
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Sept. 20, 2024

Homework Set 2 Solutions
1. (BH) The cruise ship Norwegian Joy leaves Los Angeles with 3200 passengers, 5

of whom have the flu. By the end of the next day, 10 people have the flu.

(a) If the number of people with the flu N(t) spreads according to the exponential
growth model, calculate N(t).

Solution. Let N(t) be the number of people with the disease at time t. Then we have

dN

dt
= kN, N(0) = 5, N(1) = 10,

N = 5ekt,

N(1) = 10 = 5ek

ek = 2

N(t) = 5(2)t.

Alternatively, one can make the calculation by noting that the number of people with the
disease doubles each day, starting with 5 people, so N(t) = 5(2)t.

(b) How many people will have caught the flu by the end of the week-long cruise?

Solution. Substituting in t = 7, we have

N(7) = 5(2)7 = 5(128) = 640.

Therefore, 640 people will have caught the flu by the end of the cruise.

2. Suppose that due to weather and other habitat-related conditions, the growth
rate actually fluctuates over the course of a year. This can be modeled by

Ṅ = (r cos kt)N, N(0) = 1,

where r > 0 and k are constants.

(a) (BH) Find the solution to this problem.

Solution. Separating the equation, we have

dN

N
= r cos kt dt

logN =
r sin kt

k
+ C,

N = eC exp

(
r sin kt

k

)
N(0) = 1 = eC

N(t) = exp

(
r sin kt

k

)
.
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(b) (MP) Graph your solution for r = 2, k = π, t ∈ [0, 10].

3. (BH) A population P (t) satisfies the following Gompertz model:

Ṗ = rP log

(
K

P

)
, P (0) = 1, (2.1)

where r > 0 and K > 0 are constants.

(a) Find the solution to this problem.

Solution. Separating (2.1), we have

dP

P (logK − logP )
= r dt.

We may simplify the right-hand side by letting u = logP , which means that du = dP/P :∫
du

logK − u
= rt+ C

− log(logK − u) = rt+ C

logK − u = logK − logP = e−(C+rt).

We find the constant C by plugging in t = 0:

logK − log(P (0)) = logK − log 1 = logK = e−C

log

(
K

P

)
= (logK)e−rt

K

P
= exp

(
(logK)e−rt

)
= Ke−rt

P (t) = K1−e−rt

. (A)

(b) How does the solution behave as t→∞?

Solution. Taking the limit of (A) as t→∞, we have

P (∞) = K1−0 = K.

(c) Are there any values of K for which the population remains constant?

Solution. Mathematically, we see that if we take K = 1 in (A), the population is
always exactly 1. Alternatively, we see from (2.1) that Ṗ = 0 if P = K, and if K = 1,
P (0) = K.

4. Consider the equation

dy

dt
= sin(100ty), y(0) = 1.
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(a) (BH) Explain why y(1) < 2.

Solution. Since the sine is always less than 1, we see that ẏ < 1 everywhere. Thus
y(t) < y(0) + t everywhere. Since y(0) = 1, y(1) < 2.

(b) (BH) Write d2y/dt2 as a function of y and t.

Solution.

d2y

dt2
= 100

d(ty)

dt
cos(100ty) = 100

(
y + t

dy

dt

)
cos(100ty)

= 100 [y + t sin(100ty)] cos(100ty), (B)

where we have used the problem statement.

(c) (BH) Let t ∈ [0, 1]. Explain why if we take ∆t ≈ 1/150, the error term in
Euler’s method is roughly the same size as the Euler step itself. This then
enforces an upper bound on h.

Solution. The terms in the Taylor expansion are

y(t+ ∆t) = y(t) + ∆t
dy

dt
(t) +

(∆t)2

2

d2y

dt2
(t∗),

where t∗ is some point in [t, t+ ∆t]. The error and the time step are the same size when∣∣∣∣∆tdydt (t)

∣∣∣∣ =

∣∣∣∣ (∆t)22

d2y

dt2
(t∗)

∣∣∣∣ .
We know that dy/dt is no larger than 1, and since y is no larger than 2, by (B) we have
that d2y/dt2 is no larger than 100(2 + 1)(1) = 300. So we have

∆t = 150(∆t)2.

∆t =
1

150
.

(d) (MP) Plot the solution for t ∈ [0, 1] using the default Mathematica solver,
Euler’s method with ∆t = 1/50, and Euler’s method with ∆t = 1/450.
Compare your results.

