
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Sept. 27, 2024

Homework Set 3 Solutions
1. (BH) For the equation

ÿ + 5ẏ + 6y = 0,

find the fundamental set {y1(t), y2(t)} where

y1(0) = 1, ẏ1(0) = 0; y2(0) = 0, ẏ2(0) = 1.

Solution. Substituting y = eλt, we obtain

λ2 + 5λ+ 6 = 0

(λ+ 3)(λ+ 2) = 0,

so solutions are of the form y = c1e
−3t + c2e

−2t. Therefore, for y1 we must solve

y1(0) = c1 + c2 = 1

ẏ1(0) = −3c1 − 2c2 = 0.
=⇒ c1 = −2

y1(t) = −2e−3t + 3e−2t,

and for y2 we must solve

y2(0) = c1 + c2 = 0

ẏ2(0) = −3c1 − 2c2 = 1.
=⇒ c1 = −1, c2 = 1

y2(t) = −e−3t + e−2t.

2. (BH) Consider the equation

(t2 − 4t+ 3)ÿ + 3tẏ +
3y

log t
= 0.

Find all intervals where this equation is guaranteed to have a unique solution.

Solution. Rewriting the equation in standard form, we have

ÿ +
3t

t2 − 4t+ 3
ẏ +

3y

(t− 3)(t− 1) log t
= 0,

where we have used the fact that t2−4t+3 = (t−3)(t−1). The coefficient of y is undefined
whenever t = 1, t = 3, and t < 0. Therefore, the equation has a unique solution in any
interval not containing those points.
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3. Consider the equation

(t− 5)ÿ − t2ẏ − y
√

7− t = 0, t > 0; y(0) = 1, ẏ(0) = 0. (3.1)

(a) (BH) Find the interval [a, b) where (3.1) is guaranteed to have a unique
solution.

Solution. Rewriting the equation in standard form, we have

ÿ − t2

t− 5
ẏ −
√

7− t
t− 5

y = 0.

The coefficient of y is undefined whenever t = 5 or t > 7. Since the initial conditions are
given at t = 0, the equation has a unique solution when t ∈ [0, 5).

(b) (MP) Plot the solution to (3.1) in [a, b]. What happens?

(c) (MP) Plot the solution to (3.1) in [a, c], where c > b. What happens?

4. (BH) Prove that if ẏ1 and ẏ2 are zero at the same point in I, they cannot be a
fundamental set of solutions on that interval.

Solution. Let t0 be the point at which ẏ1(t0) = ẏ2(t0) = 0. But then the Wronskian
at t0 is given by

W (t0) =

∣∣∣∣ y1(t0) y2(t0)
0 0

∣∣∣∣ = 0.

But by the theorem we know that W 6= 0 in an interval for the two solutions to be a
fundamental set. Hence the result is proved.

5. (BH) By considering their Wronskian, show that

y1(θ) = eaθ cos bθ, y2(θ) = eaθ sin bθ, b 6= 0,

are linearly independent for all θ.

Solution. Calculating the Wronskian, we have

W =

∣∣∣∣ eaθ cos bθ eaθ sin bθ
eaθ(a cos bθ − b sin bθ) eaθ(a sin bθ + b cos bθ)

∣∣∣∣
= e2aθ[cos bθ(a sin bθ + b cos bθ)− sin bθ(a cos bθ − b sin bθ)]

= e2aθ[b(cos2 bθ + sin2 bθ)] = be2aθ 6= 0,

where we have used the fact that b 6= 0. Hence W 6= 0, and the functions are linearly
independent.

6. Consider the equation and boundary condition

d

dr

(
r1/2

dy

dr

)
= 0, (3.2a)

y(0) = 1. (3.2b)
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(a) (BH) Solve the system (3.2) for y. (You should obtain a one-dimensional
family of solutions.)

Solution. Integrating (3.2a), we have

r1/2
dy

dr
= C1

dy

dr
= C1r

−1/2 (A.1)

y = 2C1r
1/2 + C2

y(0) = C2 = 1

y(t) = 2C1r
1/2 + 1. (A.2)

(b) (MP) Plot various integral curves of your solution to (a) for r ∈ [0, 1]. What
happens near r = 0?

(c) (BH) Does a solution to (3.2a) with the boundary conditions

y(0) = 1,
dy

dr
(0) = 1

exist? Discuss your answer in light of Theorem 3.2.1.

Solution. Taking the derivative of (A.2), we have

dy

dr
= C1r

−1/2,

as given by (A.1). Thus every solution has a derivative which is undefined at r = 0.
Rewriting (3.2a) in the theoretical form, we have

r1/2
d2y

dr2
+

1

2r1/2
dy

dr
= 0

d2y

dr2
+

1

2r

dy

dr
= 0.

Since the coefficient of dy/dr doesn’t exist at r = 0, we have no guarantee of a unique
solution.

7. Consider the equation

t2y(4) +
√

3− ty(3) + log(t− 1)ÿ + sin tẏ + 3y = 0. (3.3)

Find all intervals where (3.3) has a unique solution.

