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Fourier Series
We derived in class that the Fourier series for the function

f(x) = (x� L)2(x+ L)2

is given by
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Note that f(x) is smooth in its domain.
Below are plotted the function f (thickest line), as well as the Fourier series taking

the first one, two, and three terms in the sum.
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In increasing order of thickness: Fourier series keeping the first one, two, and,
three terms in the series, as well as f(x) vs. x for L = 1.

Remarks
1. Note that with each increasing term, the series becomes a better approximation.
2. If we take the first N terms of the series, the absolute value of the (N + 1)st term is

a rough estimate of the error. Note this term is always smaller than

48L4

(N + 1)4⇡4
,

which decays very rapidly as N gets large.
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We derived in class that the Fourier series for the function

f(x) =

⇢
x+ L, �L  x < 0,
x� L, 0 < x  L,

is given by
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Note that f(x) is not smooth in its domain.
Below are plotted the function f (thickest line), as well as the Fourier series taking

the first three, eight, and thirteen terms in the sum.
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In increasing order of thickness: Fourier series keeping the first three, eight, and,
thirteen terms in the series, as well as f(x) vs. x for L = 1.

Remarks
1. Note that with each increasing term, the series becomes a better approximation

throughout most of the domain.
2. If we take the first N terms of the series, the absolute value of the (N + 1)st term is

a rough estimate of the error. Note this term is always smaller than

2L

(N + 1)⇡
,

which decays very slowly as N gets large.
3. Note that near the discontinuity at x = 0 we obtain larger and larger oscillations.

This is called the Gibbs phenomenon, and arises because we are trying to estimate
a discontinuous function by a series of continuous functions. Also note that the ap-
proximations all run through the origin, which represents the average of the two
discontinuous values.


