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Abstract. On December 30, 2021, the Marshall Fire severely impacted Boulder County, Colorado, costing

more than 2 billion USD in damages. According to official reports, several conditions impacted the rapid
spread of the fire: dry and warm weather over the previous months, and strong wind currents coming from

the nearby mountains. In this report, we survey different risk factors for wildfire spreading into cities and

urban areas from mathematical modeling and data analysis perspectives, with the end goal of identifying
potential risk of similar events for regions across the United States.
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1. Background

Our problem is motivated by insurance companies concerned by catastrophe exposure in certain areas of
the United States (U.S.), such as State Farm and Allstate, who have stopped accepting homeowner insurance
applications in California [2, 13]. Rather than stopping insurance altogether, we wish to increase the price
of wildfire-prone areas, and propose a new method of rating the risk of wildfires in local zones. Researchers
have long attempted to predict wildfire potential and risk across the U.S., namely through the use of data
gathered about the climate. For example, a group of people from the National Center for Atmospheric
Research in Boulder County, Colorado conducted a study during which they developed a machine learning
algorithm to predict the burned area of wildfires across the western U.S. in the summers of 1984-2020 [3].
Using a training set composed of temperature, precipitation, drought, and other factors in the previous
winter and spring, the algorithm was able to predict a majority of the wildfire activity [3]. Presently, others
continue to monitor and predict wildfire potential across the U.S. For example, the National Interagency
Coordinate Center produces monthly reports predicting normal, above normal, or below normal wildfire
potential for the next four months in different geographic regions across the U.S [8]. The results are based
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on temperature, precipitation, drought, and other factors in the month prior to the publication of the report
[8]. In addition, Blue Sky Analytics and the United States Geological Survey (USGS) conduct seven-day
wildfire potential/risk forecasts [6] [22]. The Blue Sky Analytics’ forecast uses satellite imaging and machine
learning to produce their forecasts while USGS uses satellite imaging to determine factors such as vegetation
and weather to determine their forecasts. Overall, we can see that factors such as temperature, precipitation,
wind speed, and previous fires have been used to predict wildfire potential/risk. Therefore, we also seek to
use similar factors to assess the potential wildfire risk of different regions across the U.S.

Throughout this report, we will discuss two major approaches to predicting the risk of fires across the
US: data analysis for larger scale predictions, and differential equation analysis for finer-grain modeling.
In Section 2, we introduce factors like wind capacity factor, maximum temperature, annual precipitation,
elevation level, and historical fire occurrences. We use k-means clustering and dynamic mode composition to
offer two possible data-driven predictions for fire risk. In the next few sections, we present modeling-based
methods using ordinary and partial differential equations. To model how wind flows over irregular topography
in localized regions, we present three approaches. Section 3 leverages shallow-water approximations to model
wind flow over irregular topography, Section 4 illustrates an exact flow solution, and Section 5 employs a
finite element/volume approach.

2. Data Analysis and Modeling

2.1. Data Description and Correlation Analysis. In this section, we discuss a data-driven approach to
quantifying the risk of wildfires in the United States. We first develop an algorithm to classify land regions
according to their risk of a wildfire occurring. This classification is determined by analyzing national US
data on four risk factors that have been associated with contributing to wildfires: elevation, temperature,
precipitation, and wind capacity factor [8]. We then attempt to predict whether a wildfire will occur in a
particular area by using only historical data on the presence of wildfires in that region.

The data used in this section has been collected from various sources. For correlation analysis, we are
motivated by the article [4] and use the fire danger data [14], ecoregion boundaries data [11], and elevation
data [18] to demonstrate how fire risk may correlate with elevation. In addition, we use daily average
temperature data [16] and historical fire events map [17] to inform the correlation between temperature and
fire risk. Figure 1 shows that fire risks increases as elevation increases. And Figure 2 indicates that fire tends
to occur in high temperature regions.

Figure 1. Average Energy Release Component from 1979-2020
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Figure 2. Fire events and Average Daily Temperature May 2023.