Solution. Rewriting (3.3) in the standard theoretical form, we have

y(4) +

√
3− t
t2

y(3) +
log(t− 1)

t2
ÿ +

sin t

t2
ẏ +

3

t2
y = 0.
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Therefore, discontinuities occur at t = 0 (from each term), t > 3 (from the second term),
and t ≤ 1 (from the third term). Therefore, the only interval where (3.3) has a unique
solution is (1, 3].

8. Consider the initial-value problem

4y(3) + 4ÿ − 3ẏ = 0, y(0) = 3, ẏ(0) = −2, ÿ(0) = 2. (3.4)

(a) (BH) Find the solution of (3.4).

Solution. Substituting y = eλt, we have

4λ3 + 4λ2 − 3λ = λ(4λ2 + 4λ− 3) = λ(2λ+ 3)(2λ− 1) = 0

y(t) = c1 + c2e
−3t/2 + c3e

t/2

ẏ(0) =
−3c2 + c3

2
= −2

ÿ(0) =
9c2 + c3

4
= 2

=⇒ c3 = −2
3

2
+ 2 = −1, c2 = 1

y(0) = c1 + c2 + c3 = 3 =⇒ c1 = 3

y(t) = 3 + e−3t/2 − et/2.

(b) (MP) Plot your solution for t ∈ [0, 3].

9. Find the general solution of

y(4) − 5ÿ + 4y = 0.

Solution. Substituting y = eλt, we have

λ4 − 5λ2 + 4 = (λ2 − 4)(λ2 − 1) = (λ+ 2)(λ− 2)(λ+ 1)(λ− 1) = 0

y(t) = c1e
−2t + c2e

2t + c3e
−t + c4e

t.

10. (MP) Plot the solution to

y(3) − (2 + sin t)y = 0, y(0) = a, ẏ(0) = 0, ÿ(0) = a2,

for t ∈ [0, 2π] and a = −2,−1, 0, 1, and 2.



In [ ] := Quit[]

HW1 (Checked)

HW2 (Checked)

HW3 (Checked)

Number 3b.

In [ ] := eq33 = {(t - 5) * y''[t] - t^2* y'[t] - y[t] * Sqrt[7 - t] ⩵ 0, y[0] ⩵ 1, y'[0] ⩵ 0}
eq3bsolve = NDSolve[eq33, y, {t, 0, 5}];
Plot[Evaluate[y[t] /. eq3bsolve], {t, 0, 5}]

Out[ ]=

- 7 - t y[t] - t2 y′[t] + (-5 + t) y′′[t] ⩵ 0, y[0] ⩵ 1, y′[0] ⩵ 0

Power: Infinite expression
1

0.
encountered.

NDSolve: The function value {0.000366174, ComplexInfinity} is not a list of numbers with dimensions {2} at
{t, y[t], y′[t]} = {5., -0.0064732, 0.000366174}.

Out[ ]=

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

In this case, since t=5 is an endpoint of the computation, Mathematica realizes there is an issue.



Number 3c.

In [ ] := eq3csolve = NDSolve[eq33, y, {t, 0, 5.2}];
Plot[Evaluate[y[t] /. eq3csolve], {t, 0, 5.2}]

Out[ ]=

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

In this case, since t=5 is not an endpoint of the computation, Mathematica skips over it and doesn’t realize there’s an issue.

Number 6b.

In [ ] := sol10 = 1 + 2* c1 * r^(1 / 2)
tab10 = Table[sol10, {c1, -2, 2}]

Out[ ]=

1 + 2 c1 r

Out[ ]=

1 - 4 r , 1 - 2 r , 1, 1 + 2 r , 1 + 4 r 

In [ ] := Plot[tab10, {r, 0, 1}]
Out[ ]=

0.2 0.4 0.6 0.8 1.0

-2

2

4

Though it’s not easy to discern, all the curves come in with infinite slope, except for the equilibrium solution y = 1.
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Number 8b.

In[2]:= Plot[3 + Exp[-3* t / 2] - Exp[t/ 2], {t, 0, 3}]

Out[2]=

0.5 1.0 1.5 2.0 2.5 3.0

-1

1

2

3
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Number 10.

In[18]:= eq10 = { D[y[t], {t, 3}] - (2 + Sin[t]) * y[t] ⩵ 0, y[0] ⩵ a, y'[0] ⩵ 0, y''[0] ⩵ a^2}
Table[NDSolve[eq10, y, {t, 0, 2* Pi}], {a, -2, 2}]
Plot[Evaluate[y[t] /. %], {t, 0, 2* Pi}]

Out[18]=

-((2 + Sin[t]) y[t]) + y(3)[t] ⩵ 0, y[0] ⩵ a, y′[0] ⩵ 0, y′′[0] ⩵ a2

Out[19]=

y → InterpolatingFunction Domain: {{0., 6.28}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 6.28}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 6.28}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 6.28}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 6.28}}
Output: scalar 

Out[20]=

1 2 3 4 5 6

-200

-100

100

200

300

HW4 (Checked)

HW5 (Checked)

HW6 (Checked)

HW7 (Checked)
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