
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Oct. 11, 2024

Homework Set 4 Solutions
1. Consider the equation

ẍ+ 2ẋ+ 5x = 0, x(0) = 1, ẋ(0) = −(1 + 2α), α ≥ 0.

(a) (BH) Construct the solution x(t) in standard form.

Solution. Substituting x = eλt, we obtain

λ2 + 2λ+ 5 = 0 =⇒ λ± =
−2±

√
4− 20

2
= −1± 2i,

so solutions are of the form x(t) = e−t(cc cos 2t+cs sin 2t). Solving the first initial condition,
we immediately have that x(0) = 1 = cc. Solving the second initial condition, we have

ẋ(0) = e−t (−2 sin 4t+ 2cs cos 4t)− e−t (cos 2t+ cs sin 2t)
∣∣
t=0

= −(1 + 2α)

2cs − 1 = −1− 2α

cs = −α

x(t) = e−t(cos 2t− α sin 2t). (A.1)

(b) (BH) Convert your answer to (a) into magnitude-phase form.

Solution. Using the notation from class, we have from (A.1) that

cc = 1, cs = −α =⇒ A =
√

1 + α2,

x(t) =
√

1 + α2e−t cos(2t− φ), φ = tan−1(−α) = − tan−1 α, (A.2)

where we have used the fact that cc > 0.

(c) (BH) Use your answers to (a) and (b) to confirm (twice) that x(t∗) = 0
whenever

tan 2t∗ =
1

α
. (4.1)

Solution. Using (A.1), we have

x(t∗) = e−t∗ [cos 2t∗ − α sin 2t∗] = 0

cos 2t∗ = α sin 2t∗

tan 2t∗ =
1

α
.
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Using (A.2), we have

x(t∗) =
√

1 + α2e−t∗ cos(2t∗ − φ) = 0

2t∗ − φ =
π

2

tan 2t∗ = tan
(
φ+

π

2

)
= − cotφ = − 1

tanφ
=

1

α
,

where we have used the definition of φ in (A.2).

(d) (MP) Plot (4.1).

(e) (BH) By considering your graph in the limits that α → 0 and α → ∞,
construct upper and lower bounds on the smallest positive t∗.

Solution. We examine (4.1). As α → ∞, tan 2t∗ → 0, so t∗ → 0. As α → 0,
tan 2t∗ →∞, so 2t∗ → π/2, and t∗ → π/4. Therefore, we have

0 < t∗ ≤
π

4
,

where we include equality only for the attainable limit α = 0.

2. (BH) Find the general solution of

y(3) − 3ÿ + ẏ − 3y = 0.

Solution. Substituting y = eλt, we have

λ3 − 3λ2 + λ− 3 = (λ− 3)(λ2 + 1) = (λ− 3)(λ+ i)(λ− i) = 0

y(t) = c1e
3t + cs sin t+ cc cos t.

3. (BH) Consider the differential equation

L[y] = aÿ + bẏ + cy = 0,

where the quadratic equation aλ2 + bλ+ c = 0 has the repeated root λ1.

(a) Show that
L[eλt] = a(λ− λ1)2eλt. (4.2)

Since the right side of (4.2) is zero when λ = λ1, it follows that eλ1t is a
solution of L[y] = 0.

Solution. By the definition of L, we have that

L[eλt] = a
d2(eλt)

dt2
+ b

d(eλt)

dt
+ ceλt = (aλ2 + bλ+ c)eλt.

But aλ2 + bλ+ c = 0 has the repeated root λ1, so it can be written as a(λ− λ1)2, and the
proof is complete.
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(b) Show that
∂

∂λ
L[eλt] = 2a(λ− λ1)eλt + a(λ− λ1)2teλt.

Since the right-hand side of the equation is zero when λ = λ1, conclude that
teλ1t is also a solution of L[y] = 0.