For our analysis of risk factors, we use the National Renewable Energy Laboratory’s data on wind capacity
factor in the western United States from 2004-2006 [15]. Wind capacity factor is computed as the ratio of
observed wind power to a theoretical maximum power. Additionally, we use the Applied Climate Information
Service Web Services to compile data for elevation (ft), maximum annual temperature (F), and total annual
precipitation (in) [21]. Each measurement is given for longitude and latitude coordinate pairs. See Figure
3 for visualizations of these four metrics in the southwestern United States. For our analysis of historical
fire occurrences, we use measurements of brightness for longitude and latitude coordinate pairs that were
collected and published by NASA’s Fire Information for Resource Management System [1].

Figure 3. Risk factors of wildfires in the southwestern United States.
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2.2. K-Means Clustering. Our first algorithm is k-means clustering, which uses measurements of eleva-
tion, maximum annual temperature, total annual precipitation, and wind capacity factor. We employ the
k-means algorithm to cluster various longitude and latitude coordinate pairs across the southwestern U.S.
according to their risk level.
k-means clustering begins by assuming a non-optimal set of k clusters. There are many ways to select

the initial cluster centers, and our method uses Lloyd’s k-means algorithm, where we randomly select k data
points and assign them to be the cluster centers. We then assign each data point to the nearest cluster
according to the smallest Euclidean distance from the cluster center. After all the data points have been
reassigned, the cluster’s center is recalculated as the mean of all the data points currently in the cluster.
This cycle is repeated until the difference in the cluster centers of two consecutive iterations is less than
10−4.

For our model, each longitude and latitude coordinate pair is represented by a data point that consists of a
value for elevation, temperature, precipitation, and wind capacity factor. After normalizing all the data, we
apply k-means to assign each coordinate to one of five clusters. We implement this algorithm over Colorado
only (right plot of Figure 4) and over six states in the southwestern US (left plot of Figure 4).

Figure 4. K-means clustering for two regions of different geographical scales.

We predict that each resulting cluster has a similar climate, topographic profile, and wind pattern, and
thus the land encapsulated by that cluster has a similar level of wildfire risk. With this information, we can
identify precisely which areas have the highest risk of fire (based on the temperature, precipitation, elevation,
and wind data we used), and hence which regions should be charged more for insurance purposes.

2.3. Dynamic Mode Decomposition Using Historical Fire Data. Besides k-means clustering, another
data analysis approach we followed was using Dynamic Mode Decomposition (DMD) on the historical data
on fires across the USA. With this approach, and very limited data, we can produce an operator which we
can use to predict very broadly where fires will occur one year in the future. We chose DMD to tackle fire
location prediction based on historical fire data because it grants us a form of interpretability that is lacking
in many standard deep learning approaches. The linear operator produced by the DMD algorithm would
grant us eigenvalues and eigenvectors which would correspond to hotspot regions in time.

Below is a sample constructed from the fire dataset which we obtained from NASA. Several thousands
of brightness values (measured in degrees Kelvin) were collected over varying longitudes and latitudes for
each year from 2000-2022. The size of the historical fire data snapshots were not consistent from year to
year. Some years only contained thousands of data points, while others contained tens of thousands. This is
conjectured to be a result of increased interest in fire loaction prediction over the years. Since the time-series
snapshots must be of the same size in order to use DMD, this served as a challenge. In order to overcome
this, we linearly interpolated the brightness data over a standardized n by n grid of the continental USA.
Interpolating over this grid, as well as doing DMD with larger values of n increases the computational cost
of our method greatly. We proceeded by interpolating brightness values over a uniform grid with 100 data
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points for each year. Each of these Brightness arrays were considered one standardized sample of data. We
treat each of these samples as a time-series snapshot propagated by some linear discrete-time dynamical
system.

From this sample, we can see that Brightness is obtained over various (longitude, latitude) pairs.

We assume that a fire has occurred for a given (longitude, latitude) if the brightness for this location is
at or above 400 Kelvin.

