MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Oct. 11, 2024

Homework Set 4 Solutions

1. Consider the equation
T4 2%+ d5x =0, z(0)=1, #(0)=-(14+2a), a>0.

(a) (BH) Construct the solution z(¢) in standard form.

A

Solution. Substituting x = e**, we obtain

_ —24+/4—20

AN 412 +5=0 — p 5

= 142,

so solutions are of the form z(t) = e~ (¢, cos 2t+cg sin 2t). Solving the first initial condition,
we immediately have that x(0) = 1 = ¢.. Solving the second initial condition, we have

#(0) = e~ (—2sin4t + 2¢, cos4t) — e (cos 2t + ¢, sin 2t)’t:0 = —(1+2a)
2cs — 1 =—-1-2«
s = —

x(t) = e *(cos 2t — asin 2t). (A1)

(b) (BH) Convert your answer to (a) into magnitude-phase form.

Solution. Using the notation from class, we have from (A.1) that
cc=1, ¢ =—a - A=+1+ a2,
z(t) = V14 a2e cos(2t — ¢), ¢ =tan " !(—a)= —tan 'q, (A.2)

where we have used the fact that ¢. > 0.

(c) (BH) Use your answers to (a) and (b) to confirm (twice) that z(t.) = 0
whenever

1
tan2t, = —. 4.1
an > (4.1)
Solution. Using (A.1), we have

z(t.) = e "*[cos2t, — asin2t,] =0

cos 2t = asin 2t

tan2t, = —.
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Using (A.2), we have

z(ty) = V1 4+ a2e t* cos(2t, — @) =0

T
2t, — ¢ = —
¢ 2

s 1 1

tan2t, =t ( —>:_ = — 1

an an ¢+2 cot ¢ g o

where we have used the definition of ¢ in (A.2).
(d) (MP) Plot (4.1).
(e) (BH) By considering your graph in the limits that « — 0 and a@ — oo,
construct upper and lower bounds on the smallest positive t..

Solution. We examine (4.1). As o — oo, tan2t, — 0, so t, — 0. As a — 0,
tan 2t, — 00, so 2t, — /2, and t, — w/4. Therefore, we have

T
0<ty<~—,
=4

where we include equality only for the attainable limit o = 0.
2. (BH) Find the general solution of

y® — 35 +9 -3y =0.

Solution. Substituting y = e, we have

M3+ A-3=0-3)(V+1)=A=-3)A+9)(A—i)=0

y(t) = c1e® 4 cgsint + ¢ cost.
3. (BH) Consider the differential equation
Llyl = ajj+ by +cy =0,

where the quadratic equation aA? + b\ + ¢ = 0 has the repeated root \;.
(a) Show that
L[eM] = a(X — A\p)%e. (4.2)
Since the right side of (4.2) is zero when A = )j, it follows that e! is a
solution of L]y] = 0.
Solution. By the definition of £, we have that

d2 (eAt) d(ekt)
b
a2 U

LM =a + ce* = (aX? + bA + c)e.

But aA? + b\ + ¢ = 0 has the repeated root A1, so it can be written as a(A — \1)?, and the
proof is complete.
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(b) Show that

%E[e”] = 2a(A — Ap)eM + a(\ — Ap)2te.

Since the right-hand side of the equation is zero when A = A1, conclude that
teM? is also a solution of L[y] = 0.

Solution. Differentiating (4.2) with respect to r and interchanging differentiation as
indicated, we have

O a9 2 At
8)\£[6 | = o\ [a(X — A)%e]
At
L |:—8((;)\ >:| = 2(1()\ - )\1)6)\t + a()\ - )\1)2t6)\t

L[teM] = 2a(X — A\)eM + a(X — \p)2te.

Since the right-hand side of the equation is zero when A = \;, we have that conclude that
L[te ] = 0.
4. Consider the equation
y@W —8jj+ 16y = 0. (4.3)

(a) (BH) Find the general solution of (4.3).

