
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Oct. 25, 2024

Homework Set 6 Solutions
1. (BH) Consider the following matrix and vectors:

A =

(
1 1
−2 4

)
, v1 =

(
3
3

)
, v2 =

(
−2
−4

)
.

(a) Show by direct multiplication that v1 and v2 are eigenvectors of A, and find
the corresponding eigenvalues.

Solution.

Av1 =

(
1 1
−2 4

)(
3
3

)
=

(
6
6

)
= 2

(
3
3

)
=⇒ λ1 = 2,

Av2 =

(
1 1
−2 4

)(
−2
−4

)
=

(
−6
−12

)
= 3

(
−2
−4

)
=⇒ λ2 = 3.

(b) Consider the three vectors −v1, 3v2, and −v1 + 2v2. Determine by direct
multiplication which (if any) are eigenvectors, and find the corresponding
eigenvalues.

Solution.

A(−v1) =

(
1 1
−2 4

)(
−3
−3

)
=

(
−6
−6

)
= 2

(
−3
−3

)
=⇒ λ = 2,

A(3v2) =

(
1 1
−2 4

)(
−6
−12

)
=

(
−18
−36

)
= 3

(
−6
−12

)
=⇒ λ = 3,

A(−v1 + 3v2) =

(
1 1
−2 4

)(
−9
−15

)
=

(
−24
−42

)
.

A(−v1 + 3v2) is not a multiple of −v1 + 3v2, so −v1 + 3v2 is not an eigenvector for A.

2. Consider the following matrix and vector function:

B =

(
−3 6

1 −2

)
, w1 =

(
−3

1

)
e−5t, w2 = tw1.

(a) (BH) Show by direct multiplication that ẇ1 = Bw1.

Solution.

ẇ1 = −5

(
−3

1

)
e−5t =

(
15
−5

)
e−5t

Bw1 =

(
−3 6

1 −2

)(
−3

1

)
e−5t =

(
15
−5

)
e−5t
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(b) (MP) Show by direct multiplication that ẇ2 = Bw2 + w1.

3. Consider the following matrix and vector:

C =

(
5 4
1 2

)
, b =

(
7
−1

)
.

(a) (BH) Calculate detC.

Solution.

detC =

∣∣∣∣ 5 4
1 2

∣∣∣∣ = (5)(2)− (4)(1) = 6.

(b) (BH) Calculate C−1.

Solution. Using the inverse formula for 2× 2 matrices, we have

C−1 =
1

detC

(
2 −4
−1 5

)
=

1

6

(
2 −4
−1 5

)
.

(c) (BH) Solve Cx = b.

Solution. The solution is given by

x = C−1b =
1

6

(
2 −4
−1 5

)(
7
−1

)
=

1

6

(
18
−12

)
=

(
3
−2

)
.

(d) (MP) Check your answers to (a)–(c) with Mathematica.

4. (BH) Prove that λ = 0 is an eigenvalue of A if and only if A is singular.

Solution. We must prove the statement in both directions. If A is singular, then there
is a nonzero vector z such that Az = 0 = 0z. Thus λ = 0 is an eigenvalue for A. In the
opposite direction, we see that if λ = 0 is an eigenvalue for A, there is a nonzero vector z
such that Az = 0z = 0, so A is singular.

5. Consider the matrix

A =

(
1 3
4 2

)
.

(a) (BH) Calculate the characteristic polynomial of A.

Solution.

PA(λ) =

∣∣∣∣ 1− λ 3
4 2− λ

∣∣∣∣ = (1− λ)(2− λ)− 12 = λ2 − 3λ− 10.

(b) (BH) Find the eigenvalues of A.

Solution. Setting the characteristic polynomial equal to zero, we have

λ2 − 3λ− 10 = (λ− 5)(λ+ 2) = 0,
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so λ1 = 5, λ2 = −2.

(c) (BH) Find the eigenvectors of A.

Solution. Solving for the first eigenvector, we obtain

(A− 5I)z1 =

(
−4 3
4 −3

)
z1 = 0.

The first row is minus the first, so we have the single equation 4x− 3y = 0. For simplicity,
we take y = 4, which means that x = 3. Hence the eigenvector is of the form

z1 = c1

(
3
4

)
,

for some constant c1. Solving for the second eigenvector, we obtain

(A+ 2I)z1 =

(
3 3
4 4

)
z1 = 0.

The rows are multiples of each other, so we have the single equation 4x + 4y = 0. For
simplicity, we take x = 1, which means that y = −1. Hence the eigenvector is of the form

z2 = c2

(
1
−1

)
,

for some constant c2.

