
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Dec. 6, 2024

Homework Set 9 Solutions
1. (BH) Consider the following problem:

ÿ − (a+ b)ẏ + aby = f(t), y(0) = 0, ẏ(0) = 0, a 6= b.

(a) Solve the problem using Laplace transforms.

Solution. Transforming the equation, we have

s2ŷ − (a+ b)sŷ + abŷ = f̂

ŷ =
f̂

(s− a)(s− b)
= f̂

[
1

(s− a)(s− b)

]
,

where we have used the initial conditions. Remembering that we should focus on the
partial-fraction decomposition of the bracketed quantity, we obtain

1

(s− a)(s− b)
=

c1
s− a

+
c2
s− b

1 = c1(s− b) + c2(s− a). (A)

Substituting s = b into (A) cancels the first term, so c2 = (b − a)−1. Substituting s = a
into (A) cancels the second term, so we have c1 = (a− b)−1. Hence we have

ŷ = f̂

[
1

a− b

(
1

s− a
− 1

s− b

)]
.

Since

L−1
{

1

a− b

(
1

s− a
− 1

s− b

)}
=
eat − ebt

a− b
, (B)

using the convolution theorem we have

y(t) =
1

a− b

∫ t

0

[
ea(t−τ) − eb(t−τ)

]
f(τ) dτ.

(b) What is the Green’s function for this problem?

Solution. The Green’s function g(t − τ) is the function that multiplies f(τ) in the
convolution. This is given by the expression in (B), so we have

g(t) =
eat − ebt

a− b
,
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where we have rewritten the right-hand side to reflect the new argument of g.

2. Consider the Laplace transform given by

f̂(s) =
1

s2(s2 + 4)
.

(a) (BH) Evaluate the inverse Laplace transform by using a convolution involving
the transform of the sine.

Solution. Since

L{sin 2t} =
2

s2 + 22
, L

{
t

2

}
=

1

2s2
,

we have

f̂(s) =

(
1

2s2

)(
2

s2 + 22

)
f(t) =

t

2
∗ (sin 2t) =

1

2

∫ t

0

(t− τ) sin 2τ dτ =
1

2

∫ t

0

u dv, u = t− τ, dv = sin 2τ dτ

=
1

2

{[
(t− τ)

(
− cos 2τ

2

)]t
0

−
∫ t

0

− cos 2τ

2
(−dτ)

}
=
t

4
− 1

4

[
sin 2τ

2

]t
0

=
t

4
− sin 2t

8
.

(b) (MI) Evaluate the inverse Laplace transform by using a convolution involving
the transform of the cosine. You must set up the integral by hand, but you
can use Mathematica to actually integrate. Verify that your answer matches
(a).

Solution. Since

L{cos 2t} =
s

s2 + 22
, L

{
t2

2

}
=

1

s3
,

we have

f̂(s) =

(
1

s3

)(
s

s2 + 22

)
f(t) =

(
t2

2

)
∗ (cos 2t) =

1

2

∫ t

0

(t− τ)2 cos 2τ dτ

=
t

4
− sin 2t

8
,

where we have used Mathematica in the last line.

(c) (MP) Invert the Laplace transform directly using Mathematica.

3. (BH) Solve the following problem using Laplace transforms:

ÿ + 16y = f(t), y(0) = a, ẏ(0) = b.
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Solution. Transforming the equation, we have

s2ŷ − sa− b+ 16ŷ = f̂

ŷ =
f̂ + as+ b

s2 + 16
=
f̂

4

4

s2 + 42
+ a

s

s2 + 42
+
b

4

4

s2 + 42
,

where we have used the initial conditions. Since

L−1
{

4

s2 + 42

}
= sin 4t, L−1

{
s

s2 + 42

}
= cos 4t,

using the convolution theorem we have

y(t) = a cos 4t+
b

4
sin 4t+

1

4

∫ t

0

f(t− τ) sin 4τ dτ.

4. (BH) Find the solution of the following Euler equations:

(a)
x2y′′ + 5xy′ + 5y = 0.

Solution. This is an Euler equation, so we substitute y = xλ to obtain

λ(λ− 1) + 5λ+ 5 = λ2 + 4λ+ 5 = 0

λ =
−4±

√
16− 20

2
= −2± i,

y = x−2±i = x−2e±i log |x|.