Solution. Substituting y = e*’, we obtain

M8 +16= (A2 -4 =(A+22(A—2)2=0
y(t) = (1 + Cgt)e_zt + (es + C4t)62t,

(b) (MP) Find the solution of (4.3) subject to
y(0) =1, §(0)=-3, §(0)=5y?(0)=-7.
5. (BH) Find the general solution to the differential equation
3j + 5y — 2y = —2t% + 10¢. (4.4)
Solution. Substituting x = e* into the homogeneous problem, we obtain
3A2 450 —2=(3BA-1)(A+2)=0 — A=1/3,-2,
so the homogeneous solution is given by
Yn = clet/?’ + 026_2t.
The form of the right-hand side motivates a substitution of the form

Yp = a2t2 + a1t + ap.
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Substituting this into (4.4), we obtain

3(2@2) —I— 5(2a2t —|— al) — 2(a2t2 + alt —|— CL()) = —2t2 —|— 10t
t?(—2ay + 2) + t(10ay — 2a; — 10) + 6as + 5a; — 2a0 = 0. (B)

We solve for the a; by zeroing out the coefficients of the ¢ terms. Starting with zeroing
out the ¢? terms, we have

—2a9+2=0 — ay = 1.
Substituting this result into (B), we obtain, zeroing out the ¢ and constant terms,

—2a1t+ 6 +5a1 —2a9 =0 - a1 =0
6 —2a9=0 — ag =3
yp:t2+3
y:clet/3+026_2t+t2+3.

6. Consider the differential equation
j—wly=e +e. (4.5)

(a) (BH) Find the general solution to (4.5) Be sure to account for all w # 0.

Solution. Using the method of undetermined coefficients, we try to find a particular

solution of the form

yp = cret +c_e .

Substituting in this form, we obtain

cpet +e et —w¥cpel fe_e) =l 4ot

cr(l—w?el+e (1—wet=e +et

1
1 —w?’

cf =c_ = w # *£1.

For the case where w = +1, we try
Yp = a+tet +a_te ",
Substituting in this form, we obtain

ay(t+2)e' +a_(t—2)e " — (apte’ +a_te™) =€ +et

2(aet —a_e ) =€l +e7t

ay = =, a_ = ——.

DN |
—_
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To obtain the homogeneous solution, we try yn = e, which yields

N —w?=0,
yn = Ae*" + Be ¢,

as long as w # 0 so we don’t have a double root. Therefore, the general solution is given
by

e +e7"  2cosht

1—w?2 1—w?’

t(et —et)
2

t . w # +1,
y(t) = yp(t) + Ae“”* + Be™ ™", yp(t) =
=tsinht, w=4+1.

(b) (MP) Solve (4.5). Does Mathematica miss anything?

7. Consider the equations
t
6ij + 59 + y = 20 cos> (5) , y(0) = 14, 9(0) = —1, (4.6a)
t
63 + 5y +y = 20 cos® (5) : y(0) = 14, 9(0) = —1. (4.6b)
(a) (BH) Find the solution to (4.6a).
Solution. cos®(t/2) = (1 + cost)/2, so we have
69 + 5y +y = 10(1 + cost)
and thus we try a particular solution of the form
Yp = CcCOSt + cgsint + cp.
Substituting in this form, we obtain

—6¢. cost — 6egsint — beesint + Heg cost + (c.cost + cgsint + ¢g) = 10(1 + cost)
5(cs — cc)cost — 5(cs + ¢.)sint + cg = 10(1 + cost)

We solve for the constants by matching up the constant terms, as well as the coefficients
of sint and cost:

co =10 (constant)

Cs — Cc =2 (cost)

cs +c.=0. (sint)

Solving the last two equations together, we have c¢s = 1, ¢, = —1. By substituting

y = e, we can obtain the homogeneous solution, where \ solves

6A2 A +1=(BA+1)(2 A +1)=0 — A= —2, ——.



M302F24S0l14.6

Thus, we have
y(t) = sint — cost 4 10 + Ae~*/3 4+ Be /2,

Solving the initial data, we obtain

9+ A+ B =14 =y(0) A+B—5
A B ) = _

Solving these equations together, we have that A =3, B = 2, so the solution is
y(t) =sint — cost + 10 + 3e~t/3 L 9e71/2,

(b) (MP) Find the solution to (4.6b).
(c) (MP) Plot the solutions to (4.6a) and (4.6b) on the same graph for ¢ € [0, 107].
Why should the graphs be so similar?

