
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Oct. 18, 2024

Homework Set 5 Solutions
1. A mass is attached to a vertical spring which has internal damping. The relevant

equation is given by

ẍ+
1

32
ẋ+ 96x = 0, (5.1)

where x is displacement measured (in cm) from the rest position, and time is
measured in seconds. The spring is stretched 1/7 cm and then released.

(a) (BH) What are the initial conditions that correspond to this situation?

Solution. The mass is stretched 1/7 cm, so x(0) = 1/7. The spring is simply released
without additional velocity, so ẋ(0) = 0.

(b) (MP) Solve the corresponding system.
(c) (MP) Equipment in the lab can measure the displacement down to a level

of 0.01 cm. Estimate the time t∗ after which the displacement of the spring
always remain below the threshold level.

2. (BH) The displacement x(t) of a spring is governed by the following equation:

9ẍ+ 12ẋ+ 4x = 0, x(0) = x0, ẋ(0) = v0.

(a) Construct the solution to this problem.

Solution. Substituting x = eλt, we obtain

9λ2 + 12λ+ 4 = (3λ+ 2)2 = 0 =⇒ λ = −2/3,

so we have a double root. Therefore, our solutions are of the form x = e−2t/3(c1 + c2t).
Solving the first initial condition, we immediately have that c1 = x0. Solving the second
initial condition, we have

e−2t/3(c2)− 2e−t

3
(x0 + c2t)

∣∣∣∣
t=0

= v0

c2 −
2x0
3

= v0

x(t) = e−2t/3
[
x0 +

(
v0 +

2x0
3

)
t

]
.

(b) Show that x(t∗) = 0 if and only if v0/x0 < −2/3. In this case, how many
times does the solution cross the t-axis?
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Solution. The solution is zero whenever

x0 +

(
v0 +

2x0
3

)
t = 0

t = − x0
v0 + 2x0/3

= − 1

v0/x0 + 2/3
> 0. (A)

For the last inequality in (A) to be true, we must have

v0
x0

+
2

3
< 0,

from which the result follows. Note that there is only one solution for t in (A), and hence
if the solution crosses the t-axis once, the solution crosses it only once.

3. In steady state, the temperature T (x) in a domain obeys the following equation:

T ′′ − V T ′ = 0, T (0) = 0, T (1) = 1, (5.2)

where V is the velocity of heat flow.

(a) (BH) Solve (5.2) for V 6= 0.

Solution. Substituting T = eλx, we obtain

λ2 + V λ = λ(λ− V ) = 0

T (x) = c1 + c2e
V x

T (0) = c1 + c2 = 0 =⇒ T (x) = c1(1− eV x)

T (1) = c1(1− eV ) = 1 =⇒ T (x) =
1− eV x

1− eV
. (B)

(b) (BH) By taking the limit of your answer to (a), solve (5.2) for V = 0.

Solution. Using l’Hôpital’s Rule for the limit of (B) as V → 0, we have

T (x) = lim
V→0

1− eV x

1− eV
= lim
V→0

−xeV x

−eV
= x.

(c) (MP) Graph your solution for V = −2, 0, and 2. Interpret your solution in
terms of the velocity.

4. (BH) Under a certain model, the amount of income Y (t) in an economy obeys
the following equation:

Ÿ + 4Ẏ + (3 + α)Y = −1; α > 0, α 6= 1. (5.3)

(a) Find the general solution of (5.3), as well as the steady state of Y .
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Solution. To obtain the homogeneous solution, we try Yh = eλt, which yields

λ2 + 4λ+ (3 + α) = 0,

λ± = −
4±

√
16− 4(3 + α)

2
= −4± 2

√
1− α

2
= −2±

√
1− α

Yh = Aeλ+t +Beλ−t.

Using the method of undetermined coefficients, we try to find a particular solution of the
form

Yp = C.

Substituting in this form, we obtain

(3 + α)CY = −1

Yp = − 1

3 + α

Y (t) = − 1

3 + α
+Aeλ+t +Beλ−t.

Since α > 0, the square root in λ is never larger than 1, so both roots always have negative
real part. Hence eλ±t → 0 as t→∞, and hence the steady state is given by the particular
solution:

Ys(t) = − 1

3 + α
. (C)

(b) For what values of α will the solution oscillate?

Solution. The solutions oscillate when λ is complex, which occurs when the discrimi-
nant is negative, or when α > 1.

(c) Economists would like to maximize the steady state of Y while keeping the
income from oscillating. Are those two goals compatible for this model?