Therefore, we have that the general solution is given by

y(x) = x−2[c1 sin(log |x|) + c2 cos(log |x|)].

(b)
x2y′′ + 5xy′ + 4y = 0, y(1) = 1, y′(1) = 1.

Solution. This is an Euler equation, so we substitute y = xλ to obtain

λ(λ− 1) + 5λ+ 4 = λ2 + 4λ+ 4 = (λ+ 2)2 = 0

Since we have a double root of λ = −2, by notes in class we have that the general solution
is given by

y(x) = x−2(c1 + c2 log |x|).

Solving the initial conditions, we have

y(1) = c1 = 1, y′(1) = −2c1 + c2 = 1 =⇒ c2 = 3

y(x) = x−2(1 + 3 log |x|).
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5. (BH) Consider the following forced Euler equation:

ax2y′′ + bxy′ + cy = xα.

(a) Try a particular solution of the form yp = Axα, as in the method of undeter-
mined coefficients. Explain why this approach works.

Solution. Substituting yp = Axα into our equation, we obtain

ax2[Aα(α− 1)xα−2] + bx(Aαxα−1) + c(Axα) = xα

aAα(α− 1) + bAα+ cA = 1

A =
1

aα(α− 1) + bα+ c
.

This technique works because (just as in the homogeneous case) the coefficients of each
derivative term multiply the derivative in just such a way that each term has an xα in it.

(b) Use your approach in (a) to write the general solution of

x2y′′ − xy′ − 3y = 6x2.

Solution. We begin by solving the homogeneous problem. Substituting y = xλ, we
obtain

λ(λ− 1)− λ+−3 = λ2 − 2λ+ 3 = (λ− 3)(λ+ 1) = 0

yh = c1x
−1 + c2x

3.

Next we solve for the particular solution. Letting yp = Ax2, we have

x2(2)(1)A− x(2)Ax− 3Ax2 = 6x2

−3A = 6

yp = −2x2

y = c1x
−1 + c2x

3 − 2x2.

6. Consider the heat conduction problem

∂2u

∂x2
= 25

∂u

∂t
, 0 < x < π, t > 0; (9.1a)

u(0, t) = 0, u(π, t) = 0, t > 0; (9.1b)

u(x, 0) = sin 3x+ 2 sin 7x, 0 ≤ x ≤ π. (9.1c)

(a) (BH) Find the solution to (9.1).

Solution. Letting u(x, t) = X(x)T (t) in (9.1a), we have

X ′′T = 25T ′X
X ′′

X
= 25

T ′

T
= −λ2,
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since the left-hand side is a function of x and the right-hand side is a function of t. Then
the x-equation becomes

X ′′ + λ2X = 0, X(0) = X(π) = 0

X(x) = c1 sinλx+ c2 cosλx

X(0) = c2 = 0

X(π) = c1 sinλπ = 0 =⇒ λ = n, n > 0,

where we have used (9.1b). The initial conditions have n = 3 and n = 7, so by the principle
of superposition we see that our solution is given by

u(x, t) = T3(t) sin 3x+ T7(t) sin 7x, T3(0) = 1, T7(0) = 2.

Substituting our results for λn into the T -equation, we obtain

25T ′n + n2Tn = 0

Tn(t) = Tn(0) exp
(
−n2t/25

)
.

Then substituting in our initial conditions with n = 3 and n = 7, we have

u(x, t) = sin 3x exp (−9t/25) + 2 sin 7x exp (−49t/25) .

(b) (MP) Graph your solution for t = 0, 1, and 2. What happens to the number
of oscillations as t gets larger? (Hint: Look at the time dependence of your
solution.)

Solution. As t gets larger, the number of oscillations gets closer to 3. That is because
the coefficient of the sin 7x term gets smaller much faster than the coefficient of the sin 3x
term, and hence it is only the sin 3x term that we see.

7. (BH) The wave equation is given by

c2
∂2u

∂x2
=
∂2u

∂t2
.

Assuming that u(x, t) = T (t)X(x), find ordinary differential equations satisfied
by T and X.

Solution. Letting u(x, t) = X(x)T (t) in the above, we have

c2X ′′T = XT ′′

c2
X ′′

X
=
T ′′

T
.