(d) (MP) Check your answers to (b) and (c) with Mathematica.

6. (BH) Let x(1) and x(2) be solutions of

d

dt

(
x1
x2

)
=

(
p11 p12
p21 p22

)(
x1
x2

)
, (A)

and let W be their Wronskian.

(a) Show that
dW

dt
=

∣∣∣∣ ẋ(1)1 ẋ
(2)
1

x
(1)
2 x

(2)
2

∣∣∣∣+

∣∣∣∣x(1)1 x
(2)
1

ẋ
(1)
2 ẋ

(2)
2

∣∣∣∣ .
Solution.

dW

dt
=

d

dt

∣∣∣∣x(1)1 x
(2)
1

x
(1)
2 x

(2)
2

∣∣∣∣ =
d

dt

[
x
(1)
1 x

(2)
2 − x

(2)
1 x

(1)
2

]
=
[
ẋ
(1)
1 x

(2)
2 − ẋ

(2)
1 x

(1)
2

]
+
[
x
(1)
1 ẋ

(2)
2 − x

(2)
1 ẋ

(1)
2

]
=

∣∣∣∣ ẋ(1)1 ẋ
(2)
1

x
(1)
2 x

(2)
2

∣∣∣∣+

∣∣∣∣x(1)1 x
(2)
1

ẋ
(1)
2 ẋ

(2)
2

∣∣∣∣ .
(b) Show that

dW

dt
= (p11 + p22)W. (B)
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Solution. Using (A), we have∣∣∣∣ ẋ(1)1 ẋ
(2)
1

x
(1)
2 x

(2)
2

∣∣∣∣ =

∣∣∣∣ p11x(1)1 + p12x
(1)
2 p11x

(2)
1 + p12x

(2)
2

x
(1)
2 x

(2)
2

∣∣∣∣
=
[
p11x

(1)
1 + p12x

(1)
2

]
x
(2)
2 −

[
p11x

(2)
1 + p12x

(2)
2

]
x
(1)
2

= p11x
(1)
1 x

(2)
2 − p11x

(2)
1 x

(1)
2 = p11W.∣∣∣∣x(1)1 x

(2)
1

ẋ
(1)
2 ẋ

(2)
2

∣∣∣∣ =

∣∣∣∣ x
(1)
1 x

(2)
1

p21x
(1)
1 + p22x

(1)
2 p21x

(2)
1 + p22x

(2)
2

∣∣∣∣
= x

(1)
1

[
p21x

(2)
1 + p22x

(2)
2

]
− x(2)1

[
p21x

(1)
1 + p22x

(1)
2

]
= p22x

(1)
1 x

(2)
2 − p22x

(2)
1 x

(1)
2 = p22W

dW

dt
= (p11 + p22)W.

(c) Solve (B) and show that either W is identically zero or never vanishes.

Solution. Solving (B), we have

dW

W
= p11(t) + p22(t)

logW =

∫
p11(t) + p22(t) dt+A

W = C exp

(∫
p11(t) + p22(t) dt

)
,

where C = eA is a constant. If C = 0, W is identically zero. If C 6= 0, W never vanishes.

7. (BH) Consider the vectors

x(1)(t) =

(
6
t

)
, x(2)(t) =

(
−2et

et

)
.

(a) Calculate the Wronskian of x(1) and x(2).

Solution.

W [x(1),x(2)] =

∣∣∣∣ 6 −2et

t et

∣∣∣∣ = (6 + 2t)et.

(b) Where are x(1) and x(2) linearly independent?

Solution. The solutions are linearly independent wherever the Wronskian is not zero,
i.e., where t 6= −3.

(c) What conclusion can be drawn about the coefficients in the system of homo-
geneous differential equations satisfied by x(1) and x(2)?
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Solution. Since the solutions are not linearly independent at t = −3, we expect that
at least one of the coefficients of the system will be discontinuous at t = −3.

(d) By direct substitution, show that x(1) and x(2) are solutions of

ẋ =
1

t+ 3

(
t −6

(1− t)/2 4

)
x, (6.1)

and hence verify your answer to (c).
Solution. Substituting the solutions into (6.1), we have

ẋ(1) =

(
0
1

)
=

1

t+ 3

(
t −6

(1− t)/2 4

)(
6
t

)
=

1

t+ 3

(
6t− 6t

3(1− t) + 4t

)
=

(
0
1

)
ẋ(2) =

(
−2et

et

)
=

1

t+ 3

(
t −6

(1− t)/2 4

)(
−2et

et

)
=

1

t+ 3

(
−2tet − 6et

−(1− t)et + 4et

)
=

(
−2et

et

)
,

as required. Note that all the coefficients of (6.1) are discontinuous at t = −3, as surmised.