Solution. Differentiating (4.2) with respect to r and interchanging differentiation as
indicated, we have

∂

∂λ
L[eλt] =

∂

∂λ

[
a(λ− λ1)2eλt

]
L
[
∂(eλt)

∂λ

]
= 2a(λ− λ1)eλt + a(λ− λ1)2teλt

L[teλt] = 2a(λ− λ1)eλt + a(λ− λ1)2teλt.

Since the right-hand side of the equation is zero when λ = λ1, we have that conclude that
L[teλ1t] = 0.

4. Consider the equation
y(4) − 8ÿ + 16y = 0. (4.3)

(a) (BH) Find the general solution of (4.3).

Solution. Substituting y = eλt, we obtain

λ4 − 8λ2 + 16 = (λ2 − 4)2 = (λ+ 2)2(λ− 2)2 = 0

y(t) = (c1 + c2t)e
−2t + (c3 + c4t)e

2t.

(b) (MP) Find the solution of (4.3) subject to

y(0) = 1, ẏ(0) = −3, ÿ(0) = 5, y(3)(0) = −7.

5. (BH) Find the general solution to the differential equation

3ÿ + 5ẏ − 2y = −2t2 + 10t. (4.4)

Solution. Substituting x = eλt into the homogeneous problem, we obtain

3λ2 + 5λ− 2 = (3λ− 1)(λ+ 2) = 0 =⇒ λ = 1/3,−2,

so the homogeneous solution is given by

yh = c1e
t/3 + c2e

−2t.

The form of the right-hand side motivates a substitution of the form

yp = a2t
2 + a1t+ a0.
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Substituting this into (4.4), we obtain

3(2a2) + 5(2a2t+ a1)− 2(a2t
2 + a1t+ a0) = −2t2 + 10t

t2(−2a2 + 2) + t(10a2 − 2a1 − 10) + 6a2 + 5a1 − 2a0 = 0. (B)

We solve for the aj by zeroing out the coefficients of the t terms. Starting with zeroing
out the t2 terms, we have

−2a2 + 2 = 0 =⇒ a2 = 1.

Substituting this result into (B), we obtain, zeroing out the t and constant terms,

−2a1t+ 6 + 5a1 − 2a0 = 0 =⇒ a1 = 0

6− 2a0 = 0 =⇒ a0 = 3

yp = t2 + 3

y = c1e
t/3 + c2e

−2t + t2 + 3.

6. Consider the differential equation

ÿ − ω2y = et + e−t. (4.5)

(a) (BH) Find the general solution to (4.5) Be sure to account for all ω 6= 0.

Solution. Using the method of undetermined coefficients, we try to find a particular
solution of the form

yp = c+e
t + c−e

−t.

Substituting in this form, we obtain

c+e
t + c−e

−t − ω2(c+e
t + c−e

−t) = et + e−t

c+(1− ω2)et + c−(1− ω2)e−t = et + e−t

c+ = c− =
1

1− ω2
, ω 6= ±1.

For the case where ω = ±1, we try

yp = a+te
t + a−te

−t.

Substituting in this form, we obtain

a+(t+ 2)et + a−(t− 2)e−t − (a+te
t + a−te

−t) = et + e−t

2(a+e
t − a−e−t) = et + e−t

a+ =
1

2
, a− = −1

2
.
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To obtain the homogeneous solution, we try yh = eλt, which yields

λ2 − ω2 = 0,

yh = Aeωt +Be−ωt,

as long as ω 6= 0 so we don’t have a double root. Therefore, the general solution is given
by

y(t) = yp(t) +Aeωt +Be−ωt, yp(t) =


et + e−t

1− ω2
=

2 cosh t

1− ω2
, ω 6= ±1,

t(et − e−t)
2

= t sinh t, ω = ±1.

(b) (MP) Solve (4.5). Does Mathematica miss anything?

