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Abstract: We develop a Partial Differential Equation (PDE) model for photoreceptors in
the retina. We focus on the outer segment (OS) dynamics of rods, cones and their inter-
actions with a nutrient source associated with the retinal pigment epithelium (RPE) cells.
Prior models have captured the spatial dependence of the rod and cone photoreceptor density
and nutrient diffusion. In addition to that, we have also considered the spatial dependence
of photoreceptor outer segment length on retinal thickness in our new model (Model 1). The
new model was fitted to biological data using different forms of the functions lrH and lcH ,
the photoreceptors’ mathematical dependency on retinal thickness. Additionally, we found
analytical solutions for Model 1. We non-dimensionalized the model, while noting the pa-
rameters/variables that were spatially dependent. Dimensionalizing our model with respect
to the spatially dependent terms, we were able to find a nontrivial steady-state solution, in
addition to our trivial solution. Verification with the optimized parameters and data fitting
could show us how our steady-state solution works. Finally, an entirely new model (Model
2) was developed to model photoreceptor OS length as a density function that is dependent
on space in time. This model was developed and fitted to biological data of an experiment of
retinal detachment and re-attachment. Our work primarily focuses on healthy human eye.
However, our models may be useful in providing insights for various retinal pathologies,
eye-related injuries, and treatments of these conditions.
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1 Introduction
The retina is a thin but complex layer of cells in the back of the eye that is critical to providing humans
and other animals with vision. In the retina, two types of photoreceptors, rods and cones, process the
light that passes into the eye and send neurological signals to the brain via the optic nerve. Rods are
responsible for perceiving objects in low light environments and in the peripheral vision. Inversely, cones
are responsible for day vision, color vision, and visual acuity. Billions of rods and cones are dispersed
through the retina, which spans most of the inner surface area of the eye (see Figure 1a). photoreceptors
are most concentrated at the fovea, a divot in the retina at the back of the eye.

(a) Anatomy of the eye. Figure adopted from Roberts
et al. 2017.

(b) Structure of rods and cones in the retina. The outer
segment portion continually goes through generation (at
the bottom) and generation (at the top. Figure adopted
from photoreception n.d.

Figure 1: Anatomy of the human eye.

There are multiple kinds of diseases associated with the retina, including retinitis pigmentosa and
macular degeneration, which effect the growth and density of photoreceptors in the eye. These diseases,
along with instances of retinal injuries, have inspired scientists to develop mathematical models of different
photoreceptor and retina qualities. For example, Roberts et al. 2017 modeled both rod and cone density
along the retina. Additionally, they created a kinetic partial differential equations (PDE) model of oxygen
diffusion in the retina to test the hypothesis of oxygen toxicity leading to retinitis pigmentosa. In later
studies, the authors developed a second model to test a second hypothesis related to a protein called
tropic factor (Roberts 2022a; Roberts 2022b). Camacho and Wirkus 2013 developed a kinetic model of
the growth and shedding of outer segments of rods and cones. The outer segments of rods and cones (see
Figure 1b) are critical to the transmission of signals to the retinal pigment epithelium and eventually,
the optic nerve. These parts of photoreceptors undergo continuous shedding and renewal as a result of
oxidative stress endured during the daytime. The authors used this model to study possible dynamics
that can lead to retinitis pigmentosa.

In a more recent paper, D. M. Anderson, Brager, and Kearsley 2024 created a PDE model that
expands on those from Camacho and Wirkus 2013 and Roberts et al. 2017 to account for the spatial
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dependence of rods and cones throughout the retina. In the retina, cones are typically concentrated at
the fovia, while rods tend to lie farther away. While the author’s model accounts for this nature, there
are additional spacial dependencies that have been noted in literature. Wilk et al. 2017 notes how in
areas of high concentrations of photoreceptors, the photoreceptors tend to be longer in length due to
the compression caused by other nearby receptors. Additionally, the thickness of the retina changes as
a function of distance away from the fovia Kolb, Fernandez, and Nelson 1995, which also potentially
impacts the height and growth of retinas. Currently, models do not incorporate retinal thickness, nor do
they consider the heterogeneity of photoreceptor outer segment length within small regions of the eye.
This potential expansion was the inspiration for the work shown in this report.