Since the goal of DMD is to identify the linear matrix operator which propagates a time-series snapshot
forward one time-step, this problem formulation is posed as discovering the matrix A in (1). Consider the
following linear discrete-time dynamical system

(1) Yk+1 = A Yk

Based on our context, Yk represents a current sample of Brightness in Kelvin across the USA that will
be propagated forward in time by the matrix A to obtain the future Brightness Yk+1. To construct the
Amatrix let us introduce the DMD algorithm by initializing our data as snapshot matrices in the following
way. Assume we have N samples in time. Then we stack our data in the matrices

(2) X0 = [Y0 · · ·YN−1]]
5



and

(3) X1 = [Y1 · · ·YN ]] .

Note that N is the number of time-series snapshots and n is the number brightness data points. Now we
proceed with the algorithm.

From here, we see that we diagonalize the A matrix which was constructed via matrix operations on
the Singular Value Decompositions (SVDs) of the X0 and X1 snapshot matries. This gives us the valuable
interpretation of the fact that the eigenvalues of A encode for hotspot regions on the map of the USA because
every state of our Yk snapshots gives a brightness value for a specific (longitude, latitude) pair. Hence, with
high enough resolution data, we should be able obtain hotspot regions via DMD.

Given the constraints on our data set and dimensionality concerns previously stated, we opted to inter-
polate a uniformly spaced grid across the USA giving only 100 data points, thus giving us an A matrix of
size 100 by 100 (n data points give a matrix of size n by n). We were unable to give high-resolution fire
location predictions using DMD because the algorithm would take too much time to run on a highly refined
grid, and there are plentiful reasons to doubt high resolution predictions from low resolution data. However,
given all of the restrictions on our data set, and interpretable method of choice, we are still able to provide
a highly generalized data-driven fire prediction as seen below.
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We used the first 21 snapshots of Brightness data to see if we could predict Brightness values in 2022.
From the figure above, it is clear that the Western USA generally will see more fires than the the Eastern
USA in 2022. Not only is this result corroborated by our other independent analyses, but across the literature
as well. Thus, we have shown that DMD can use a very limited and somewhat sparse data set to give general
relative predictions of fire occurrences over regions. From this point, there is reason to believe that we could
use DMD to get a general sense of where fires are likely to occur using limited data, and then we can use
k-means over suspected regions to obtain more refined predictions of high risk fire regions based on a more
refined grid.

3. Shallow-water Approximations for Modeling Wind Flow over Irregular Topography

3.1. Introduction: Shallow-water Equations. We consider the atmosphere flowing over irregular to-
pography over a large spatial domain in 1 dimension. The purpose is to identify topographical features, like
mountain shape or distance from a mountain range, that may increase the risk of fire, either by way of faster
windspeed or more turbulent wind patterns which may be produced by shocks. Throughout this section, we
use windspeed as a proxy for fire risk; faster, more chaotic wind is more conducive to spreading fire.

We make use of the shallow-water equations, which are a simplified 1D version of the Navier-Stokes
equations derived by depth-integrating Navier-Stokes [7]. The derivation is highly involved, so we omit it
here, but it relies on several assumptions: (1), that the fluid is in hydrostatic balance, i.e. the pressure obeys
p = ρgh; (2), that the surface of the fluid is free, which is a standard assumption for the Earth’s atmosphere;
(3), that the flow reaches a steady-state; and (4), that we may neglect flow in the y-direction. This last
condition is acceptable, as our horizontal length scale is much larger than our vertical length scale in this
problem. See [9] and [10] for more information and the explicit derivation of these equations, and Figure 5
for a schematic.

Figure 5. Schematic of shallow water approximations. The vertical length scale is negli-
gible relative to the horizontal length scale, and so the velocity in the vertical direction is
negligible. This allows for a 1D approximation. The fluid thickness D(x) has a free surface
at the top boundary, and is allowed to vary in space. The mountain topography is prescribed
as h(x).