7. Consider the equations

6ÿ + 5ẏ + y = 20 cos2
(
t

2

)
, y(0) = 14, ẏ(0) = −1, (4.6a)

6ÿ + 5ẏ + y = 20 cos4
(
t

2

)
, y(0) = 14, ẏ(0) = −1. (4.6b)

(a) (BH) Find the solution to (4.6a).

Solution. cos2(t/2) = (1 + cos t)/2, so we have

6ÿ + 5ẏ + y = 10(1 + cos t)

and thus we try a particular solution of the form

yp = cc cos t+ cs sin t+ c0.

Substituting in this form, we obtain

−6cc cos t− 6cs sin t− 5cc sin t+ 5cs cos t+ (cc cos t+ cs sin t+ c0) = 10(1 + cos t)

5(cs − cc) cos t− 5(cs + cc) sin t+ c0 = 10(1 + cos t)

We solve for the constants by matching up the constant terms, as well as the coefficients
of sin t and cos t:

c0 = 10 (constant)

cs − cc = 2 (cos t)

cs + cc = 0. (sin t)

Solving the last two equations together, we have cs = 1, cc = −1. By substituting
y = eλt, we can obtain the homogeneous solution, where λ solves

6λ2 + 5λ+ 1 = (3λ+ 1)(2λ+ 1) = 0 =⇒ λ = −1

3
, −1

2
.
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Thus, we have
y(t) = sin t− cos t+ 10 +Ae−t/3 +Be−t/2.

Solving the initial data, we obtain

9 +A+B = 14 = y(0)

1− A

3
− B

2
= −1 = ẏ(0).

=⇒
A+B = 5

2A+ 3B = 12.

Solving these equations together, we have that A = 3, B = 2, so the solution is

y(t) = sin t− cos t+ 10 + 3e−t/3 + 2e−t/2.

(b) (MP) Find the solution to (4.6b).
(c) (MP) Plot the solutions to (4.6a) and (4.6b) on the same graph for t ∈ [0, 10π].

Why should the graphs be so similar?

8. (BH) Find the general solution to the differential equation

ÿ − ω2y = et + e−t.

Be sure to account for all ω 6= 0.

Solution. This is the same problem as #6, so we know that the homogeneous solutions
are given by

y1 = eωt, y2 = e−ωt

as long as ω 6= 0. Then the Wronskian is given by

W =

∣∣∣∣ eωt e−ωt

ωeωt −ωe−ωt
∣∣∣∣ = −2ω.

Using the variation of parameters formula, we have

yp(t) = −eωt
∫
e−ωt(et + e−t)

(−2ω)
dt+ e−ωt

∫
eωt(et + e−t)

(−2ω)
dt (C)

=
eωt

2ω

[
e(1−ω)t

1− ω
− e−(1+ω)t

1 + ω

]
− e−ωt

2ω

[
e(1+ω)t

1 + ω
− e(ω−1)t

ω − 1

]
=

et

2ω

(
1

1− ω
− 1

1 + ω

)
+
e−t

2ω

(
1

1− ω
− 1

1 + ω

)
=
et + e−t

1− ω2
, ω 6= ±1.

If ω = ±1, we see that (C) becomes

yp(t) = −eωt
∫

1 + e−2ωt

(−2ω)
dt+ e−ωt

∫
1 + e2ωt

(−2ω)
dt =

eωt

2ω

(
t− e−2ωt

2ω

)
− e−ωt

2ω

(
t+

e2ωt

2ω

)
=
t(eωt − e−ωt)

2ω
=
t(et − e−t)

2
.
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Therefore, the general solution is given by

y(t) = yp(t) +Aeωt +Be−ωt, yp(t) =


et + e−t

1− ω2
=

2 cosh t

1− ω2
, ω 6= ±1,

t(et − e−t)
2

= t sinh t, ω = ±1,

as in #6.

9. (BH) Find the general solution of

ÿ − 6ẏ + 9y =
e3t

t
.