In the following sections, we present two new models that could be used in future investigations
of retinal pathology or could inspire future biological studies that focus on important mechanisms for
photoreceptor regulation in the eye. The first model is an adaptation from D. M. Anderson, Brager, and
Kearsley 2024 that incorporates retinal thickness, and represents photoreceptor outer segment length
as a function of retinal thickness at each point on the retina. The second model is a new model of
spatial dependence of photoreceptors in the eye that models outer segment length of photoreceptors as
a heterogeneous distribution of lengths that vary with time and distance from the fovia. With these
models, we present analysis of steady state conditions and results from fitting the models to data shown
in previous studies. Finally, we present directions for future work.

2 Model 1 Development

2.1 Proposed Model
From Wilk et al. 2017, one could see the thickness of retina around fovia is thinner than the part that
is farther from fovia. However, the cones outer segment length becomes shorter as the radia distance
increase. Here we are proposing a model that take the thickness of retina into consideration. Instead of
considering lc and lr as two constant length scale, we are going to introduce lrH and lcH , which depends
on the retina thickness H(θ).

Let r(θ, t) be the rod outer segment length, c(θ, t) be the cone outer segment length, T (θ, t) be the
Diffusible nutrient concentration, R(θ) be the Rod density (per unit area) and C(θ) be the Cone density
(per unit area). Refer to (D. M. Anderson, Brager, and Kearsley 2024) for a detailed derivation and
explanation of model interactions.

Consider the following assumptions:

1. Retina thickness is a function of radia distance (θ)

2. Retina thickness and outer segment length are inversely related

∂r

∂t
= arr (lrH − r)T − µrr (1)

∂c

∂t
= acc (lcH − c)T − µcc (2)

∂T

∂t
= T (Γ− kT )− βT (lrH − r)rR(θ)− γT (lcH − c)cC(θ) (3)

where

lrH = α1H(θ)[1− α2H(θ)] and lcH = α3H(θ)[1− α4H(θ)]
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2.2 Fitting H(θ)

Though the steady state solution can be found regardless of the form of H(θ) (shown below), a functional
form of H(θ) was needed to fully parameterize the model so that it could be fitted and tested against
biological data. To find H(θ), the thickness of the retina in terms of distance from the fovia, data was
obtained from figures in Liu, Kocaoglu, and Miller 2016, Wilk et al. 2017, and Kolb, Fernandez, and
Nelson 1995. Images of the retinas from Liu, Kocaoglu, and Miller 2016 and Wilk et al. 2017 are shown
below in Figure 2. MATLAB’s GrabIt toolbox was used to extract the thickness of the retinas at several
points.

(a) Pictures of two retinas from subjects in Wilk et al. 2017.

(b) Picture of one retina from a subject in Liu, Kocaoglu, and Miller 2016

Figure 2: Images of retinas that were used to generate data for fitting H(θ).

The resulting retina thickness curves, as a function of micrometers from the center of the fovia,
are shown below in Figure 3a. After the data was gathered, MATLAB’s CurveFit toolbox was used to
find the optimal parameters that fit the following function

H(θ) = a+ bθe−cθ

to the biological data. This form of H(θ) was chosen because the geometry of thickness of the retina
increases sharply close to the fovia before decreasing as the distance from the fovia increases. The resulting
fit and parameter values are shown in Figure 3b. The final function H(θ) was used to fit the proposed
model to biological data, discussed below in the Results section.
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(a) All data used to fit H(θ). (b) Resultant fit for H(θ) = a + bθe−cθ. The final pa-
rameters were a = 177.7, b = 0.0007725, and c = 0.3807.

Figure 3: Fitting H(θ) to biological data.