5. (MP) Consider the equation

ẏ = t2(y2 − 1), y(0) = 0. (2.2)

(a) Calculate the solution.
(b) Let E(t;h) be the solution of (2.2) calculated in Mathematica using Euler’s

method with stepsize ∆t. Calculate and store the ordered pairs

[∆t, |E(1; ∆t)− y(1)|], ∆t =
1

N
, N = 10, 11, . . . , 50,
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where y(1) is the exact solution at t = 1.
(c) Plot your answer to (b) and verify that the points lie on a line. Thus we know

that the error is proportional to ∆t, as predicted by the theory.

6. (BH) Consider the differential equation

2ÿ + 3ẏ + y = 0.

(a) Find the general solution. Describe the long-time behavior.

Solution. Substituting y = eλt, we obtain

2λ2 + 3λ+ 1 = (2λ+ 1)(λ+ 1) = 0

y(t) = c1e
−t/2 + c2e

−t. (C)

Therefore, y → 0 as t→∞.

(b) Calculate the specific solution for y(0) = 3, ẏ(0) = −4.

Solution. Substituting (C) into our boundary conditions, we have

y(0) = c1 + c2 = 3

ẏ(0) = −c1
2
− c2 = −4

=⇒ c1
2

= −1 =⇒ c1 = −2, c2 = 5.

y(t) = 5e−t − 2e−t/2.

7. (BH) Write down all equations of the form aÿ+bẏ+cy = 0 such that the solution
y approaches a multiple of e2t as t→∞.

Solution. Substituting y = eλt, we obtain aλ2 + bλ+ c = 0. If the solution approaches
a multiple of e2t, we see that the quadratic equation must have λ = 2 as a root and another
root λ2 which is less than λ = 2. (Otherwise, the solution would approach eλ2t.) So we
must have

a(λ− 2)(λ− λ2) = 0

aλ2 − a(2 + λ2)λ+ 2aλ2 = 0, λ2 < 2.

8. (BH) Consider the following system of coupled first-order ODEs:

ẋ = 4x+ 2y, (2.3a)

ẏ = 3x− y. (2.3b)

(a) Eliminate x from the system to obtain a second-order ODE for y.

Solution. Substituting (2.3a) into the derivative of (2.3b), we obtain

ÿ = 3ẋ− ẏ = 3(4x+ 2y)− ẏ = 12x+ 6y − ẏ.

Solving (2.3b) for 12x, we have
12x = 4ẏ + 4y. (D)
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Substituting (D) into our ODE, we have

ÿ − 6y + ẏ = 4ẏ + 4y

ÿ − 3ẏ − 10y = 0.

(b) Show that the general solution for y is

y(t) = c1e
−2t + c2e

5t,

and find the corresponding general solution for x.

Solution. Substituting y = eλt, we obtain

λ2 − 3λ− 10 = 0

(λ+ 2)(λ− 5) = 0

y(t) = c1e
−2t + c2e

5t.

Then using this result in (D), we obtain

12x = 4(ẏ + y) = 4
[
(−2c1e

−2t + 5c2e
5t) + (c1e

−2t + c2e
5t)
]

12x = −4c1e
−2t + 24c2e

5t

x = −c1
3
e−2t + 2c2e

5t.

9. (MP) Consider the differential equation

ÿ + 3ẏ − 12y = 0, y(0) = y0, ẏ(0) = 0. (2.4)

(a) Using DSolve, calculate the solution of (2.4).
(b) Plot your results for y0 = −2, −1, 0, 1, 2, and t ∈ [0, 1/2].

10. Consider the differential equation

ÿ + 2ẏ + (1− ε)y = 0, y(0) = 0, ẏ(0) = 1− ε. (2.5)

(a) (MP) Use NDSolve to plot the solution to (2.5) for ε = −0.2, −0.1, 0, 0.1,
and 0.2, and t ∈ [0, 2].

(b) (BH) Is your graph for ε = 0 consistent with what you would expect from
substituting in eλt? (We will resolve this paradox in a later section.)

Solution. When ε = 0, (2.5) becomes

ÿ + 2ẏ + y = 0, y(0) = 0, ẏ(0) = 1.

Substituting in y = eλt, we have

λ2 + 2λ+ 1 = (λ+ 1)2 = 0 =⇒ y = c1e
−t.

But we have only one solution, and we have two initial conditions. So we will have a
problem solving for the constants. Moreover, this exponential solution is monotonic, and
our graph has a maximum.