Solution. Substituting y = eλt into the homogeneous form of the equation, we have

λ2 − 6λ+ 9 = (λ− 3)2 = 0.

Since we have a double root, the solutions are y1 = e3t and y2 = te3t, which have the
Wronskian ∣∣∣∣ e3t te3t

3e3t (1 + 3t)e3t

∣∣∣∣ = e6t.

Then using the formula from class, we have that a particular solution is given by

yp(t) = −e3t
∫
te3t

e6t
e3t

t
dt+ te3t

∫
e3t

e6t
e3t

t
ds = −e3tt+ te3t log t.

Thus the general solution is given by the homogenous solution plus the particular solution:

y(t) = e3t(c1 + c2t+ t log t).

where we have folded the −e3tt term in the particular solution into the arbitrary constant
c2.

10. Consider the differential equation

g̈ + 4g = sec 2t, g(0) = 0, ġ(0) = 0.

(a) (BH) Where is this equation guaranteed to have a unique solution?

Solution. sec 2t is undefined whenever cos 2t = 0, or when t = (2n + 1)π/4, n an
integer. Since the initial conditions were given at t = 0, we see that the solution has a
unique solution when t ∈ (−π/4, π/4).

(b) (BH) Show that the solution is given by

g(t) =
t sin 2t

2
+

log(cos 2t) cos(2t)

4
. (4.7)
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Be sure to check the initial conditions.

Solution. Substituting y = eλt into the homogeneous form of the equation, we have

λ2 + 4 = 0 =⇒ λ = ±2i,

so

g1 = sin 2t, g2 = cos 2t, W =

∣∣∣∣ sin 2t cos 2t
2 cos 2t −2 sin 2t

∣∣∣∣ = −2.

Then using the variation of parameters formula, we have

gp(t) = − sin 2t

∫
cos 2t sec 2t

(−2)
dt+ cos 2t

∫
sin 2t sec 2t

(−2)
dt

=
sin 2t

2

∫
dt+

cos 2t

2

∫
− sin 2t

cos 2t
dt =

cos 2t

2

log(cos 2t)

2
+
t sin 2t

2

as required. Then using the variation of parameters formula, we have

gp(t) =

∫ t

0

sin 2s cos 2t− sin 2t cos 2s

(−2)
sec 2s ds =

cos 2t

2

∫ t

0

− sin 2s

cos 2s
ds+

sin 2t

2

∫ t

0

ds

=
cos 2t

2

[log(cos 2s)]t0
2

+
[s]t0 sin 2t

2
=
t sin 2t

2
+

cos 2t

2

log(cos 2t)

2
.

This is exactly the solution in (4.7), but to verify we must check the initial conditions:

g(0) = 0 +
log 1

4
= 0,

ġ(0) =
sin 2t+ 2t cos 2t

2
+

1

4

[
−2 sin 2t log(cos t) + cos 2t

−2 sin 2t

cos 2t

]∣∣∣∣
t=0

= 0.

(c) (MP) Show that this solution has no extrema for t > 0.



In [ ] := Quit[]

HW1 (Checked)

HW2 (Checked)

HW3 (Checked)

HW4 (Checked)

Number 1c.

In[1]:= eq3 = Tan[2* tstar] ⩵ 1/ alpha
Solve[eq3, alpha]
Plot[alpha /. %, {tstar, 0, Pi / 4},
PlotRange → {{0, Pi/ 4}, {0, 15}}, AxesLabel → {tstar, alpha}]

Out[1]= Tan[2 tstar] ⩵
1

alpha

Out[2]= {{alpha → Cot[2 tstar]}}

Out[3]=

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
tstar0

2

4

6

8

10

12

14

alpha



Number 4b.