2.3 Variants of the l(θ) Function
Using a modified version of the code from D. M. Anderson, Brager, and Kearsley 2024, we investigated the
introduction of a spatial dependence for lrH and lcH by assuming first that α1 = α3 and α2 = α4 which
aligns with lrH = lcH . As a base case, we assume that α2 = 0 to align with the biological necessity of a
non-negative retinal thickness. For this to occur, it is required that 0 ≤ α2 ≤ 1

max
θ>0

H(θ)
. Since H(θ) is on

the order of the hundreds in terms of our measurements of microns, α2 = 0 is a reasonable assumption.
Thus, the dependence of maximum OS length and retinal thickness is linear. To compare with the results
of the original adaptation of the model, we optimize four different parameters: pr = µr

ar
, pc = µc

ac
, β, and

α1. Following D. M. Anderson, Brager, and Kearsley 2024, we set γ = 0 since incorporating theta into
maximum length is not expected to affect the dependence of nutrient concentration on cone population.
Figure 4 displays the optimized results for an initial guess of [pr, pc, β, α1]= [77.5, 77.5, 0.0036, 82.9].
The values for the predicted parameters are [1.022, 1.022, 1.2445, 0.4857]. It is notable that α1 = 0.4857
since it is biologically realistic to say that the maximum OS length is less than the retinal thickness, so
this fractional value is reasonably restricting. Figure 5 demonstrates the results for the same initial guess
assuming that the values for lrH and lcH are independent of theta, as assumed in the prior version of this
model. In the optimization scheme, a constant parameter value l∗ such that l̄rH = l̄cH = l̄ is optimized
as opposed to α1. Notably, the parameter optimization is not unique for these four parameters, but it
is along a unique manifold. For the specific graphs, shown here, the parameters are approximately [pr,
pc, β, l̄]= [89.0, 89.0, 0.0002, 89.9], but the manifold values as reported in Table 6 of D. M. Anderson,
Brager, and Kearsley 2024 are l̄ − p = 0.83, βp2 = 1.5, and γ

β = 0. While it is evident that the first of
these values does not apply to the linear model, it is possible that the other two have some connection.
For the linear model, βp2 = 1.5 and γ

β = 0. The latter is consistent with the constant model trivially,
but the closeness of the βp2 value is worth considering during future investigation.