The shallow-water equations comprise the momentum equation (4a) and the continuity equation (4b),
with initial conditions (4c)

u
du

dx
+ g

dD

dx
+ g

dh

dx
= 0, x ∈ (0, L)(4a)

d(uD)

dx
= 0, x ∈ (0, L)(4b)

u(0) = u0, D(0) = d0(4c)

7



Here, h(x) is the 1D topography of the land, D(x) indicates the fluid thickness measured from y = 0, and
u(x) is the wind velocity in the x-direction; by our assumption that the horizontal length scale (i.e. the size
of the domain) is much greater than the vertical length scale, we may assume that the flow is steady and
has only a component in the x-direction [7].

In (4a), the three terms are respectively (1) nonlinear advection, (2) the pressure gradient due to changes
in fluid thickness, and (3) the component of gravity parallel to the topography. These may be understood
by analogy with Navier-Stokes: the advective term is akin to u · ∇u in the material derivative in the full
equations, the pressure gradient term comes from the hydrostatic balance assumption and is analogous to
the ∇p in the full equations, and the gravity component term is analogous to including gravity as an external
force in the full equations. One may think of equation (4b), the continuity equation, as enforcing a zero-flux
condition.

Substituting (4b) into (4a) yields

(1− Fr−2(x))
d(D + x)

dx
=
dh

dx

where Fr2(x) = u2(x)
gD(x) is the Froude number. This number may be rewritten (using (4b))

Fr2 =
udu

dx
gD
u

du
dx

=
udu

dx

−g dD
dx

and so it encodes the ratio of nonlinear advection, udu
dx , to the pressure gradient resulting from variable

fluid depth, g dD
dx . The value of the Froude number gives rise to two qualitatively distinct regimes, su-

percritical and subcritical flow, based on which of these two terms dominates in the momentum equation.
At Fr = 1, the equations have a singularity, which causes a phase transition that we denote a hydrualic jump.

Supercritical flow. This occurs when Fr > 1. Here, advection dominates; fluid particles are accelerated
in the same direction as the gravitational force parallel to the topography. This means that as the fluid
ascends a mountain, it slows down, then accelerates as it descends the mountain. In the limit Fr ≫ 1, (4a)
reads udu

dx = −g dh
dx , where we see that since u is non-negative, the sign of du

dx is opposite to dh
dx , agreeing with

the previous observation of decreasing velocity when approaching mountains, and increasing velocity when
descending the mountains.
Subcritical flow. This occurs when Fr < 1. Here, the pressure gradient term dominates nonlinear advection.
This means that fluid particles accelerate in the direction opposite the gravitational force. In the limit Fr ≪ 1,

(4a) reads d(D+h)
dx = 0, so D = −h+ c, where c is a constant. Thus, as h increases, D must decrease. Since

the velocity is inversely proportional to D by the continuity condition, the velocity increases when ascending
a mountain and decreases when descending a mountain.
Hydraulic jumps. So-called hydraulic jumps may occur at the transition from the subcritical to the super-
critical regime [19]. From (4b) we have that u(x)D(x) = u0d0, where u0 and d0 are the initial conditions (4c).

Substituting into the Froude number, we have Fr2 = u3

u0d0g
. So, Fr ∼ u3/2 increases as u increases. Thus,

it is possible for a fluid to approach a mountain in subcritical flow (therefore increasing speed), and have
Fr to increase enough so that the flow becomes supercritical, hence increasing speed again when descending
through the mountains, creating very high wind speeds which may be conducive to greatly increasing overall
fire risk. When the flow is supercritical, the speed might increase even more by the presence of a valley or
other low altitude areas. See Figure 6 for an illustration of this effect.

To illustrate these different phenomena, the results of the equations with a Gaussian mountain profile for
different initial conditions may be found in Figure 7.
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Figure 6. Flow approaches a mountain from the left, in the subcritical regime. Since
Fr < 1, the advective term in the shallow-water equations is negligible, and windspeed
increases as the wind ascends the mountain. This acceleration generates a hydraulic jump;
there is a shock, and a phase transition to the Fr > 1 regime. The advective term now
dominates the shallow-water equations, and the wind continues to accelerate as it descends
the mountain. This leads to potentially extreme wind speeds, and therefore increased fire
risk.

