
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Sept. 13, 2024

Homework Set 1 Solutions (9/23 Version)
1. (BH) Consider the differential equation

ẏ + y2 = 9. (1.1)

(a) Find any equilibrium solutions.

Solution. Setting ẏ = 0, we have y2 = 9, or y = ±3 as the equilibrium solutions.

(b) Sketch a direction field for (1.1). Indicate the position of the equilibrium
solutions.

Solution. Rewriting (1.1), we have ẏ = 9 − y2. So if y < −3 or y > 3, ẏ < 0.
Otherwise, ẏ > 0. The graph is shown below.

(c) What does your graph tell you will happen to the solution as t → ∞? Be
sure to discuss all possible initial conditions.

Solution. If y(0) > −3, the arrows show that all these solutions will converge to y = 3
as t→∞. However, if y(0) < −3, the arrows show that these solutions will go to −∞ as
t→∞. If y(0) = ±3, then the solution stays there, since it’s an equilibrium solution.
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2. (MP) Consider the differential equation

ẏ + sin y = 1.

Construct a graph showing the direction field and any equilibrium solutions in
t ∈ [0, 2π], y ∈ [−5, 5].

3. Consider the differential equation

ẏ − 4y = 2e−t, y(0) = y0.

(a) (BH) Find the solution for any constant y0.

Solution. Since p(t) = −4, the integrating factor is e−4t. Multiplying by this factor
and integrating, we have

e−4tẏ − 4e−4ty = 2e−5t

d(e−4ty)

dt
= 2e−5t

e−4ty = −2e−5t

5
+ C

y(t) = −2e−t

5
+ Ce4t

y(0) = C − 2

5
= y0

C = y0 +
2

5

y(t) = −2e−t

5
+

(
y0 +

2

5

)
e4t.

(b) (BH) Describe how the long-time behavior of y varies with y0. (In other
words, does the solution decay, tend to positive or negative infinity, etc.)

Solution. As t → ∞, y(t) becomes exponentially large, and the sign of y(t) is the
same as the sign of y0 + 2/5. Therefore, we have

lim
t→∞

y(t) =

{
∞, y0 > −2/5,
−∞, y0 < −2/5.

(c) (BH) Find the critical value of y0 which separates the two types of behaviors.

Solution. From part (b), we see that the critical value is y0 = −2/5.

(d) (BH) Describe the long-time behavior of y for that specific value of y0.

Solution. For y0 = −2/5, the solution is y(t) = −2e−t/5, which goes to 0 as t→∞.

(e) (MP) Using the solution you derived in (a), plot integral curves of y(t) for
t ∈ [0, 0.5] and various y0. Be sure to include the value of y0 derived in (c).
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4. (BH) Show (by deriving the solution, NOT by direct substitution) that the
solution to the differential equation

tẏ + 3(2t+ 1)y = e−6t, y(1) = 0

is given by

y(t) =
e−6t

3

(
1− 1

t3

)
.

Solution. Dividing by t to obtain the standard form, we have

ẏ + 3

(
2 +

1

t

)
y =

e−6t

t
,

so the integrating factor is

µ(t) = exp

(∫
3

(
2 +

1

t

)
dt

)
= exp (3(2t+ log t)) = t3e6t.

Multiplying and integrating, we have

d

dt

(
t3e6ty

)
= t2

y(t) = t−3e−6t
(
t3

3
+ C

)
= e−6t

(
1

3
+
C

t3

)
y(1) = e−6

(
1

3
+ C

)
= 0

C = −1

3

y(t) =
e−6t

3

(
1− 1

t3

)
.

5. (This problem is designed to make you realize that you cannot rely blindly on
Mathematica’s answers.) Consider the following ODE:

tan

(
1

t

)
ẏ +

y

t2
= 0.

(a) (BH) Calculate the general form for y(t).

Solution. Dividing by the first coefficient to obtain the standard form, we have

ẏ +
y

t2 tan(1/t)
= 0,
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so by rewriting the reciprocal of the tangent, we see that the integrating factor is

µ(t) = exp

(∫
cot

(
1

t

)
dt

t2

)
= exp

(
−
∫

cos z

sin z
dz

)
, z =

1

t

= exp(− log(sin z)) =

(
sin

(
1

t

))−1
.

Therefore, we have

d

dt

((
sin

(
1

t

))−1
y

)
= 0

y(t) = C sin

(
1

t

)
.

(b) (MP) Calculate the solution when y(1/π) = 0 using DSolve.
(c) (MP) Calculate the solution when y(1/π) = 0 using NDSolve and plot it for

t ∈ [−1, 1].
(d) (BH) Calculate the solution when y(1/π) = 0. Do your Mathematica answers

miss anything?

Solution.
y(1/π) = C sinπ = 0.

Therefore, we see that every solution has y(1/π) = 0, but Mathematica picks out only one
with NDSolve.