The model with linear spatial dependence of retinal thickness on maximum photoreceptor OS length
results in a worse fit to the biological data (Figure 4, upper right) than assuming constant dependence
(Figure 5, upper right). However, there are qualities of the linear spatial dependent model that are
desirable. For example, in the model with lrH = lcH = α1, photoreceptor OS length increases as it
approaches points far away from the fovia after it reaches a minimum value at approximately θ = 0.4.
The retinal thickness is known to be low ( 30-80 microns) at larger values of θ. It is unlikely that the
rod OS length would be 30 microns in this area as the constant prediction suggests. While the the model
with linear dependence lrH = lcH = α1H(θ) shows this same type of behavior, the OS length at large θ
is less than 20 microns, which is likely more biologically accurate. Additionally, the data gathered during
the process of fitting H(θ) as well as from D. M. Anderson, Brager, and Kearsley 2024 suggests that
an inverse relationship between OS length and retinal thickness is possible for small theta values, while
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Figure 4: Linear spatial dependence as a function of retina thickness. In subfigure 1, the small red
circles at θ = 0 are the ‘maximum’ OS lengths reported in Wilk et al. 2017 Table 1. The small red
circles at θ = θ0.5mm are the ‘minimum’ OS lengths reported in Wilk et al. 2017 Table 1. The small red
circles at θ = θ2.0mm are the 2 mm OS lengths reported in Wilk et al. 2017 table 1. The crosses are the
points used from Wilk et al. 2017 in the objective function to minimize the least square error. The large
blue circles are collectively the points from Wilk et al. 2017 subject with low peak density and subject
with the highest peak density shown for reference but otherwise not used in the optimization problem.
The black dotted line represents in each plot the numerical solution when the diffusion coefficient is 0.
Subfigure 2 is a zoomed-in-version of Subfigure 1. Subfigure 3 shows the rod and cone densities as a
function of θ (distance in radians from the fovea) for a human retina based on data from Curcio et al.
1990 and Roberts et al. 2017. The red lines show the rod densities and the cyan lines show the cone
densities. Subfigure 4 represent the RPE concentration. The optimized parameter values used in this
are: pr=1.0220, pc=1.0220, β=1.2445, γ=0, α1=0.4857.
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Figure 5: For constant lrH = lcH . In subfigure 1, the small red circles at θ = 0 are the ‘maximum’ OS
lengths reported in Wilk et al. 2017 Table 1. The small red circles at θ = θ0.5mm are the ‘minimum’ OS
lengths reported in Wilk et al. 2017 Table 1. The small red circles at θ = θ2.0mm are the 2 mm OS lengths
reported in Wilk et al. 2017 table 1. The crosses are the points used from Wilk et al. 2017 in the objective
function to minimize the least square error. The large blue circles are collectively the points from two
Wilk et al. 2017 subjects, one with low peak density and and one with the highest peak density, both
shown for reference but otherwise not used in the optimization problem. The black dotted line represents
the numerical solution with optimized parameters. Subfigure 2 is a zoomed-in-version of Subfigure 1.
Even though only the crosses are used in the objective function, the approximation matches the other
data points well. Subfigure 3 shows the rod and cone densities as a function of θ (distance in radians from
the fovea) for a human retina based on data from Curcio et al. 1990 and Roberts et al. 2017. The red
lines show the rod densities and the cyan lines show the cone densities. Subfigure 4 represents the RPE
concentration. The optimized parameter values used in this are: pr=89.0297, pc=89.0343, β=0.0002,
γ=0, l̄=89.8574.
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later theta values demonstrate a more linear relationship. Thus, the poor performance for small theta is
expected, and the linear relationship may be more accurate if just larger values of theta are considered.
A logistic function of H(θ) is suspected to capture the important behavior of this relationship.

Though we were unable to fit the model for the case where lrH and lcH are logistically constrained
by H(θ), we discuss this as a direction for figure work below in Section 4.

2.4 Analysis for Model 1
2.4.1 Nondimensionalized Model

We define the following non-dimensionalized relations:

r̄ =
r

lrH
c̄ =

c

lrH
T̄ =

Tk

Γ
R̄ = R(lrH)2 C̄ = C(lcH)2 µ̄r =

µr

Γ

µ̄c =
µc

Γ
t̄ = tΓ β̄ =

β

Γ
γ̄ =

γ

Γ
ār =

arlrH
k

āc =
aclcH
k

Hence our nondimensionalized model becomes:

∂r̄

∂t̄
= ārr̄ (1− r̄) T̄ − µ̄rr̄ (4)

∂c̄

∂t̄
= ācc̄ (1− c̄) T̄ − µ̄cc̄ (5)

∂T̄

∂t̄
= T̄

[
(1− T̄ )− β̄R̄(1− r̄)r̄ − γ̄C̄(1− c̄)c̄

]
(6)

2.4.2 Steady state Solution

There is the trivial steady state (0, 0, 0) and to denote one of the non-trivial steady states (r∗, c∗, T ∗), we
have obtained it as follows:

Considering the non-dimensionalized form for r̄, for steady states, let the right-hand side of Equation
(4) equals to zero. We can obtain that r̄∗ = 0 or r̄∗ satisfying the following equation:

ār (1− r̄) T̄ − µ̄r = 0

Solving for the equation above, we find that r̄∗ = 1− µ̄r

ārT̄
.

Similarly, for c̄, we can get c̄∗ = 0 or we must find c̄∗ through the following equation:

āc (1− c̄) T̄ − µ̄c = 0

Solving for the equation above, we find that c̄∗ = 1− µ̄c

ācT̄
.