3.2. Numerical method. We use the relation u(x)D(x) = u0d0 from (4b) to obtain a one-dimensional
initial value problem for u, for a given known profile function h(x):

(5)

du

dx

(
u− gu0d0

u2

)
= −g dh

dx
,

u(x0) = u0,

D(x0) = d0

This equation has a discontinuity at Fr = 1, making its direct numerical integration challenging. This
corresponds to the hydraulic jump. By integration of separable ODEs we can obtain that for every x, u(x)
is a root of the polynomial in z

(6) p(z;x) =
1

2
z3 +

(
gh(x)− gd0 +

u20
2

+ gh(0)

)
z + gd0u0

The phase transition corresponds to different roots “collapsing” into one and becoming complex-valued.
This perspective is helpful in verifying that the numerical trajectory found by integrating the PDE is indeed
the correct trajectory of u in the presence of the hydraulic jump.

3.3. Predictions arising from shallow-water analysis using elevation data. Based on this analysis,
we predict a “highest-risk” topographical scenario based on the assumption (validated by the data analysis in
the following sections) that higher windspeed is conducive to increased fire risk. We expect that windspeed
may be maximized in the presence of a hydraulic jump, when the wind accelerates rapidly as a result of flow
over an irregular surface. Based on the jump mechanism discussed above, we propose that a “worst-case”
hydraulic jump may occur at a mountain-valley junction. The wind approaches the mountain at moderate
speed, in the subcritical regime, but accelerates as it ascends the mountain. If the Froude number is suf-
ficiently close to 1, this acceleration may induce a shock, and the wind transitions to supercritical; now, it
accelerates even more as it descends the mountain. The presence of a valley at the base of the mountain
compounds this effect, and the wind continues to accelerate as it descends the valley. Thus, a location at the
base of this valley may experience extremely high windspeed, purely as a result of the flow over the topology.
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Figure 7. Four different behaviors in the shallow-water equation solutions depending on
incident wind speed. (A) and (B) correspond to supercritical flow (Fr > 1) initial conditions
while (C) and (D) correspond to subcritical flow (Fr < 1) initial conditions. If the wind
speed is very large and Fr ≫ 1 (A), the mountain temporarily decreases the speed of the
wind but the supercritical flow is conserved. If the wind speed is such that Fr ∼ 1 (B, C)
the mountain can either dramatically reduce or increase the speed, changing the flow to
subcritical (B) or supercritical (C) at the other side. Finally, if Fr ≪ 1 (D), the mountain
will temporarily increase the speed of the wind but the subcritical flow will be preserved

We use elevation data in Colorado to illustrate this effect. Consider a 1D slice of data taken at fixed
latitude, running through the Rocky mountains and into the flatlands of Colorado. See Figure 8. All 3
trajectories begin at subcritical windspeeds, and therefore accelerate up the initial peak at longitude -109.
Two trajectories sufficiently accelerate such that they transition into the supercritical regime, and continue
to accelerate through the descent into the valley at longitude -108. As the trajectories ascend the mountain
range starting at longitude -107, one supercritical trajectory decelerates sufficiently such that it transitions
back to the subcritical regime, and decelerates as it moves into the flatlands. However, the other supercritical
trajectory does not decelerate enough to transition into the subcritical regime; it continues to accelerate as
it moves down the value. This constitutes a major fire risk, and illustrates the prevalence of fire risk in
communities that sit in valleys at the base of mountain ranges.