In [ ] := Quit[]

HW1 (Checked)

HW2 (Checked)

Number 2b.

In [ ] := sol10 = Exp[r* Sin[k* t] / k]
plot10 = sol10 /. {r → 2, k → Pi}
Plot[plot10, {t, 0, 10}]

Out[ ]=

ⅇ
r Sin[k t]

k

Out[ ]=

ⅇ
2 Sin[π t]

π

Out[ ]=

2 4 6 8 10

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Number 4d.
Here is the equation and the graph using the default Mathematica solver.



In [ ] := eq24 = {y'[t] ⩵ Sin[100* t* y[t]], y[0] ⩵ 1}
defsolve = NDSolve[eq24, y, {t, 0, 1}];
Plot[Evaluate[y[t] /. defsolve], {t, 0, 1}]

Out[ ]=

{y′[t] ⩵ Sin[100 t y[t]], y[0] ⩵ 1}

Out[ ]=

0.2 0.4 0.6 0.8 1.00.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Here is the graph using Euler’s method with h=1/50.  This is larger than the upper bound from part (c), and so we expect bad results.

In [ ] := eulsolve =

NDSolve[eq24, y, {t, 0, 1}, StartingStepSize → 1/ 50, Method → "ExplicitEuler"];
Plot[Evaluate[y[t] /. eulsolve], {t, 0, 1}]

Out[ ]=

0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

Here is the graph using Euler’s method with h=1/450.  This is smaller than the upper bound from part (c), and so we expect good 
results.
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In [ ] := eulsolve2 =

NDSolve[eq24, y, {t, 0, 1}, StartingStepSize → 1/ 450, Method → "ExplicitEuler"];
Plot[Evaluate[y[t] /. eulsolve2], {t, 0, 1}]

Out[ ]=

0.2 0.4 0.6 0.8 1.00.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Number 5a.
Here is the equation and solution.

In [ ] := eq25 = {y'[t] ⩵ t^2* (y[t]^2 - 1), y[0] ⩵ 0}
sol25 = DSolve[eq25, y[t], t]

Out[ ]=

y′[t] ⩵ t2 -1 + y[t]2, y[0] ⩵ 0

DSolve: Inverse functions are being used by DSolve, so some solutions may not be found.

Out[ ]=

y[t] → -
-1 + ⅇ

2 t3

3

1 + ⅇ
2 t3

3



Number 5b.
Here is the exact solution at t=1, as needed.  Note that we have to extract the proper part to get just the value.

In [ ] := exact25 = ( sol25〚1, 1, 2〛 /. (t → 1))
Out[ ]=

-
-1 + ⅇ2/3

1 + ⅇ2/3

Now we construct a table with all the proper NDSolve computations:

In [ ] := eul5solve = Table[NDSolve[eq25, y, {t, 0, 1},
StartingStepSize → 1/ N, Method → "ExplicitEuler"], {N, 10, 50}];

Then we evaluate to get the y-values to plot:
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In [ ] := mid5 = (y[1] /. eul5solve) - exact25
Out[ ]=

{{0.0416089}, {0.0378057}, {0.0346373}, {0.0319574}, {0.0296614}, {0.0276725},
{0.0259331}, {0.0243991}, {0.0230361}, {0.0218172}, {0.0207206}, {0.0197289},
{0.0188276}, {0.0180051}, {0.0172513}, {0.0165581}, {0.0159184}, {0.0153262},
{0.0147765}, {0.0142649}, {0.0137874}, {0.0133409}, {0.0129224}, {0.0125293},
{0.0121595}, {0.0118108}, {0.0114815}, {0.0111702}, {0.0108752}, {0.0105954},
{0.0103297}, {0.0100769}, {0.00983627}, {0.00960681}, {0.00938782}, {0.00917859},
{0.00897848}, {0.0087869}, {0.00860333}, {0.00842727}, {0.00825827}}

Then we add on the x values by using Table again:

In [ ] := tab5 = Table[{1/ N, mid5〚N - 9, 1〛}, {N, 10, 50}]
Out[ ]=


1

10
, 0.0416089, 

1

11
, 0.0378057, 

1

12
, 0.0346373,


1

13
, 0.0319574, 

1

14
, 0.0296614, 

1

15
, 0.0276725, 

1

16
, 0.0259331,


1

17
, 0.0243991, 

1

18
, 0.0230361, 

1

19
, 0.0218172, 

1

20
, 0.0207206,


1

21
, 0.0197289, 

1

22
, 0.0188276, 

1

23
, 0.0180051, 

1

24
, 0.0172513,


1

25
, 0.0165581, 

1

26
, 0.0159184, 

1

27
, 0.0153262, 

1

28
, 0.0147765,


1

29
, 0.0142649, 

1

30
, 0.0137874, 

1

31
, 0.0133409, 

1

32
, 0.0129224,


1

33
, 0.0125293, 

1

34
, 0.0121595, 

1

35
, 0.0118108, 

1

36
, 0.0114815,


1

37
, 0.0111702, 

1

38
, 0.0108752, 

1

39
, 0.0105954, 

1

40
, 0.0103297,


1

41
, 0.0100769, 

1

42
, 0.00983627, 

1

43
, 0.00960681,


1

44
, 0.00938782, 

1

45
, 0.00917859, 

1

46
, 0.00897848,


1

47
, 0.0087869, 

1

48
, 0.00860333, 

1

49
, 0.00842727, 

1

50
, 0.00825827

Number 5c.
Here is a plot of the table:
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In [ ] := ListPlot[tab5]
Out[ ]=

0.04 0.06 0.08 0.10

0.01

0.02

0.03

0.04

Note that the points all lie on a line, as predicted.

In [ ] :=

Number 9.

In [ ] := eq22 = {y''[t] + 3* y'[t] - 12 * y[t] ⩵ 0, y[0] ⩵ y0, y'[0] ⩵ 0}
sol2 = DSolve[eq22, y[t], t]

Out[ ]=

{-12 y[t] + 3 y′[t] + y′′[t] ⩵ 0, y[0] ⩵ y0, y′[0] ⩵ 0}

Out[ ]=

y[t] → -
1

38
-19 ⅇ

-
3
2
-

57
2

 t
+ 57 ⅇ

-
3
2
-

57
2

 t
- 19 ⅇ

-
3
2
+

57
2

 t
- 57 ⅇ

-
3
2
+

57
2

 t
y0

302F24Key.nb     5



In [ ] := e2tab = Table[y[t] /. sol2, {y0, -2, 2}]
Plot[e2tab, {t, 0, 1/ 2}, PlotRange → All]

Out[ ]=


1

19
-19 ⅇ

-
3
2
-

57
2

 t
+ 57 ⅇ

-
3
2
-

57
2

 t
- 19 ⅇ

-
3
2
+

57
2

 t
- 57 ⅇ

-
3
2
+

57
2

 t
,


1

38
-19 ⅇ

-
3
2
-

57
2

 t
+ 57 ⅇ

-
3
2
-

57
2

 t
- 19 ⅇ

-
3
2
+

57
2

 t
- 57 ⅇ

-
3
2
+

57
2

 t
,

{0}, 
1

38
19 ⅇ

-
3
2
-

57
2

 t
- 57 ⅇ

-
3
2
-

57
2

 t
+ 19 ⅇ

-
3
2
+

57
2

 t
+ 57 ⅇ

-
3
2
+

57
2

 t
,


1

19
19 ⅇ

-
3
2
-

57
2

 t
- 57 ⅇ

-
3
2
-

57
2

 t
+ 19 ⅇ

-
3
2
+

57
2

 t
+ 57 ⅇ

-
3
2
+

57
2

 t


Out[ ]=

0.1 0.2 0.3 0.4 0.5

-4

-2

2

4
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Number 10a.

In [ ] := eq23 = {y''[t] + 2* y'[t] + (1 - epsilon) * y[t] ⩵ 0, y[0] ⩵ 0, y'[0] ⩵ 1 - epsilon}
num5 = Table[NDSolve[eq23, y, {t, 0, 2}], {epsilon, -0.2, 0.2, 0.1}]

Out[ ]=

{(1 - epsilon) y[t] + 2 y′[t] + y′′[t] ⩵ 0, y[0] ⩵ 0, y′[0] ⩵ 1 - epsilon}

Out[ ]=

y → InterpolatingFunction Domain: {{0., 2.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 2.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 2.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 2.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 2.}}
Output: scalar 

In [ ] := Plot[Evaluate[y[t] /. num5], {t, 0, 2}]
Out[ ]=

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

HW3 (Checked)

HW4 (Checked)

HW5 (Checked)

HW6 (Checked)
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