8. (BH) Find the general solution to the differential equation

j—wly=el+et
Be sure to account for all w # 0.

Solution. This is the same problem as #6, so we know that the homogeneous solutions
are given by

wt —wt
ypr =€, Y2 =€

as long as w # 0. Then the Wronskian is given by

ewt e—wt
T lwest et | T T2
Using the variation of parameters formula, we have
e=“tel 4+ et) e“tlel 4 et)
t) = —e*t dt et Tt C
wlt) == [ e [ ©

2w | 1 —-w 1+w 2w 1+w_w—1
t

e 1 1 et (1 1 el et
- — R — = +1.
Zw(l—w 1+w>+2w (1—w 1+w) 1—w?’ w7
If w = +1, we see that (C) becomes
1+ e—2wt 1+ eth ewt e—Zwt e—wit eth
t) = —e*t | ————dt _Wt/—dtz— t— — t+ —
yoll) = —e / E R (—20) % 2% 2w ' o,

t(ewt _ e—wt) - t(et _ e—t)
2w N 2

B e_“’t {e(lw)t B €(1+w)t:| B e—wt {G(Prw)t e(wl)t:|
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Therefore, the general solution is given by

e +e*  2cosht

1—w?2  1—w?’

t(et —e™t)
2

t » w # +1,
y(t) = yp(t) + Ae”" + Be™",  yy(t) =
=tsinht, w = %1,

as in #6.
9. (BH) Find the general solution of

et
ij— 65 + 9y = —

Solution. Substituting y = e into the homogeneous form of the equation, we have
M —6A+9=(\-3)?2=0.

Since we have a double root, the solutions are y; = €3' and y, = te3!, which have the

Wronskian

e3t teSt

3e3t (1 + 3t)ed

_ St

Then using the formula from class, we have that a particular solution is given by

teSt 3t

(t) = —e3 ——dt te3t e—gte—gtd 3t 4 te3t logt
Yyp(t) = —e o67 + te 6tts-e+e ogt.

Thus the general solution is given by the homogenous solution plus the particular solution:
y(t) = e3*(c1 + cot +tlogt).

where we have folded the —e3'¢ term in the particular solution into the arbitrary constant
Ca.

10. Consider the differential equation
g+ 4g = sec2t, g(0) =0, g(0) = 0.

(a) (BH) Where is this equation guaranteed to have a unique solution?
Solution. sec?2t is undefined whenever cos2t = 0, or when ¢t = (2n + 1)7/4, n an
integer. Since the initial conditions were given at ¢ = 0, we see that the solution has a
unique solution when t € (—m/4,7/4).

(b) (BH) Show that the solution is given by

t sin 2t n log(cos 2t) cos(2t)

g(t) = = - (47)
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Be sure to check the initial conditions.

Solution. Substituting y = e*" into the homogeneous form of the equation, we have
Ntd=0 = A==£2

SO
sin 2¢ cos 2t

2cos2t —2sin2t =2

g1 = sin2t, g2 = cos 2t, W =

Then using the variation of parameters formula, we have

cos 2t sec 2t sin 2¢ sec 2t
gp(t) = —sin2t/—dt+c082t/—dt
P (—2) (—2)
B SiI;Qt / b+ 002275 / —sin 2¢ g — C08 2t log(cos2t)  tsin 2t

cos 2t 2 2 + 2

as required. Then using the variation of parameters formula, we have

* sin 2s cos 2t — sin 2t cos 2s cos2t [T —sin2s sin2t [*
gp(t) = sec2sds = ds + ds
0 (—2) 2 Jo cos2s 2 Jo
~ cos 2t [log(cos 2s)]§ N [s]gsin2t  tsin2t | cos 2t log(cos 2t)
2 2 2 2 2 2

This is exactly the solution in (4.7), but to verify we must check the initial conditions:

log1
9(0) =0+ == =0,
in2t + 2tcos2t 1 —2sin 2t
4(0) = sin +2 coSs +Z _2sin2tlog(cost)+COS2t%} t:O:()_