4. Potential Flow to model flow over an obstacle.

In this section we illustrate an example of an exact flow solution assuming the physics result in potential
flow; that is, when the 2D velocity field obeys

(7) (u, v) = ∇ϕ

for which the velocity potential ϕ(x, y) and respective streamfunction ψ(x, y) lead to solving a Laplace
equation ∆ϕ = 0 with some boundary conditions. In following [23], Section 4, a computational domain for
physical (x, y) is formed, then transformed, via

(8) X = x+
x

x2 + y2
, Y = y − y

x2 + y2
;
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Figure 8. Solution to shallow-water equations for wind flowing over real-world topography.
In (a), this slice of elevation data is taken at fixed latitude in Colorado, with longitude
varying as a domain. In (b), three different incident windspeeds are prescribed. These
are u0 = {240, 250, 260}. Units of speed are m/s. Supercritical Fr > 1 is plotted in red;
subcritical Fr < 1 is plotted in blue. Two wind trajectories undergo a transition from sub-
to supercritical flow at the mountain peak around longitude -109, while the lowest initial
speed trajectory remains subcritical. Only the highest initial windspeed of u0 = 260 remains
supercritical throughout the rest of the topography; the wind accelerates as it flows out of
the Rocky Mountains (longitude -107) and into the valley (longitude -105 onward).

then for arbitrary parameters p (“doublet location”) and b (“separation point”), they provide solutions

(9)

ϕ
(
X(x, y), Y (x, y)

)
= (X − p)

[
1 +

(p− b)2

(X − p)2 + Y 2

]
ψ
(
X(x, y), Y (x, y)

)
= Y

[
1− (p− b)2

(X − p)2 + Y 2

]
We implemented these expressions using standard visualization of functions of two variables in Python, via
matplotlib. Two-dimensional rectangular meshes were made for x and y, then in two steps, corresponding
(X,Y ) were calculated according to Equation 8, followed by the expressions in Equation 9, for various choices
of the parameters p and b. Figure 9 illustrates the equipotential lines (left), streamfunctions (center) and
velocity magnitude (right) for several choices of p and b as provided in the paper.

This approach (and the handful of additional explicit solutions available via conformal mapping) are
useful mainly up to the ability to have “order of magnitude” behaviors to expect. As any pair of choices
p, b provide a solution to the semi-infinite flow problem, we hold back from direct numerical comparison or
reporting on specific values in these results until p and b can be directly chosen via a careful re-derivation of
the potential flow can be decided and a direct relation to physical constants and/or constraints chosen. To
illustrate, the right-hand panels of Figure 9 illustrates the magnitude of velocity (arbitrary units); various
choices of p, for fixed b, give very different results for the relative jump in wind speed; anywhere from 3 to
27.
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Figure 9. Visualizations of exact potential flow solution past an obstruction, following
[23], Section 4. Parameters b = 1, and going down, p = 0.6, p = 1.2, p = 1.8. The maxi-
mum flow speed relative to the upstream flow strongly depends on p, and are numerically
approximately 3, 2, and 27, respectively.

We postpone a more careful study to future work and leave this section only as a piece of evidence to
validate the physics of downslope flow acceleration, under a slightly different modeling path than other
sections in the report.

5. Finite element/volume approaches to modeling flow

5.1. A finite element approach. To analyze the behavior of downslope winds, we may also look at much
larger-scale dynamics. Indeed, consider the following simplified topography:

(10) h(x) =

Hm cos2
(
π

2

|x− xc|
a

)
if

|x− xc|
a

≤ 1,

0 otherwise.

Here, Hm is the height of the mountain, xc is the center in the horizontal direction, and a is the half-width
of the obstacle. Given the stratification of the atmosphere, temperature variations in the vertical direction
are not negligible. However, a good approximation to model the flow of air over a mountain is given by the
Navier-Stokes equations with a buoyancy term coupling the flow velocity u = (u1, u2) with the temperature
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Γ1 : u · n = 0

Γ3 : u · n = 0

Γ
2
:
(∇

u
)n

=
0

Γ
4
:
u
=

u
D

h(x)

W

H

Figure 10. Computational domain for the Stokes problem.

T [20]:

ut + (∇u)u = ν∆u−∇p+ b(T )k,(11a)

∇ · u = 0,(11b)

Tt + u · ∇T = κ∆T.(11c)

In this case, ν and κ are, respectively, the kinematic viscosity and thermal conductivity of air, b(T ) is a
linear function of temperature, and k is the unit vector in the vertical direction. The term b(T )k is usually
referred to as the Boussinesq approximation.