Considering the non-dimensionalized form for T̄ , T̄ ∗ = 0 or we must find T̄ ∗ through the following
equation:
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(1− T̄ )− β̄R̄(1− r̄)r̄ − γ̄C̄(1− c̄)c̄ = 0

Giving a perturbation to T , we set T̄ ≈ 1 + ϵ with the assumption ϵ << 1. We arrive at the following
dimensionless form for ϵ after a bit of algebra:

ϵ =
−β̄R̄(θ)µ̄rāc

2ār + β̄R̄(θ)µ̄r
2āc

2 − γ̄C̄(θ)µ̄cār
2āc + γ̄C̄(θ)µ̄c

2ār
2

ār2āc2 + β̄R̄(θ)µ̄rāc2ār + γ̄C̄(θ)µ̄cār2āc
(7)

After dimensionalizing by spatial dependence, we get:

ϵ(θ) =
−β̄R(θ)µ̄rac

2arlrH(θ)k + β̄R(θ)µ̄r
2ac

2k2 − γ̄C(θ)µ̄car
2aclcH(θ)k + γ̄C(θ)µ̄c

2ar
2k2

ar2ac2 + β̄R(θ)µ̄rac2arlrH(θ)k + γ̄C(θ)µ̄car2aclcH(θ)k
(8)

Setting the parameter set equal to the parameters listed in (D. M. Anderson, Brager, and Kearsley
2024), we find that r, c, T, and ϵ is equal to:

r∗ = r0

[
lrH(θ)− pr

1 + ϵ(θ)

]
(9)

c∗ = c0

[
lcH(θ)− pc

1 + ϵ(θ)

]
(10)

T ∗ ≈ Γ

k
[1 + ϵ(θ)] (11)

ϵ(θ) =
βprR̄(θ)

[
−l̄rH(θ) + pr

]
+ γpcC̄(θ)

[
−l̄cH(θ) + pc

]
1 + βprR̄(θ)l̄rH + γpcC̄(θ)l̄rH

(12)

where

R̄(θ) =
R(θ)

Rmax

, C̄(θ) =
C(θ)

Cmax

, l̄rh =
lrh
r0

, l̄ch =
lch
c0

, pr =
µr

ar
, pc =

µc

ac
(13)

while Rmax and Cmax are the maximum rod and cone densities. r0 and c0 represent the healthy reference
values for outer segment lengths of rods and cones (D. M. Anderson, Brager, and Kearsley 2024).
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3 Model 2

3.1 Proposed Model

The following inquiry is inspired by the data
presented in Figure 6 that came from Christopher
J. Guerin and D. H. Anderson 1993. The data
was obtained by detaching the retina inside the eye
(which causes rods and cones to die), then allowing
it to reattach and monitoring the regrowth process
for the cones and rods.

We observe that the distribution of the pho-
toreceptive cells over length is evolving in time, by
first propagating towards higher values of l, and then
settling in what appears to be an equilibrium distri-
bution. We will postulate a simple PDE model for
this process, simulate it by discretizing the PDE and
compare our results with the experimental data.

To model the evolution of the cell density func-
tion we propose a simple advection-diffusion model
over the length space:

∂ρ

∂t
+

∂

∂l

(
a(l)ρ−D

∂ρ

∂l

)
= 0 l ∈

(
0, L̂

)
(14a)

a(l)ρ(l, t)−D
∂ρ(l, t)

∂l

∣∣∣
l=0,L̂

= 0 (14b)

ρ(l, 0) = ρ0(l) (14c) Figure 6: Experimental Data

The advection term in the PDE above simulates the growth of the cells over time, which is the
main effect we are interested in; meanwhile, the diffusion term models random fluctuations in the growth
of the cones and rods.