Solution. Since the steady state is negative, we see from (C) that maximizing the
steady state involves driving α as large as possible. But for any α > 1, income oscillates,
so the two goals are in conflict.

5. We reconsider the damped spring of #1, but impose a forcing F (t):

ẍ+
1

32
ẋ+ 96x = F (t),

where

F (t) =

{
4 sin t, 0 ≤ t ≤ 2π,
0, t > 2π.

The initial conditions are the same as before.

(a) (MP) Solve the resulting system for the displacement x in the region t ∈
[0, 2π].
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(b) (MP) Show that

x(2π) ≈ 0.0419, ẋ(2π) ≈ 1.2425.

(c) (BH) Why should x and ẋ be continuous at t = 2π?

Solution. Since the change in forcing at t = 2π affects only the acceleration, not the
velocity or position, x and ẋ should be continuous.

(d) (MP) Using your answer to (c), calculate x in the region t > 2π.
(e) (MP) Plot your solution x for t ∈ [0, 4π].

6. (BH) Consider the dimensional equation for the forced spring given in class:

Mẍ+ bẋ+ kx = F (t). (5.4)

If M = 1, b = 1, k = 2, and F = − sin t, find the steady-state solution for the
displacement.

Solution. Substituting the parameters into (5.4), we obtain

ẍ+ ẋ+ 2x = − sin t. (D)

To find the particular solution (which is the steady state), we substitute xp = cc cos t +
cs sin t into (D) to obtain

−(cc cos t+ cs sin t) + (cs cos t− cc sin t) + 2(cc cos t+ cs sin t) = − sin t

cc + cs = 0

cs − cc = −1

cc =
1

2
, cs = −1

2
.

But the particular solution is the steady state, so we have that the steady state is given
by

xs =
cos t− sin t

2
.

7. When scaled in the proper manner, the equation for the velocity v(r) in a cylin-
drical pipe is given by

d2v

dr2
+

1

r

dv

dr
= −a, r ∈ [0, 1]; v(1) = 0, (5.5)

where a > 0 and r is distance from the center.

(a) (BH) Find the general solution to (5.5).

Solution. Letting w = dv/dr in (5.5), we obtain

dw

dr
+

1

r
w = −a,
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which is a first-order equation with p(r) = 1/r:

µ = exp

(∫
dr

r

)
= exp(log r) = r,

d(rw)

dr
= −ar

rw = −ar
2

2
+ c1.

Then using our definition of w, we have

dv

dr
= −ar

2
+
c1
r

v = −ar
2

4
+ c1 log r + c2

v(1) = −a
4

+ c2 = 0

c2 =
a

4

v(r) =
a(1− r2)

4
+ c1 log r. (E)

(b) (BH) Write the solution to the physical system.

Solution. We expect the velocity to remain bounded at r = 0, so we see that we must
take c1 = 0 in (E) to obtain

v(r) =
a(1− r2)

4
.

(c) (MP) Plot your solution for r ∈ [0, 1] and a = 1, 2, 3, 4.

3 gal/
min

2 gal/
min

Tank 1:!
6 gallons

Tank 2:!
12 gallons

1 gal/
min

1 gal/
min

8. Consider the system of two interconnected tanks shown above. Tank 1 contains
six gallons of solution and tank 2 contains twelve gallons of a chemical solution
(see figure). Fresh water is pumped into tank 1 at the rate of 1 gal/min. Solution
from tank 1 to tank 2 is pumped at 3 gal/min. Solution is pumped from tank 2
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to tank 1 at 2 gal/min, and solution is removed from tank 2 at 1 gal/min. Let
mi be the mass of the chemical in tank i.

(a) (BH) Will the volume of solution in the tanks ever change? Why or why not?

Solution. 3 gal/min leaves Tank 1 (going to Tank 2), but 3 gal/min comes in (1
gal/min of fresh water, and 2 gal/min from Tank 2). 3 gal/min enters Tank 2 (from Tank
1), but 3 gal/min leaves (1 gal/min to the drain, and 2 gal/min to Tank 1). So the tanks
will remain at the same level.

(b) (BH) Show that the system of differential equations governing m1 and m2 is
given by

6ṁ1 = −3m1 +m2, (5.6a)

4ṁ2 = 2m1 −m2. (5.6b)

Solution. The change of mass in tank 1 (ṁ1, in g/min) is given by the influx from tank
2 and the outflow to tank 2. The influx from tank 2 is given by the current concentration
in tank 2 (m2/12, in g/gal), times the flow rate (2 gal/min). Therefore, the influx is m2/6,
and the outflow is (−m1/6)(3) = −m1/2:

ṁ1 = −m1

2
+
m2

6
6ṁ1 = −3m1 +m2.

