Homework Set 3 Solutions

1. (BH) For the equation

$$
\ddot{y} + 5\dot{y} + 6y = 0,
$$

find the fundamental set $\{y_1(t), y_2(t)\}\$ where

$$
y_1(0) = 1
$$
, $\dot{y}_1(0) = 0$; $y_2(0) = 0$, $\dot{y}_2(0) = 1$.

Solution. Substituting $y = e^{\lambda t}$, we obtain

$$
\lambda^2 + 5\lambda + 6 = 0
$$

$$
(\lambda + 3)(\lambda + 2) = 0,
$$

so solutions are of the form $y = c_1 e^{-3t} + c_2 e^{-2t}$. Therefore, for y_1 we must solve

$$
y_1(0) = c_1 + c_2 = 1
$$

\n $\dot{y}_1(0) = -3c_1 - 2c_2 = 0.$ \implies $c_1 = -2$
\n $y_1(t) = -2e^{-3t} + 3e^{-2t},$

and for y_2 we must solve

$$
y_2(0) = c_1 + c_2 = 0
$$
 \implies $c_1 = -1$, $c_2 = 1$
 $y_2(0) = -3c_1 - 2c_2 = 1$. \implies $c_1 = -1$, $c_2 = 1$
 $y_2(t) = -e^{-3t} + e^{-2t}$.

2. (BH) Consider the equation

$$
(t^2 - 4t + 3)\ddot{y} + 3t\dot{y} + \frac{3y}{\log t} = 0.
$$

Find all intervals where this equation is guaranteed to have a unique solution. Solution. Rewriting the equation in standard form, we have

$$
\ddot{y} + \frac{3t}{t^2 - 4t + 3}\dot{y} + \frac{3y}{(t-3)(t-1)\log t} = 0,
$$

where we have used the fact that $t^2-4t+3 = (t-3)(t-1)$. The coefficient of y is undefined whenever $t = 1$, $t = 3$, and $t < 0$. Therefore, the equation has a unique solution in any interval not containing those points.

Copyright ©2024 D. A. Edwards **All Rights Reserved Copyright ©2024** D. A. Edwards **All Rights Reserved**

3. Consider the equation

$$
(t-5)\ddot{y} - t^2 \dot{y} - y\sqrt{7-t} = 0, \quad t > 0; \qquad y(0) = 1, \quad \dot{y}(0) = 0.
$$
 (3.1)

(a) (BH) Find the interval (a, b) where [\(3.1\)](#page-1-0) is guaranteed to have a unique solution.

Solution. Rewriting the equation in standard form, we have

$$
\ddot{y} - \frac{t^2}{t-5}\dot{y} - \frac{\sqrt{7-t}}{t-5}y = 0.
$$

The coefficient of y is undefined whenever $t = 5$ or $t > 7$. Since the initial conditions are given at $t = 0$, the equation has a unique solution when $t \in [0, 5)$.

- (b) (MP) Plot the solution to (3.1) in $[a, b]$. What happens?
- (c) (MP) Plot the solution to [\(3.1\)](#page-1-0) in [a, c], where $c > b$. What happens?
- 4. (BH) Prove that if \dot{y}_1 and \dot{y}_2 are zero at the same point in I, they cannot be a fundamental set of solutions on that interval.

Solution. Let t_0 be the point at which $\dot{y}_1(t_0) = \dot{y}_2(t_0) = 0$. But then the Wronskian at t_0 is given by

$$
W(t_0) = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ 0 & 0 \end{vmatrix} = 0.
$$

But by the theorem we know that $W \neq 0$ in an interval for the two solutions to be a fundamental set. Hence the result is proved.

5. (BH) By considering their Wronskian, show that

$$
y_1(\theta) = e^{a\theta} \cos b\theta
$$
, $y_2(\theta) = e^{a\theta} \sin b\theta$, $b \neq 0$,

are linearly independent for all θ .

Solution. Calculating the Wronskian, we have

$$
W = \begin{vmatrix} e^{a\theta} \cos b\theta & e^{a\theta} \sin b\theta \\ e^{a\theta} (a \cos b\theta - b \sin b\theta) & e^{a\theta} (a \sin b\theta + b \cos b\theta) \end{vmatrix}
$$

= $e^{2a\theta} [\cos b\theta (a \sin b\theta + b \cos b\theta) - \sin b\theta (a \cos b\theta - b \sin b\theta)]$
= $e^{2a\theta} [b(\cos^2 b\theta + \sin^2 b\theta)] = be^{2a\theta} \neq 0$,

where we have used the fact that $b \neq 0$. Hence $W \neq 0$, and the functions are linearly independent.

6. Consider the equation and boundary condition

$$
\frac{d}{dr}\left(r^{1/2}\frac{dy}{dr}\right) = 0,\t\t(3.2a)
$$

$$
y(0) = 1.\t(3.2b)
$$

(a) (BH) Solve the system [\(3.2\)](#page-1-1) for y. (You should obtain a one-dimensional family of solutions.)