(c) (MP) Show that this solution has no extrema for ¢ > 0.




nf-1= Quit[]

HW1 (Checked)
HW2 (Checked)
HW3 (Checked)
HW4 (Checked)

Number 1c.

niil= eq3 = Tan[2 % tstar] = 1/ alpha
Solve[eq3, alpha]
Plot[alpha /. %, {tstar, 0, Pi/4},
PlotRange -» {{0, Pi/ 4}, {0, 15}}, AxesLabel » {tstar, alpha}]
1

outl1l= Tan[2 tstar] =
alpha

outiz]= {{alpha - Cot[2 tstar]}}

alpha

Oout[3]=

tstar
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Number 4b.

ni-)- sysl@ = {D[y[t], {t, 4}] -8y ''[t] +16xy[t] =0,
y[0] =1, y'[0] =-3, y''[0] =5, (D[y[t], {t, 3}]/.t->0) =-T7}
DSolve[sys1l0, y[t], t]

Out[«]=
16y[t] -8y [t] +y™ [t] =0
y[0] =1
y'[0] = -3
y’[0] =5
y o] =-7
Out[~]=

(ylt] > S e?" (45-13e*t+6t+14e*"t) )

Number 6b.

n[-]- eq6 =y "''[t] -~-omegatr2x+y[t] == Exp[t] + Exp[-t]
DSolve[eq6, y[t], t]

Simplify[%]
Out[«]=
2 , -t t
-omega“y[t] +y’[t] =e " +e
Out[«]=
@-omega t-(l+omega) t (762 omega t7‘92 (l+omega) t+ez t+2 omega t+e(71+omega) t+(l+omega) t+92 omega t 0mega+92 (l+omega) t omega+e2 t+2 omega t 0
t] - -
( y[ ] 2 (-1+omega) omega (l+omega)
Out[e]=
( N e ((1+2omega) t) (7620megat762 (1+omega) t, t+3omegat (—l+omega2) ¢y +e(tromega) t (—1+omega2) Cz)
N
yIt] -1l+omega?
Mathematica doesn’t recognize that there is a special case when omega’2=1.
Number 7b.

n[-]- eqSb = {6*xy'"[t] +5%y'[t] +y[t] ==20xCos[t/2]"4, y[O] ==14, y'[0O] == -1}
sol5b = DSolve[eq5b, y[t], t]

Out[e«]=
y[t] +5y'[t] +6y”[t] =20 Cos[L]*
y[0] =14
y'[0] = -1
Oout[«]=

e /2 (3404-12954 ¢/°-9435 ¢*/?+1258 */? Cos [t] +115 e¥/? Cos[2 t]-1258 "/ Sin[t]-50 e¥? Sin[2 t])
1258

ylt] - -
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Number 7c.

in[-1:- solba = 2%xEXp[-1/2%t] +3*xExp[-1/3%t] -Cos[t] +Sin[t] +10
Plot[{sol5a, y[t] /. sol5b}, {t, 0, 10 xPi}, PlotStyle » {Red, Green}]

Out[«]=
10+2e Y2 +3e Y3 -Cos[t] +Sin[t]
Oout[«]=
The graphs look so similar since cos(tz) and cos(t4) are both positive, vary on the same time scale, and vary only slightly in their
amplitudes.
Number 10c.

nf-1- sol8 = 1/2xt*Sin[2xt] +1/4xLog[Cos[2*t]] *CoS[2*t]
Out[«]=

1 1
— Cos[2t] Log[Cos[2t]] +— tSin[2t]
4 2

To show that there is no root, we take the derivative of this expression and then use the FindRoot command to try to find a root.
It returns an error because there isn’t one, and hence there isn’t an extremum in the region of interest.

mn[-1- D[sol8, t]
FindRoot[% = 0, {t, 0.01, 0.001, Pi/4}]

Out[e]=
1
tCos[2t] - — Log[Cos[2t]] Sin[2t]
2
*=« FindRoot: The point {0.001} is at the edge of the search region {0.001, 0.785398} in coordinate 1 and the
computed search direction points outside the region.
Out[e]=

(t->0.001)

HWS5 (Checked)



