that has the columns in the right order, we have to pick the vectors out manually

In[*]:= {esys[[2, 4]], esys[[2, 2]], esys[[2, 3]], esys[[2, 1]], esys[[2, 5]]}

Out[•]=

- 2	1	1	0	2)	
-1	1	0	-1	1	
0	- 1	2	0	0	
1	0	0	3	3	
4	- 3	1	2	0)	

Note that the vectors have been slotted into rows, so the matrix S is the transpose of this:

```
In[*]:= smat = Transpose[%]
Out[*]:= \begin{pmatrix} -2 & -1 & 0 & 1 & 4 \\ 1 & 1 & -1 & 0 & -3 \\ 1 & 0 & 2 & 0 & 1 \\ 0 & -1 & 0 & 3 & 2 \\ 2 & 1 & 0 & 3 & 0 \end{pmatrix}
```

This matrix is the matrix P for which we are looking, which we can verify:

```
In[•]:= smat.B.Inverse[smat]
       Α
Out[•]=
          4
                     3 -2
             4
                 2
            1 -2 -2 2
          0
          6 \quad 12 \quad 11 \quad 2 \quad -4 \\
         9
            20 10 10 -6
         15 28 14 5
                        -3
Out[•]=
                 2 3 -2
         4
             4
         0
            1 -2 -2 2
         6 \quad 12 \quad 11 \quad 2 \quad -4 \\
         9 20 10 10 -6
         15 28 14 5 -3
```

Number 3d.

Compute the matrix Q such that $A^{-1} = Q B^{-1} Q$.

Since B^{-1} is diagonal, we expect it to be the matrix of eigenvalues of A^{-1} , which it is:

In[•]:= eisys = Eigensystem[ainv]

Out[•]=

$$\left\{\left\{\frac{1}{3},\frac{1}{3},\frac{1}{5},\frac{1}{5},\frac{1}{7}\right\},\left\{\left\{-1,\frac{1}{2},\frac{1}{2},0,1\right\},\left\{2,-\frac{3}{2},\frac{1}{2},1,0\right\},\right.\\\left.\left\{-1,1,0,-1,1\right\},\left\{0,-\frac{1}{2},1,0,0\right\},\left\{\frac{1}{3},0,0,1,1\right\}\right\}\right\}$$

Then in order to construct the matrix S of eigenvectors that has the columns in the right order, we have to pick the vectors out manually

```
In[.]:= {eisys[2, 2], eisys[2, 3], eisys[2, 4], eisys[2, 5], eisys[2, 1]}
```

Out[•]=

2	$-\frac{3}{2}$	$\frac{1}{2}$	1	0
-1	1	0	- 1	1
0	$-\frac{1}{2}$	1	Θ	0
$\frac{1}{3}$	0	0	1	1
-1	$\frac{1}{2}$	$\frac{1}{2}$	Θ	1)

Note that the vectors have been slotted into rows, so the matrix Q is the transpose of this:

In[+]:= qmat = Transpose[%]

Out[•]=

2	-1	0	$\frac{1}{3}$	-1
$-\frac{3}{2}$	1	$-\frac{1}{2}$	0	$\frac{1}{2}$
$\frac{1}{2}$	0	1	0	$\frac{1}{2}$
1	- 1	0	1	0
0	1	0	1	1

This matrix is the matrix ${\boldsymbol{Q}}$ for which we are looking, which we can verify:

In[*]:= qmat.binv.Inverse[qmat]

ainv

Out[=]=	$(\frac{12}{35})$	$-\frac{4}{35}$ $\frac{7}{15}$	$-\frac{2}{35}$ $\frac{2}{15}$	$-\frac{17}{105}$ $\frac{2}{15}$	$\frac{2}{21}$ $-\frac{2}{15}$	
	5	5	5	15	15	
	_ 13	92	46	2	2	
	35	105	105	105	7	
	_ 27	_ 148	_ 74	_ 23	13	
	35	105	105	105	21 /	
Out[∮]=	$\begin{array}{c} \frac{12}{35} \\ 0 \end{array}$	$-\frac{4}{35}$ $\frac{7}{15}$	$-\frac{2}{35}$ $\frac{2}{15}$	$-\frac{17}{105}$ $\frac{2}{15}$	$\frac{\frac{2}{21}}{-\frac{2}{15}}$	
	_ 2	_ 4	_ 1	_ 2	4	
	5	5	5	15	15	
	$-\frac{13}{25}$	$-\frac{92}{105}$	$-\frac{46}{105}$	$-\frac{2}{105}$	4	
	35	148	105 74	73 705	13	
	$-\frac{21}{35}$	- 105	- 105	- 105	21	ļ