The change of mass in tank 2 (ṁ1, in g/min) is given by the influx from tank 1 and the
outflow to tank 2 and the drain. The influx from tank 1 is given by (m1/6)(3) = m1/2,
while the total outflow is given by (−m2/12)(2 + 1) = −m2/4. Therefore, we have

ṁ2 =
m1

2
− m2

4
(F)

4ṁ2 = 2m1 −m2.

(c) (BH) Combine equations (5.6) into a single second-order equation for m1.

Solution. Taking the derivative of (5.6a) with respect to t and substituting in (F), we
have

6m̈1 = −3ṁ1 + ṁ2 = −3ṁ1 +
(m1

2
− m2

4

)
= −3ṁ1 +

m1

2
− 6ṁ1 + 3m1

4

6m̈1 = −9ṁ1

2
− m1

4
.

(d) (MP) Solve your answer to (c) and find expressions for m1 and m2 if m1(0) =
5, m2(0) = 25.

(e) (BH) What happens to m1 and m2 as t→∞? Explain your result physically.

Solution. Both m1 and m2 go to zero because we are adding fresh water and draining
solution.
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9. (BH) Write the second-order linear ordinary differential equation

(cos t)ẅ + t2ẇ + e−tw = 0

as a system of two first-order linear ordinary differential equations.

Solution. Letting x = ẇ, we have

ẇ = x,

(cos t)ẋ+ t2x+ e−tw = 0.

10. (BH) Without memory effects, Newton’s Second Law for the displacement x(t)
of an object of mass m is given by

mẍ = F (x, ẋ, t). (5.7)

Introduce the momentum p to transform (5.7) into a system of two coupled first-
order equations.

Solution. The momentum is defined by

mẋ = p. (G.1)

Substituting this result into (5.7), we have

ṗ = F
(
x,

p

m
, t
)
. (G.2)

The two equations in (G) form a first-order system, as desired.
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Number 1b.

In[1]:= eq4 = {x''[t] + x'[t] / 32 + 96 * x[t] ⩵ 0, x[0] ⩵ 1/ 7, x'[0] ⩵ 0}
sol4 = DSolveValue[eq4, x[t], t]

Out[1]= 96 x[t] +
x′[t]

32
+ x′′[t] ⩵ 0, x[0] ⩵

1

7
, x′[0] ⩵ 0

Out[2]=

ⅇ-t/64 393215 Cos 393215 t
64

 + 393215 Sin 393215 t
64



2752505

Number 1c.
First we compute the amplitude.  To do this, we just compute c1 and c2, then the required square root.



In[3]:= nsol4 = Expand[sol4]
nsol4〚2〛

c1 = % /. Sin
393 215 t

64
 → 1

nsol4〚1〛

c2 = % /. Cos
393 215 t

64
 → 1

amp = Sqrt[c1^2 + c2^2]

Out[3]=
1

7
ⅇ-t/64 Cos

393215 t

64
 +

ⅇ-t/64 Sin 393 215 t
64



7 393215

Out[4]=

ⅇ-t/64 Sin 393215 t
64



7 393215

Out[5]=
ⅇ-t/64

7 393 215

Out[6]=
1

7
ⅇ-t/64 Cos

393215 t

64


Out[7]=
ⅇ-t/64

7

Out[8]=
256

7

6

393215
ⅇ-t/32

Then we set this equal to the threshold and solve for t*:

In[9]:= Solve[amp ⩵ 0.01, t]

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete

solution information.

Out[9]= {{t → 170.193}}
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Number 3c.

In[10]:= sol3 = (1 - Exp[V* x]) / (1 - Exp[V])
sol30 = x
Show[Plot[Evaluate[Table[sol3, {V, -2, 2, 4}]],

{x, 0, 1}, PlotStyle → {Red, Green }], Plot[sol30, {x, 0, 1}]]
Out[10]=

1 - ⅇV x

1 - ⅇV

Out[11]=

x

Out[12]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The blue case is the steady state without any velocity.  If the velocity is positive (green curve), the heat provided on the right side is 
being being opposed by the velocity, and the heat in the whole region is less.  If the velocity is negative (red curve), the heat 
provided on the left side is being assisted by the flow to the left, and the temperature is higher everywhere.