8. (BH) Consider the system

ẋ =

(
−1 −1

2 −4

)
x.

(a) Show that the eigenvalues for this matrix are λ1 = −2, λ2 = −3.

Solution. Calculating the characteristic polynomial, we have∣∣∣∣−1− λ −1
2 −4− λ

∣∣∣∣ = (1 + λ)(4 + λ) + 2 = λ2 + 5λ+ 6 = (λ+ 2)(λ+ 3) = 0.

Thus we have the desired result.
(b) Find the general solution x(t) of this system.

Solution. Now we must calculate the eigenvectors corresponding to the eigenvalues.
Solving for the first eigenvector, we obtain

(A+ 2I)z1 =

(
1 −1
2 −2

)
z1 = 0.

We note that the second row is twice the first, so the equations are redundant. Thus
we must solve x − y = 0, so a typical eigenvector is z1 = (1, 1). Solving for the second
eigenvector, we obtain

(A+ 3I)z2 =

(
2 −1
2 −1

)
z2 = 0.
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We note that the second row is minus the first, so the equations are redundant. Thus we
must solve 2x − y = 0, so a typical eigenvector is z2 = (1, 2). Therefore, our solution is
given by

x(t) = c1e
−2t
(

1
1

)
+ c2e

−3t
(

1
2

)
.

(c) What happens to the solution as t→∞?

Solution. As t→∞, the exponentials decay to zero and we are left with

lim
t→∞

x(t) = 0.

9. Consider the system

ẋ =

(
−7 8
−4 5

)
x. (6.2)

(a) (BH) Find the solution to (6.2) subject to

x(0) =

(
3
0

)
.

Solution. Calculating the characteristic polynomial, we have∣∣∣∣−7− λ 8
−4 5− λ

∣∣∣∣ = (−7− λ)(5− λ) + 32 = λ2 + 2λ− 3 = (λ+ 3)(λ− 1) = 0

λ1 = −3, λ2 = 1.

Now we must calculate the eigenvectors corresponding to the eigenvalues. Solving for the
first eigenvector, we obtain

(A+ 3I)z1 =

(
−4 8
−4 8

)
z1 = 0.

We note that the rows are the same, so the equations are redundant. Thus we must solve
−4x + 8y = 0, so a typical eigenvector is z1 = (2, 1). Solving for the second eigenvector,
we obtain

(A− I)z2 =

(
−8 8
−4 −4

)
z2 = 0.

We note that the first row is twice the second, so the equations are redundant. Thus we
must solve −8x + 8y = 0, so a typical eigenvector is z2 = (1, 1). Therefore, the general
solution is given by

x(t) = c1e
−3t
(

2
1

)
+ c2e

t

(
1
1

)
. (C)

Substituting t = 0 in (C) to find the initial conditions, we have

2c1 + c2 = 3

c1 + c2 = 0
=⇒ c1 = 3, c2 = −3.
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Therefore, the final solution is

x(t) = 3e−3t
(

2
1

)
− 3et

(
1
1

)
.

(b) (MP) Plot x1 and x2 from (a) for t ∈ [0, 4].
(c) (BH) For a certain set of vectors x0, the solution to (6.2) with x(0) = x0

decays to zero as t→∞. Determine x0.

Solution. In order for the solution to decay, c2 = 0 in (A). Then plugging in t = 0, we
have

x(0) = x0 = c1

(
2
1

)
.

(d) (MP) Choose an x0 which satisfies your answer to (c), then plot x1 and x2
for t ∈ [0, 4].

10. (MP) Consider the system

ẋ =
1

11

(
−47 2
12 −52

)
x. (6.3)

(a) Show that the eigenvalues for this system are λ1 = −4, λ2 = −5, and find
the corresponding eigenvectors.

(b) Find the general solution x(t) of this system.
(c) Find the solution of the initial-value problem given by (6.3) and x(0) = (4, 0).
(d) Sketch the phase plane for this system.



In [ ] := Quit[]

HW1 (Checked)

HW2 (Checked)

HW3 (Checked)

HW4 (Checked)

HW5 (Checked)

HW6 (Checked)

Number 2b.