5.1.1. Numerical methods. The discretization of the full system (11) is known to be a challenging problem.
As a first step towards developing a numerical scheme for this problem, we consider first the fluid flow
problem given by the Stokes equations:

−µ∆u+∇p = 0,(12a)

∇ · u = 0,(12b)

where µ > 0 is the dynamic viscosity of air. The computational domain Ω for this problem is shown in
Figure 10. In particular, we subdivide the boundary into four parts: ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. Air enters
through Γ1 with horizontal velocity profile, i.e. uD = (umax, 0). Then, the air leaves through Γ4 with no
opposed resistance (“do nothing” condition). For the top and bottom boundaries, we choose slip boundary
conditions (i.e. u · n = 0).

Multiple methods are available to solve this equation. Nevertheless, we solve (12) using the finite element
method given its flexibility to deal with more irregular domains. We seek a fluid velocity u and a pressure
p such that

(13) µ

∫
Ω

∇u : ∇v −
∫
Ω

p div(v)−
∫
Ω

q div(u) = α

∫
Γ1

(u · n)(v · n),

for every test function v and q. Here, α > 0 is a large enough constant to impose the slip boundary condition.

5.1.2. Computational results. In computational terms, we approximate the fluid velocity using piecewise-
quadratic continuous polynomials and the pressure using piecewise-linear continuous polynomials (this is
the standard Taylor-Hood P2-P1 element). The weak formulation (13) is solved using FreeFem++ [12]. We
also discretize the domain using 4,634 triangles, as shown in Figure 11. In terms of dimensions, we consider
a mountain with height Hm = 3, 280 ft, half-width a = 5, 000 ft, with the center located at xc = 25, 000 ft.
We also consider a widthW = 50, 000 ft (about 9.5 mi), and a height H = 15, 000 ft; the dynamical viscosity
of the fluid as µ = 1 ft2/s and the boundary penalty term α = 106.

In Figures 12 and 13 we show contours of velocity and pressure of air as it flows past the mountain. While
this model does not capture the hydraulic jump described in Section 3 and the downslope wind, it does
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Figure 11. Mesh for the computational domain shown in Figure 10.

Figure 12. Fluid velocity and streamlines of Stokes flow.

Figure 13. Pressure gradient of Stokes flow.

capture the expected behavior for the system (12) and it serves as a prototype of how to solve the system
(11). In particular, we observe that the fluid accelerates horizontally as it moves over the mountain. Because
the top boundary is modelled as a non-penetrable wall, this is just the Bernoulli effect.

5.1.3. Future directions. The results shown in the previous subsection show that it is feasible to solve the full
system (11) using the finite element method. On the one hand, as shown in Figure 14, the full Boussinesq
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Figure 14. Simulation of the full Boussinesq system (11) as shown by Rotundo & Bryan
(2018) (see [20]). Observe in the vector field how the numerics capture the downslope wind
along the side of the mountain.

system (11) is, indeed, capable of capturing downslope winds. This would allow us to predict, for instance,
how fast the wind can get at the bottom of the mountain and how far away from the mountain should a
house be placed to avoid these strong winds. On the other hand, to achieve the simulation shown in Figure
14, two things must be addressed.

First, the weak formulation (13) needs to be expanded to include all the terms (including temperature)
that are missing from the Boussinesq system (11). The time-dependent terms are particularly important
as this flow is rather turbulent (Re ≈ 5, 000, see [20]). Then, to allow more realistic values of viscosity
(recall that in the previous example, we considered µ = 1 ft2/s), the method must be stabilized. This can
be achieved by adding stabilizing terms to the weak formulation or by considering a mixed finite element
method (such as the one considered in [5]).

5.2. FiPy Simulations. Here we investigate another approach to numerical solution of a wind flow using
a prototype geometry and simplified choice of boundary conditions. This section investigates this using the
FiPy module in Python, which is a finite volume library to numerically solve partial differential equations.