6. (BH) Let y = y1(t) be a solution of

ẏ + p(t)y = 0, (i)

and let y = y2(t) be a solution of

ẏ + p(t)y = g(t). (ii)

Show that y = y1(t) + y2(t) is also a solution of (ii).

Solution. Substituting y = y1(t) + y2(t) into (ii) and rearranging terms, we have

d

dt
(y1 + y2) + p(t)(y1 + y2) = g(t)

[ẏ1 + p(t)y1] + ẏ2 + p(t)y2 = g(t).

Since y1 is a solution of (i), the bracketed expression is zero, which leaves

ẏ2 + p(t)y2 = g(t).

But this is just (ii). Since y2 is a solution of (ii), the result has been proven.
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7. (BH) Consider the differential equation

t3ẏ + 2t2y = t4 + t5, y(1) = y0.

(a) Find the general solution. Where is the solution defined, in general?

Solution. Rewriting in standard form, we have

ẏ +
2

t
y = t+ t2,

so the integrating factor is

µ(t) = exp

(∫
2

t
dt

)
= exp(2 log t) = t2

and we have

d(t2y)

dt
= t3 + t4

y(t) = t−2
(
t4

4
+
t5

5
+ C

)
=
t2

4
+
t3

5
+
C

t2

y(1) =
1

5
+

1

4
+ C = y0

C = y0 −
9

20
,

y(t) =
t2

4
+
t3

5
+

1

t2

(
y0 −

9

20

)
.

Therefore, in general the solution is defined for t 6= 0.

(b) Are there any particular values of y0 for which the solution is defined every-
where? If so, calculate them. If not, explain why not.

Solution. The solution will be defined everywhere if the coefficient of t−2 is zero, which
will occur when y0 = 9/20.

8. (BH) Consider the equation

ẏ + y2 = 0, y(0) = y0 < 0.

(a) Write down the solution to the equation.

Solution. Separating variables, we obtain

−dy
y2

= dt

1

y
= t+ C

y = (t+ C)−1

y(0) = y0 = C−1

y(t) =
(
t+ y−10

)−1
.
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(b) How does the interval of existence for the solution depend on y0?

Solution. The solution exists only for when the quantity in parentheses is positive, so

t < −y−10 =
1

|y0|
.

9. (BH) Show (by deriving the solution, NOT by direct substitution) that a solution
of the equation

y(t2 − 1)ẏ = t(y2 − 1), y(0) = 0,

is y = t. Are there any others? Explain your answer in light of the existence and
uniqueness theorem.

Solution. Separating variables, we obtain

y dy

y2 − 1
=

t dt

t2 − 1

log(y2 − 1)

2
=

log(t2 − 1)

2
+ C

y2 − 1 = e2C(t2 − 1) (A)

y(0)2 − 1 = e2C(−1)

e2C = 1.

Using this result in (A) and simplifying, we have the following:

y2 − 1 = t2 − 1

y = ±
√
t2 = ±t.

There are two solutions to the problem. This is in keeping with the existence and
uniqueness theorem since

ẏ =
t(y2 − 1)

y(t2 − 1)
,

which is not continuous at y = 0.

10. Consider the equation
ẇ = −ktαw3, w(1) = 1, (1.2)

where k > 0 and α are constants.

(a) (BH) Find the solution of (1.2). Be sure to examine the special case when
α = −1.

Solution. Separating variables, we obtain

−dw
w3

= ktα dt

1

2w2
=
ktα+1

α+ 1
+ C
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1

2w(1)2
=

1

2
=

k

α+ 1
+ C

C =
1

2
− k

α+ 1

w−2 = 2

(
1

2
+
k(tα+1 − 1)

α+ 1

)
,

w(t) =

(
1 +

2k(tα+1 − 1)

α+ 1

)−1/2
, α 6= −1,

1

2w2
= k log t+ C, α = −1

1

2
= k log 1 + C = C

w−2 = 2

(
1

2
+ k log t

)
w = (1 + 2k log t)−1/2, α = −1.

(b) (MP) Check your answer using Mathematica. Does Mathematica give the
solution to every case automatically?

(c) (BH) Discuss the behavior of the solutions to (1.2) as t→∞. Remark on the
solution for all α.

Solution. We have that

lim
t→∞

ktα+1

α+ 1
=

{
∞, α > −1,
0, α < −1,

lim
t→∞

k log t =∞, α = −1,

since k is positive. Therefore, we obtain

w(∞) =


(1 +∞)−1/2 = 0, α ≥ −1,(
1− 2k

α+ 1

)−1/2
, α < −1.

We note that the second line always exists since α + 1 < 0, and hence the parenthetical
term is always greater than 1.

(d) (MP) Plot integral curves for k = 3, t ∈ [1, 5], and α = −2, −1, 0, 1, 2.



In [ ] := Quit[]

HW1 (Checked)

Number 2.