The left-hand side is a function of x; the right-hand side is a function of t. Therefore we
must have that

T ′′

T
= −λ2 =⇒ T ′′ + λ2T = 0
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x

for some constant λ. Making this substitution into the above, we have

c2
X ′′

X
= −λ2 =⇒ c2X ′′ + λ2X = 0.

8. Consider the function

f(x) =

{
x, −π < x < 0,
0, 0 ≤ x < π;

f(x+ 2π) = f(x).

(a) (BH) Sketch the graph of the function for three periods.

Solution. See above.
(b) (BH) Find the Fourier series for the given function.

Solution. Here L = π, so we have

am =
1

π

∫ π

−π
f(x) cos(mx) dx =

1

π

∫ 0

−π
x cos(mx) dx =

1

π

[
cos(mx)

m2
+
x sin(mx)

m

]0
−π

=
1

π

[
1− cos(−mπ)

m2

]
=

1− (−1)m

m2π
,

where we have used integration by parts. This term does not exist for m = 0, so we handle
that case separately:

a0 =
1

π

∫ 0

−π
x dx =

1

π

[
x2

2

]0
−π

= −π
2
,

bm =
1

π

∫ 0

−π
x sin(mx) dx =

1

π

[
sin(mx)

m2
− x cos(mx)

m

]0
−π

=
1

π

[
−π cos(−mπ)

m

]
= − (−1)m

m
.
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Since bm is defined only for m ≥ 1, we have no problems and our solution is given by

f(x) = −π
4

+
∞∑
m=1

[
1− (−1)m

m2π

]
cosmx− (−1)m

m
sinmx,

where we have remembered to divide a0 by 2. We note that the numerator of the bracketed
term is zero if m is even and 2 if m is odd, so we may simplify the above to obtain

f(x) = −π
4

+
∞∑
m=1

2

(2m− 1)2π
cos(2m− 1)x− (−1)m

m
sinmx.

(c) (MP) Plot sm(x) (book notation for the first m terms in the Fourier series)
for m = 15 and x ∈ [−3π, 3π].

9. (MP) Find the first five terms in the Fourier series of

f(x) = xe−x, x ∈ [−π, π].

10. (BH) Find the formal solution of the initial value problem

ÿ + ω2y =
∞∑
n=1

bn sinnt, y(0) = 0, ẏ(0) = 0.

How is the solution altered if ω = m, where m is a positive integer?

Solution. We use the method of undetermined coefficients. If the right-hand side
were just bn sinnt, then by notes in class we know that we need try a solution of the form
yp,n = Bn sinnt. Plugging this into the above, we obtain

−Bnn2 sinnt+ ω2Bn sinnt = bn sinnt

Bn =
bn

ω2 − n2
, n 6= ω,

yp,n =
bn sinnt

ω2 − n2
, n 6= ω.

However, if ω = m, then the right-hand side is a solution to the homogeneous operator.
Thus we must try a soltion of the form yp,m = t(Am cosmt+Bm sinmt). Substituting this
into the above with ω = m, we have

d

dt
[mt(−Am sinmt+Bm cosmt) +Am cosmt+Bm sinmt]

+m2t(Am cosmt+Bm sinmt) = bm sinmt

−m2t(Am cosmt+Bm sinmt) + 2m(−Am sinmt+Bm cosmt)

+m2t(Am cosmt+Bm sinmt) = bm sinmt
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Bm = 0, Am = − bm
2m

yp,m = −bmt cosmt

2m
.

But then by the principle of superposition we know that the full particular solution is just
the sum of each of the yp,n, so we have

yp(t) =

∞∑
n=1

bn sinnt

ω2 − n2
, ω 6= m,

yp(t) = −bmt cosmt

2m
+
∑
n 6=m

bn sinnt

ω2 − n2
, ω = m.

We note that in both cases we have yp(0) = 0. The homogeneous solutions are given by
sinωt, cosωt. Thus we have

y(t) = a1 sinωt+ a2 cosωt+ yp(t)

y(0) = a2 + yp(0) = a2 = 0

ẏ(0) = ωa1 + ẏp(0) = 0

0 = ωa1 +
∞∑
n=1

nbn
ω2 − n2

a1 = − 1

ω

∞∑
n=1

nbn
ω2 − n2

y(t) =

∞∑
n=1

bn
ω2 − n2

(
sinnt− n

ω
sinωt

)
, ω 6= m.