In [ ] := b4mat = {{-3, 6}, {1, -2}}
w1 = {-3, 1} * Exp[-5 * t]
w2 = t * w1
D[w2, t]
b4mat.w2 + w1

Out[ ]=

{{-3, 6}, {1, -2}}

Out[ ]=

-3 ⅇ-5 t, ⅇ-5 t

Out[ ]=

-3 ⅇ-5 t t, ⅇ-5 t t

Out[ ]=

-3 ⅇ-5 t + 15 ⅇ-5 t t, ⅇ-5 t - 5 ⅇ-5 t t

Out[ ]=

-3 ⅇ-5 t + 15 ⅇ-5 t t, ⅇ-5 t - 5 ⅇ-5 t t



Number 3d.

In [ ] := cmat = {{5, 4}, {1, 2}}
b5 = {7, -1}

Out[ ]=

{{5, 4}, {1, 2}}

Out[ ]=

{7, -1}

Check 5a.

In [ ] := Det[cmat]
Out[ ]=

6

Check 5b.

In [ ] := Inverse[cmat]
Out[ ]=


1

3
, -

2

3
, -

1

6
,
5

6


Check 5c.

In [ ] := Solve[cmat.{x, y} ⩵ b5, {x, y}]
Out[ ]=

{{x → 3, y → -2}}

Number 5d.

In [ ] := b5 = {{1, 3}, {4, 2}}
Eigensystem[b5]

Out[ ]=

{{1, 3}, {4, 2}}

Out[ ]=

{{5, -2}, {{3, 4}, {-1, 1}}}

Number 9b.
We define the solutions generally so we can easily use both parts.

In [ ] := sol2 = c1* Exp[-3* t] * {2, 1} + c2* Exp[t] * {1, 1}
Out[ ]=

2 c1 ⅇ-3 t + c2 ⅇt, c1 ⅇ-3 t + c2 ⅇt
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In [ ] := sol2b = sol2 /. {c1 → 3, c2 → -3}
Plot[sol2b〚1〛, {t, 0, 4}]
Plot[sol2b〚2〛, {t, 0, 4}]

Out[ ]=

6 ⅇ-3 t - 3 ⅇt, 3 ⅇ-3 t - 3 ⅇt

Out[ ]=

1 2 3 4

-150

-100

-50

Out[ ]=

1 2 3 4

-150

-100

-50

Number 9d.
For simplicity, we choose c1=1.
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In [ ] := sol2d = sol2 /. {c1 → 1, c2 → 0}
Plot[sol2d〚1〛, {t, 0, 4}]
Plot[sol2d〚2〛, {t, 0, 4}]

Out[ ]=

2 ⅇ-3 t, ⅇ-3 t

Out[ ]=

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

Out[ ]=

1 2 3 4

0.05

0.10

0.15

0.20

0.25

0.30

Number 10a.

In [ ] := b4mat = 1/ 11 * {{-47, 2}, {12, -52}}
Eigensystem[b4mat]

Out[ ]=

-
47

11
,

2

11
, 

12

11
, -

52

11


Out[ ]=

{-5, -4}, -
1

4
, 1, 

2

3
, 1
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Number 10b.

In [ ] := xvec = {x[t], y[t]}
vecsys = D[xvec, t] ⩵ b4mat.xvec
DSolve[vecsys, xvec, t]

Out[ ]=

{x[t], y[t]}

Out[ ]=

{x′[t], y′[t]} ⩵ -
47 x[t]

11
+
2 y[t]

11
,
12 x[t]

11
-
52 y[t]

11


Out[ ]=

x[t] →
1

11
ⅇ-5 t 3 + 8 ⅇt 1 +

2

11
ⅇ-5 t -1 + ⅇt 2,

y[t] →
12

11
ⅇ-5 t -1 + ⅇt 1 +

1

11
ⅇ-5 t 8 + 3 ⅇt 2

Number 10c.

In [ ] := DSolve[{vecsys, (xvec /. (t → 0)) ⩵ {4, 0}}, xvec, t]
Out[ ]=

x[t] →
4

11
ⅇ-5 t 3 + 8 ⅇt, y[t] →

48

11
ⅇ-5 t -1 + ⅇt
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Number 10d.

In [ ] := tostream = b4mat.{x, y}
StreamPlot[tostream, {x, -1, 1}, {y, -1, 1}]

Out[ ]=

-
47 x

11
+
2 y

11
,
12 x

11
-
52 y

11


Out[ ]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

HW7 (Checked)

HW8 (Checked)

HW9 (Checked)

SSM (Checked)
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