In [ ] := rhs2 = 1 - Sin[y]
fieldplot = VectorPlot[{1, rhs2}, {t, 0, 2* Pi}, {y, -5, 5}]

Out[ ]=

1 - Sin[y]

Out[ ]=

0 1 2 3 4 5 6

-4

-2

0

2

4

In [ ] := Solve[rhs2 ⩵ 0, y]
Out[ ]=

y →
π

2
+ 2 π 1 if 1 ∈ ℤ 



In [ ] := equil1 = FindRoot[rhs2 ⩵ 0, {y, 2}]
equil1a = equil1〚1, 2〛
equil2 = FindRoot[rhs2 ⩵ 0, {y, -4}]
equil2a = equil2〚1, 2〛

Out[ ]=

{y → 1.5708}

Out[ ]=

1.5708

Out[ ]=

{y → -4.71239}

Out[ ]=

-4.71239

In [ ] := eqplot = Plot[{equil1a, equil2a}, {t, 0, 2* Pi}, PlotStyle → {Red, Red}]
Out[ ]=

1 2 3 4 5 6

-5

-4

-3

-2

-1

1
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In [ ] := Show[fieldplot, eqplot]
Out[ ]=

0 1 2 3 4 5 6

-4

-2

0

2

4

Number 3e.

In [ ] := sol5 = -2* Exp[-t] / 5 + (y0 + 2 / 5) * Exp[4* t]
Out[ ]=

-
2 ⅇ-t

5
+ ⅇ4 t

2

5
+ y0

In [ ] := sol5tab = Table[sol5, {y0, -0.8, 0, 0.2}]
Out[ ]=

-
2 ⅇ-t

5
- 0.4 ⅇ4 t, -

2 ⅇ-t

5
- 0.2 ⅇ4 t, 0. -

2 ⅇ-t

5
, -

2 ⅇ-t

5
+ 0.2 ⅇ4 t, -

2 ⅇ-t

5
+ 0.4 ⅇ4 t

Note that the third value in the table is the special one where the solution decays.  So we highlight it in the color scheme:
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In [ ] := Plot[sol5tab, {t, 0, 0.5}, PlotRange → All,
PlotStyle → {Black, Black, Red, Black, Black}]

Out[ ]=

0.1 0.2 0.3 0.4 0.5

-3

-2

-1

1

2

3

Number 5b.

In [ ] := eq7 = Tan[1/ t] * y'[t] + y[t] / t^2 ⩵ 0
numsolve = DSolve[{eq7, y[1/ Pi] ⩵ 0}, y[t], t]

Out[ ]=
y[t]

t2
+ Tan

1

t
 y′[t] ⩵ 0

Out[ ]=

{{y[t] → 0}}

Number 5c.

In [ ] := eq7 = Tan[1/ t] * y'[t] + y[t] / t^2 ⩵ 0
numsolve = NDSolve[{eq7, y[1/ Pi] ⩵ 0}, y[t], {t, -1, 1}]

Out[ ]=
y[t]

t2
+ Tan

1

t
 y′[t] ⩵ 0

Out[ ]=

y[t] → InterpolatingFunction Domain: {{-1., 1.}}
Output: scalar [t]
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In [ ] := Plot[y[t] /. numsolve, {t, -1, 1}, PlotStyle → {Red}]
Out[ ]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Number 10b.

In [ ] := eq10 = w'[t] ⩵ -k* t^(alpha) * (w[t])^3
sol10 = DSolve[{eq10, w[1] ⩵ 1}, w[t], t]

Out[ ]=

w′[t] ⩵ -k talpha w[t]3

DSolve: For some branches of the general solution, the given boundary conditions lead to an empty solution.

Out[ ]=

w[t] →
1 + alpha

1 + alpha - 2 k + 2 k t1+alpha


Note that the solution doesn’t cover the case where α=-1.

Number 10d.

In [ ] := sol10a = w[t] /. sol10
sol10b = (1 + 2* k* Log[t])^(-1/ 2)

Out[ ]=


1 + alpha

1 + alpha - 2 k + 2 k t1+alpha


Out[ ]=
1

1 + 2 k Log[t]

To skip over α=-1, we give the table command a specific list of α values to use.
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In [ ] := sol10tab = Table[sol10a /. (k → 3), {alpha, {-2, 0, 1, 2}}]
Out[ ]=


ⅈ

-7 + 6
t

, 
1

-5 + 6 t
, 

2

-4 + 6 t2
, 

3

-3 + 6 t3


Here the special case (with α=-1) is red.

In [ ] := Plot[{sol10tab, sol10b /. (k → 3)}, {t, 1, 5},
PlotStyle → {Black, Black, Black, Black, Red}]

Out[ ]=

2 3 4 5

0.2

0.4

0.6

0.8

1.0

HW2 (Checked)

HW3 (Checked)

HW4 (Checked)

HW5 (Checked)

HW6 (Checked)

HW7 (Checked)

HW8 (Checked)

HW9 (Checked)

SSM (Checked)
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