For the case where ω = m, we note that

ẏp,m(0) = − bm
2m

.

Thus to cancel that out we have

y(t) = − bm
2m

(
t cosmt− sinmt

m

)
+
∑
n 6=m

bn
m2 − n2

(
sinnt− n

m
sinmt

)
, ω = m.
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Number 2c.

In[1]:= lap7c = 1/ s^2/ (s^2 + 4)
InverseLaplaceTransform[lap7c, s, t]

Out[1]=
1

s2 4 + s2

Out[2]=
1

4
(t - Cos[t] Sin[t])



Number 6b.

In[3]:= sol9 = Sin[3* x] * Exp[-9* t/ 25] + 2* Sin[7* x] * Exp[-49* t/ 25]
tab9 = Table[sol9, {t, 0, 2, 1}]
Plot[tab9, {x, 0, Pi}, PlotLegends → {"t=0", "t=1", "t=2"}]

Out[3]= ⅇ-9 t/25 Sin[3 x] + 2 ⅇ-49 t/25 Sin[7 x]

Out[4]= Sin[3 x] + 2 Sin[7 x],
Sin[3 x]

ⅇ9/25
+
2 Sin[7 x]

ⅇ49/25
,
Sin[3 x]

ⅇ18/25
+
2 Sin[7 x]

ⅇ98/25


Out[5]= 0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

1

2

t=0

t=1

t=2
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Number 8c.

In[6]:= sm = -Pi/ 4 +

Sum[2* Cos[(2* m - 1) * x] / Pi/ (2* m - 1)^2 + (-1)^(m + 1) * Sin[m* x] / m, {m, 1, 15}]
Plot[sm, {x, -3 * Pi, 3* Pi}]

Out[6]= -
π

4
+
2 Cos[x]

π
+
2 Cos[3 x]

9 π
+
2 Cos[5 x]

25 π
+
2 Cos[7 x]

49 π
+
2 Cos[9 x]

81 π
+
2 Cos[11 x]

121 π
+

2 Cos[13 x]

169 π
+
2 Cos[15 x]

225 π
+
2 Cos[17 x]

289 π
+
2 Cos[19 x]

361 π
+
2 Cos[21 x]

441 π
+
2 Cos[23 x]

529 π
+

2 Cos[25 x]

625 π
+
2 Cos[27 x]

729 π
+
2 Cos[29 x]

841 π
+ Sin[x] -

1

2
Sin[2 x] +

1

3
Sin[3 x] -

1

4
Sin[4 x] +

1

5
Sin[5 x] -

1

6
Sin[6 x] +

1

7
Sin[7 x] -

1

8
Sin[8 x] +

1

9
Sin[9 x] -

1

10
Sin[10 x] +

1

11
Sin[11 x] -

1

12
Sin[12 x] +

1

13
Sin[13 x] -

1

14
Sin[14 x] +

1

15
Sin[15 x]

Out[7]=

-5 5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5
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Number 9.

In[8]:= f2 = x* Exp[-x]
FourierTrigSeries[f2, x, 5]

Out[8]= ⅇ-x x

Out[9]= -
ⅇπ (-1 + π) + ⅇ-π (1 + π)

2 π
+ Cos[x] Cosh[π] +

Sin[5 x] (65 π Cosh[π] - 5 Sinh[π])

169 π
+

8 Sin[4 x] (-17 π Cosh[π] + 2 Sinh[π])

289 π
-
2 Cos[2 x] (5 π Cosh[π] + 3 Sinh[π])

25 π
-

Cos[4 x] (68 π Cosh[π] + 60 Sinh[π])

578 π
+
1

2
Sin[x] 2 Cosh[π] -

2 Sinh[π]

π
+

1

2
Sin[3 x]

6 Cosh[π]

5
-
6 Sinh[π]

25 π
+
1

2
Cos[5 x]

2 Cosh[π]

13
+
24 Sinh[π]

169 π
+

1

2
Cos[3 x]

2 Cosh[π]

5
+
8 Sinh[π]

25 π
+

4

25
Sin[2 x] -5 Cosh[π] +

2 Sinh[π]

π

SSM (Checked)
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