We investigated two simplified model types and illustrate solutions to show feasibility of the method.
For our problem we are using the Poisson equation to model wind flow. Here work off assumptions from a
“channel flow;” which could model a wind flow with solid lids on top and bottom and no topography, with
constant pressure gradient dp/dx = −2:

(14) ∆u = −2, u(y = −1) = u(y = 1) = 0 ⇒ u(y) = 1− y2, v ≡ 0.

By free association and collectively crossing our fingers, our first study was to seek a flow solution for the
horizontal component of velocity in a non-channel computational domain with a similar Poisson problem.

(15) ∆u = −2, u|∂Ω = f(s)

We importantly note that we posed this problem without concern for whether a corresponding v(x, y) exists
or is physically relevant for the problem. This was primarily a first attempt at exploring the capabilities of
the FiPy software for solving this class of partial differential equations.

The f(s) represents a parameterized piecewise boundary condition, constant for each edge of the polygon.
We have assumed a constant flow of air is coming in from the left and going out at the same speed. In
particular, u = 2 at the left vertical edge, top horizontal edge and right vertical edge of the hexagon and
u = 0 on everywhere else on the boundary.

The second PDE formulation we studied was based on potential flow with Neumann boundary conditions:

(16) ∆ϕ = 0;
dϕ

dn
= g(s)

where g(s) represents a parameterized piecewise function on the boundary.
15



Figure 15. Velocity solution u(x, y) of an example non-trivial geometry using FiPy. Dirich-
let boundary conditions are imposed on all boundaries; 2 on the sides and top, and 0 at the
bottom boundaries.

Figure 16. Potential flow solution ϕ(x, y) of an example non-trivial geometry using FiPy.
Zero Neumann boundary conditions are imposed on all boundaries except the top, where
the Neumann boundary condition is arbitrarily chosen to be 2. A single function value for
ϕ(1, 0) is fixed to stabilize the numerical solver. Numerical contours illustrate the boundary
conditions are respected.
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In this case we assumed the slope of the inclined edge to be angle π/6. The resulting triangular mesh
shown has 104720 cells. In this case we have assumed the slope of the inclined edge is π/4. Our mesh has
104658 cells.

In particular, dϕ
dn = 2 at the top horizontal edge of the hexagon and dϕ

dn = 0 on everywhere else on the
boundary; n is the unit normal vector. However, since this problem is not uniquely determined (solutions
are determined up to constants), the numerical solution was unstable until we fixed the value of ϕ at one
point of boundary to prevent the solver from choosing the constant of solution randomly. In Figure 16, we
chose the potential to be zero at the very bottom of the inclined edge. We saw sensitive dependence of the
details of the flow on the positioning of this point-condition, which suggests pure Neumann conditions are
not appropriate for this problem. We leave more detailed study and choice of boundary condition for future
work.

6. Conclusions and Future Directions

In this report, we have illustrated methods based in both data analysis and differential equations to
predict risk of fire. As higher winds may correlate with increased fire risk, our ODE analysis using shallow-
water approximations indicates that regions situated at the base of mountain ranges, or in valleys, may be
particularly at risk. Some future directions we envision include:

• Creating aggregate scores using data-identified risk factors for regions across the US. By
analyzing historical fire data, climate information, land cover patterns, and other relevant variables,
it is possible to identify key factors that contribute to fire risk in different regions across the United
States. Integrating these factors into a comprehensive scoring system will provide a more accurate
and reliable assessment of fire risk, enabling policy makers and land managers to prioritize resources
and implement targeted mitigation strategies.

• Shock resolution. Simulating the ODE model is complicated due to the shock created at Fr = 1,
the use of specific algorithms to circumvent this issue would help.

• Extending the complexity of ODE/PDE models. By incorporating additional factors or fewer
assumptions into our model we can improve the accuracy of fire spread predictions. This includes
adding time dependence in the shallow water equations and the full Boussinesq model in the PDE
solution.

In conclusion, the future directions outlined above aim to enhance fire risk assessment and management by
leveraging data-driven approaches, improving model complexity, incorporating time dependence, resolving
shocks, reducing limiting assumptions, and extending existing models.
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