In [ ] := sys10 = {D[y[t], {t, 4}] - 8* y''[t] + 16* y[t] ⩵ 0,
y[0] ⩵ 1, y'[0] ⩵ -3, y''[0] ⩵ 5, (D[y[t], {t, 3}] /. t → 0) ⩵ -7}

DSolve[sys10, y[t], t]
Out[ ]=

16 y[t] - 8 y′′[t] + y(4)[t] ⩵ 0
y[0] ⩵ 1
y′[0] ⩵ -3
y′′[0] ⩵ 5

y(3)[0] ⩵ -7

Out[ ]=

 y[t] → 1
32

ⅇ-2 t 45 - 13 ⅇ4 t + 6 t + 14 ⅇ4 t t 

Number 6b.

In [ ] := eq6 = y''[t] - omega^2* y[t] ⩵ Exp[t] + Exp[-t]
DSolve[eq6, y[t], t]
Simplify[%]

Out[ ]=

-omega2 y[t] + y′′[t] ⩵ ⅇ-t + ⅇt

Out[ ]=

 y[t] → -
ⅇ-omega t-(1+omega) t -ⅇ2 omega t-ⅇ2 (1+omega) t+ⅇ2 t+2 omega t+ⅇ(-1+omega) t+(1+omega) t+ⅇ2 omega t omega+ⅇ2 (1+omega) t omega+ⅇ2 t+2 omega t omega

2 (-1+omega) omega (1+omega)

Out[ ]=

 y[t] →
ⅇ-((1+2 omega) t) -ⅇ2 omega t-ⅇ2 (1+omega) t+ⅇt+3 omega t -1+omega2 1+ⅇ(1+omega) t -1+omega2 2

-1+omega2


Mathematica doesn’t recognize that there is a special case when omega^2=1.

Number 7b.

In [ ] := eq5b = {6 * y''[t] + 5* y'[t] + y[t] ⩵ 20* Cos[t/ 2]^4, y[0] ⩵ 14, y'[0] ⩵ -1}
sol5b = DSolve[eq5b, y[t], t]

Out[ ]=

y[t] + 5 y′[t] + 6 y′′[t] ⩵ 20 Cos t
2

4

y[0] ⩵ 14
y′[0] ⩵ -1

Out[ ]=

 y[t] → -
ⅇ-t/2 3404-12954 ⅇt/6-9435 ⅇt/2+1258 ⅇt/2 Cos[t]+115 ⅇt/2 Cos[2 t]-1258 ⅇt/2 Sin[t]-50 ⅇt/2 Sin[2 t]

1258
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Number 7c.

In [ ] := sol5a = 2* Exp[-1/ 2 * t] + 3* Exp[-1/ 3* t] - Cos[t] + Sin[t] + 10
Plot[{sol5a, y[t] /. sol5b}, {t, 0, 10* Pi}, PlotStyle → {Red, Green}]

Out[ ]=

10 + 2 ⅇ-t/2 + 3 ⅇ-t/3 - Cos[t] + Sin[t]

Out[ ]=

5 10 15 20 25 30

8

10

12

14

The graphs look so similar since cost2 and cost4 are both positive, vary on the same time scale, and vary only slightly in their 
amplitudes.

Number 10c.

In [ ] := sol8 = 1/ 2* t * Sin[2* t] + 1/ 4* Log[Cos[2* t]] * Cos[2* t]
Out[ ]=

1

4
Cos[2 t] Log[Cos[2 t]] +

1

2
t Sin[2 t]

To show that there is no root, we take the derivative of this expression and then use the FindRoot command to try to find a root.  
It returns an error because there isn’t one, and hence there isn’t an extremum in the region of interest.

In [ ] := D[sol8, t]
FindRoot[% ⩵ 0, {t, 0.01, 0.001, Pi/ 4}]

Out[ ]=

t Cos[2 t] -
1

2
Log[Cos[2 t]] Sin[2 t]

FindRoot : The point {0.001} is at the edge of the search region {0.001, 0.785398} in coordinate 1 and the
computed search direction points outside the region.

Out[ ]=

( t → 0.001 )

HW5 (Checked)

HW6 (Checked)
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