Number 5a.

In[13]:= eq9 = x''[t] + x'[t] / 32 + 96* x[t] ⩵ F[t]
sys9a = {eq9 /. F[t] → 4* Sin[t], x[0] ⩵ 1/ 7, x'[0] ⩵ 0}
sol9a = DSolveValue[sys9a, x[t], t]

Out[13]=

96 x[t] +
x′[t]

32
+ x′′[t] ⩵ F[t]

Out[14]=

96 x[t] +
x′[t]

32
+ x′′[t] ⩵ 4 Sin[t], x[0] ⩵

1

7
, x′[0] ⩵ 0

Out[15]=

-
1

25437552 960505
ⅇ-t/64 352 320 640 ⅇt/64 Cos[t] - 3634288457855 Cos

393215 t

64
 -

1071 054745600 ⅇt/64 Sin[t] + 165083263 393215 Sin
393215 t

64

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Number 5b.

In[16]:= ic5d1 = x[2* Pi] ⩵ N[sol9a /. (t → 2* Pi)]
ic5d2 = x'[2 * Pi] ⩵ N[D[sol9a, t] /. (t → 2* Pi)]

Out[16]=

x[2 π] ⩵ 0.0419376

Out[17]=

x′[2 π] ⩵ 1.24252

Number 5d.

In[18]:= sys9b = {eq9 /. F[t] → 0, ic5d1, ic5d2}
sol9b = DSolveValue[sys9b, x[t], t]

Out[18]=

96 x[t] +
x′[t]

32
+ x′′[t] ⩵ 0, x[2 π] ⩵ 0.0419376, x′[2 π] ⩵ 1.24252

Out[19]=

0.147394 ⅇ-t/64 1. Cos
393215 t

64
 - 0.0179674 Sin

393215 t

64


Number 5e.

In[20]:= plot9a = Plot[sol9a, {t, 0, 2* Pi}];
plot9b = Plot[sol9b, {t, 2* Pi, 4* Pi}];
Show[plot9a, plot9b, PlotRange → All]

Out[22]=

2 4 6 8 10 12

-0.15

-0.10

-0.05

0.05

0.10

0.15

0.20
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Number 7c.

In[23]:= eq7 = a* (1 - r^2) / 4
plot7c = Plot[Table[eq7, {a, 1, 4}], {r, 0, 1}]

Out[23]=
1

4
a 1 - r2

Out[24]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Number 8d.

First we set up the proper system.  Note that we use ToRules to convert the equation into a substitution rule to figure out m 1(0).  
We could just have easily set up two definitions.
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In[25]:= eq1a = 6* m1'[t] ⩵ -3* m1[t] + m2[t]
eq1c = 6* m1''[t] ⩵ -9* m1'[t] / 2 - m1[t] / 4
ic1 = m1[0] ⩵ 5
icforsub = ToRules[ic1]〚1〛
ic2 = m2[0] → 25
(eq1a /. t → 0) /. {icforsub, ic2}
ic3 = Roots[%, m1′[0]]

Out[25]=

6 m1′[t] ⩵ -3 m1[t] + m2[t]

Out[26]=

6 m1′′[t] ⩵ -
m1[t]

4
-
9 m1′[t]

2
Out[27]=

m1[0] ⩵ 5

Out[28]=

m1[0] → 5

Out[29]=

m2[0] → 25

Out[30]=

6 m1′[0] ⩵ 10

Out[31]=

m1′[0] ⩵
5

3

In[32]:= m1sol = DSolveValue[{eq1c, ic1, ic3}, m1[t], t]
Solve[eq1a /. {m1[t] → m1sol, m1'[t] → D[m1sol, t]}, m2[t]]

Out[32]=

-
5

114
-57 ⅇ

-
3
8
-

19

3

8
t

+ 17 57 ⅇ
-
3
8
-

19

3

8
t

- 57 ⅇ
-
3
8
+

19

3

8
t

- 17 57 ⅇ
-
3
8
+

19

3

8
t

Out[33]=

m2[t] → -
5

38
-95 ⅇ

-
3
8
-

19

3

8
t

+ 9 57 ⅇ
-
3
8
-

19

3

8
t

- 95 ⅇ
-
3
8
+

19

3

8
t

- 9 57 ⅇ
-
3
8
+

19

3

8
t



HW6 (Checked)

HW7 (Checked)

HW8 (Checked)

HW9 (Checked)
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