Solution. Integrating $(3.2a)$, we have

$$
r^{1/2} \frac{dy}{dr} = C_1
$$

\n
$$
\frac{dy}{dr} = C_1 r^{-1/2}
$$

\n
$$
y = 2C_1 r^{1/2} + C_2
$$

\n
$$
y(0) = C_2 = 1
$$

\n
$$
y(t) = 2C_1 r^{1/2} + 1.
$$
\n(A.2)

- (b) (MP) Plot various integral curves of your solution to (a) for $r \in [0,1]$. What happens near $r = 0$?
- (c) (BH) Does a solution to [\(3.2a\)](#page-1-2) with the boundary conditions

$$
y(0) = 1,
$$
 $\frac{dy}{dr}(0) = 1$

exist? Discuss your answer in light of Theorem 3.2.1.

Solution. Taking the derivative of $(A.2)$, we have

$$
\frac{dy}{dr} = C_1 r^{-1/2},
$$

as given by $(A.1)$. Thus every solution has a derivative which is undefined at $r = 0$. Rewriting [\(3.2a\)](#page-1-2) in the theoretical form, we have

$$
r^{1/2}\frac{d^2y}{dr^2} + \frac{1}{2r^{1/2}}\frac{dy}{dr} = 0
$$

$$
\frac{d^2y}{dr^2} + \frac{1}{2r}\frac{dy}{dr} = 0.
$$

Since the coefficient of dy/dr doesn't exist at $r = 0$, we have no guarantee of a unique solution.

7. Consider the equation

$$
t^{2}y^{(4)} + \sqrt{3 - ty^{(3)}} + \log(t - 1)\ddot{y} + \sin t\dot{y} + 3y = 0.
$$
 (3.3)

Find all intervals where [\(3.3\)](#page-2-0) has a unique solution. Solution. Rewriting [\(3.3\)](#page-2-0) in the standard theoretical form, we have

$$
y^{(4)} + \frac{\sqrt{3-t}}{t^2}y^{(3)} + \frac{\log(t-1)}{t^2}\ddot{y} + \frac{\sin t}{t^2}\dot{y} + \frac{3}{t^2}y = 0.
$$

Therefore, discontinuities occur at $t = 0$ (from each term), $t > 3$ (from the second term), and $t \leq 1$ (from the third term). Therefore, the only interval where [\(3.3\)](#page-2-0) has a unique solution is $(1, 3]$.

8. Consider the initial-value problem

$$
4y^{(3)} + 4\ddot{y} - 3\dot{y} = 0, \qquad y(0) = 3, \quad \dot{y}(0) = -2, \quad \ddot{y}(0) = 2. \tag{3.4}
$$

(a) (BH) Find the solution of [\(3.4\)](#page-3-0). *Solution*. Substituting $y = e^{\lambda t}$, we have

$$
4\lambda^3 + 4\lambda^2 - 3\lambda = \lambda(4\lambda^2 + 4\lambda - 3) = \lambda(2\lambda + 3)(2\lambda - 1) = 0
$$

$$
y(t) = c_1 + c_2 e^{-3t/2} + c_3 e^{t/2}
$$

$$
\dot{y}(0) = \frac{-3c_2 + c_3}{2} = -2
$$

$$
\Rightarrow \qquad c_3 = -2\frac{3}{2} + 2 = -1, \quad c_2 = 1
$$

$$
\ddot{y}(0) = \frac{9c_2 + c_3}{4} = 2
$$

$$
y(0) = c_1 + c_2 + c_3 = 3 \qquad \Rightarrow \qquad c_1 = 3
$$

$$
y(t) = 3 + e^{-3t/2} - e^{t/2}.
$$

(b) (MP) Plot your solution for $t \in [0,3]$.

9. Find the general solution of

$$
y^{(4)} - 5\ddot{y} + 4y = 0.
$$

Solution. Substituting $y = e^{\lambda t}$, we have

$$
\lambda^4 - 5\lambda^2 + 4 = (\lambda^2 - 4)(\lambda^2 - 1) = (\lambda + 2)(\lambda - 2)(\lambda + 1)(\lambda - 1) = 0
$$

$$
y(t) = c_1 e^{-2t} + c_2 e^{2t} + c_3 e^{-t} + c_4 e^{t}.
$$

10. (MP) Plot the solution to

$$
y^{(3)} - (2 + \sin t)y = 0
$$
, $y(0) = a$, $\dot{y}(0) = 0$, $\ddot{y}(0) = a^2$,

for $t \in [0, 2\pi]$ and $a = -2, -1, 0, 1$, and 2.

HW1 (Checked)

HW2 (Checked)

HW3 (Checked)

Number 3b.

In this case, since t=5 is an endpoint of the computation, Mathematica realizes there is an issue.

Number 3c.

In this case, since t=5 is not an endpoint of the computation, Mathematica skips over it and doesn't realize there's an issue.

Number 6b.

Though it's not easy to discern, all the curves come in with infinite slope, except for the equilibrium solution $y = 1$.

Number 8b.

 $\ln[2]$: Plot[3 + Exp[-3 * t / 2] - Exp[t / 2], {t, 0, 3}]

Number 10.