The boundary condition (14b) is chosen to conserve the total number of cones/rods: by integrating
both sides of the PDE (14a) we get

∂

∂t

∫ L̂

0

ρ dl +

[
a(l)ρ−D

∂ρ

∂l

]L̂
0

,= 0

so with the boundary condition (14b) we indeed have conservation of the number of cells.
Finally, as we expect the cell growth to be roughly logistic, we choose the flux function a(l) to be

a(l) = l(1− l/lmax), (15)

where lmax is the optimal length of the cones/rods.
The initial boundary value problem (14) was discretized using the standard finite element method

in space and the implicit-explicit Crank-Nicolson leapfrog method in time.
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3.2 Numerical Solution
The results of a numerical simulation of the model are presented in Figure 7 below. We see that the
result of our model has the same qualitative behaviour as the experimental data, namely it predicts that
the cells grow to a certain length, and then stabilize in a normal-like distribution around it.

Figure 7: Top row: experimental data.
Bottom row: results of a numerical simulation

4 Conclusions
In this study, we developed two models about the outer segment length of photoreceptors. Model 1 is
based on the PDE model from D. M. Anderson, Brager, and Kearsley 2024 including the influence of
the retinal thickness on the length scale of photoreceptors’ outer segment length. By analyzing the data
from Kolb, Fernandez, and Nelson 1995; Wilk et al. 2017; Liu, Kocaoglu, and Miller 2016, we obtained
a function of retinal thickness with spatial dependence. We first assumed that the outer segment length
scales are linear related to the retinal thickness. By simulating the spatial dependence of outer segment
length, we were able to determine optimal parameters for the model and compare those with the constant
case.

We also developed a method to validate the new PDE-based model about the outer segment
length of photoreceptors with perturbation analysis for steady states. Firstly, we normalized the model
with dimensionless variables. In particular, we can find the expression of steady states. By finding the
equilibrium in the normalized version of PDE system, we can use a perturbation to test the system. With
this perturbation analysis, we can verify the model with the values of parameters and the setting of the
spatial dependence of densities of photoreceptors.

For the second model, we built an advection-diffusion model to describe the density function of
photoreceptors with different lengths at different times. This PDE system is based on the combination
of the shedding and growing mechanics of the photoreceptors and the Fokker-Planck equation. By this
model, we reproduced the experimental results from Christopher J. Guerin and D. H. Anderson 1993.
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4.1 Directions for Future Work
When fitting Model 1 to biological data, we tested simple cases where OS length was independent of
H(θ) and linear related to H(θ). However, evidence from images of the retina from previous research
suggests that retina thickness and OS length are inversely related. So, in the future, we would like to
fit the original Model 1, where lrH and lcH depend logistically on H(θ), to biological data as well. The
logistical dependence ensures that lrH and lcH are constrained by the retinal thickness (as is the case in
the retina) but allows for the OS segment lengths (r and c) to be inversely related to the retinal thickness.

Additionally, for Model 1, we have two steady states for future work to focus on. The first point to
focus on is to fit the steady-state solutions into the data-fitting model. From there, we should expect a
trivial solution with r∗ = c∗ = T ∗ = 0 and a nontrivial solution with the nontrivial values we solved for in
the Model 1 Analysis Section. With our nontrivial solution, we require the parameters to be optimized to
fit Model 1. Currently, we are using a linear relationship between the retinal thickness and the maximum
OS length attainable in the absence of other influences, so letting α2 ̸= α4 ̸= 0 in the optimization is
the next variant to explore. The second point to focus on is performing stability analysis on the new
model. This involves finding the Jacobian of the system and evaluating the Jacobian at each steady state
to determine the behaviour of the system at each state. This information is relevant as it gives insight
into how the proposed model reacts to small perturbations around these states. An unstable steady state
might result in the system (model) becoming chaotic. If the system is unstable, the original relationship
between photoreceptor OS length and θ no longer holds within this particular model. Lastly, we can note
that an unstable system might need to go through either further analysis or a suggested new model.

Stability analysis is also important information to note due to the data fitting model used in D. M.
Anderson, Brager, and Kearsley 2024, which describes that photoreceptor OS length will decrease, then
increase as θ (radians) increases from 0.

The work on Model 2 can be continued by allowing for the cells to be added to the system by
modifying the boundary condition at l = 0, improving the numerical scheme to make it more stable, and
adding a shedding term to make the model more realistic.
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