
MATH 302-010 Ordinary Differential Equations
Prof. D. A. Edwards Due: Nov. 15, 2024

Updates

1. The final exam will be administered Sunday, Dec. 15 from 11:30–1:30 in GOR 204.
You will need to bring a small blue book and your laptop.

2. There will be an informal review session on Friday, Dec. 13 from 10:00-12:00 in PRN
327.

Homework Set 8
Read sections 6.2–6.4.

Section 6.2
1. (BH) Use Laplace transforms to find the solution of

ÿ + 9y = 1, y(0) = 0, ẏ(0) = 3.

2. Consider the following system of differential equations for the three unknowns
{x(t), y(t), z(t)}:

ẋ+ 2x+ z = 4, (8.1a)

ẏ + 2y − z = 0, (8.1b)

ż = x− y, (8.1c)

x(0) = 1, y(0) = 1, z(0) = 0. (8.2)

(a) (BH) Use Laplace transforms to show that x(t) + y(t) = 2. (Hint: Do NOT
attempt to solve for x and y separately.)

(b) (BH) Use Laplace transforms to show that

x̂ =
s2 + 4s+ 2

s(s2 + 2s+ 2)
, ŷ =

s2 + 2

s(s2 + 2s+ 2)
.

(c) (MP) Invert your answer to part (b) to obtain real solutions for x(t) and y(t).
(Hint: Use the ExpToTrig function.) Verify your answer to (a).

3. (BH) Use the appropriate property to show that

L{tet} =
1

(s− 1)2
.
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4. (MI) (For this problem, you may use Mathematica to do the partial fraction
expansion, but do the rest by hand.) Consider the differential equation

ÿ − ω2y = et, ω > 0; y(0) = ẏ(0) = 0.

(a) Use Laplace transforms to solve the problem for all ω 6= 1.
(b) Use your answer to #3 to show that

y(t) =
tet − sinh t

2
, ω = 1.

Section 6.3
5.

(a) (BH) Show that
∞∑
n=0

e−snT =
1

1− e−sT
. (8.3)

(b) (BH) exercise 24

6. (BH) Recall that the greatest integer function btc is given by the greatest integer
less than or equal to t. Thus b2c = 2, b2.9995c = 2, b3c = 3, etc.

(a) Explain why

btc =
∞∑
n=1

un(t).

(b) Show that

L{btc} =
1

s(es − 1)
.

(Hint: Use the formula for the sum of a geometric series.)

7. Consider the function

g(t) = (t− 2)2u1(t)− (t− 3)2u4(t).

(a) (MP) Plot g(t) for t ∈ [0, 6].
(b) (BH) Find ĝ.
(c) (BH) Find the inverse Laplace transform of

e−s(s− 2)

s2 + 4
.

(d) (BH) Find the inverse Laplace transform of

e−(s+2)

s2 − 4
.
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Section 6.4
8. (BH) Find the solution of

ẅ − ẇ − 2w = 2− u2(t), w(0) = 1, ẇ(0) = −1.

9. Consider the problem

v̈ + π2v = f(t), v(0) = 1, v̇(0) = 0; f(t) = −u0(t)− 2
n∑
k=1

(−1)kuk(t).

(8.4)

(a) (MP) Plot f(t) for n = 15, t ∈ [0, 40].
(b) (MP) Plot your solution v(t) for n = 10, 15, and 20, and t ∈ [0, 40]. Pay

careful attention to the amplitude.
(c) (BH) What do you think happens as n→∞?

10. In Homework Set 5, #5, we considered the following problem:

ẍ+
1

32
ẋ+ 96x = F (t), x(0) = 1/7, ẋ(0) = 0, (8.5)

where

F (t) =

{
4 sin t, 0 ≤ t ≤ 2π,
0, t > 2π.

(a) (BH) Write F (t) in unit-step notation.
(b) (BH) Show that

x̂ =
(
s2 +

s

32
+ 96

)−1 [
4

(
1− e−2πs

s2 + 1

)
+

1

7

(
s+

1

32

)]
. (8.6)

(c) (MP) Invert (8.6) to determine the solution for x(t).
(d) (MP) Plot your solution x for t ∈ [0, 4π].


