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Summary

Mathematical modeling of drying in porous media is a valuable tool for

understanding and optimizing the drying process. During the GSMMC

camp, we explored two approaches to modeling the drying process: mi-

croscopic and macroscopic. In the microscopic model, the focus is on

the individual pores and their interactions. This approach considers

the movement of moisture at a microscale level, accounting for factors

such as pore size, shape, and connectivity. It involves complex calcula-

tions and is suitable for detailed analysis of specific porous structures.

The microscopic model provides insights into the internal dynamics of

drying, such as capillary effects and local moisture distribution. On the

other hand, the macroscopic model takes a more simplified approach by

considering the porous material as a homogenous medium. It describes

the overall behavior of the drying process at a larger scale, treating

the absorbent material as a continuum. The macroscopic model em-

ploys equations that represent the average properties of the material,

such as moderate moisture content and temperature. This approach is

computationally less intensive and provides a broader understanding

of the drying process. Both the microscopic and macroscopic models

have their advantages and limitations. The microscopic model offers

detailed insights into the intricate mechanisms occurring at the pore

level but requires extensive computational resources. The macroscopic

model simplifies the drying process but cannot capture local variations

and specific pore-level interactions.
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1 Introduction

The drying process in porous media is a complex phenomenon in various industrial, envi-

ronmental, and biological applications. A porous material’s physical, chemical, and me-

chanical characteristics are drastically altered when moisture is extracted from the empty

spaces inside the material. Mathematical modeling of the drying process in porous media

provides a powerful tool for understanding the underlying physics and optimizing dry-

ing operations. Modeling drying processes in porous media requires a multidisciplinary

approach combining fluid mechanics, heat transfer, mass transfer, and material science

principles. The goal is to develop mathematical equations that describe the transport

mechanisms involved in moisture removal and predict the distribution of moisture con-

tent, temperature, and other relevant variables within the porous structure as a function

of time and position.

Commonly, fundamental conservation rules, including mass, momentum, and energy

conservation, are used to create mathematical models for drying in porous media. These

laws are applied to the porous medium, accounting for fluid flow and heat and mass

transfer within the material. The models consider various transport mechanisms, includ-

ing diffusion, convection, and capillary action, which play a crucial role in drying. Mass

transfer in drying occurs primarily through diffusion, where moisture moves from regions

of high concentration to areas of low concentration within the porous material. Fick’s law

of distribution is commonly used to describe moisture transport, considering factors such

as concentration gradients, porosity, and tortuosity of the porous media. Additionally,

convective mass transfer can occur due to gas or liquid flow through the porous structure,

influencing the drying rate.

Energy transfer during drying is also a vital aspect to consider. Heat transmission

mechanisms such as conduction, convection, and radiation influence the rate of evapo-

ration and drying. The energy equation incorporates temperature gradients and consid-

ers heat fluxes between the porous material, the surrounding environment, and applied

heat sources. Heat transfer modeling is essential for understanding the interplay between

moisture removal and energy consumption in the drying process. The porous structure

itself plays a significant role in the drying process. The absorbent material’s geometry,

porosity, and pore size distribution affect its permeability, capillary effects, and trans-

port properties. The modeling of drying in porous media often requires characterizing

these properties and considering how they influence the drying behavior. Mathematical

modeling of drying processes in porous media enables a deeper understanding of the fun-

damental mechanisms involved and provides valuable insights for process optimization.

By accurately predicting drying rates, moisture profiles, and energy requirements, these

models can aid in the design of efficient drying operations, reduce energy consumption,

and optimize product quality [1].

Furthermore, computational techniques and numerical simulations have become indis-

pensable for modeling drying processes. Complex mathematical models may be solved

using sophisticated numerical methods, including finite element analysis, finite difference

approaches, and computational fluid dynamics. These techniques can offer extensive in-

formation regarding temperature and moisture distribution inside porous structures. In

recent years, the development of mathematical models has been facilitated by computer
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hardware and software advancements. High-performance computing enables the solution

of complex and computationally intensive models, providing detailed predictions of dry-

ing behavior in porous media. These models can account for various complexities, such

as non-linearities, phase changes, and multi-physics phenomena, thereby enhancing the

accuracy of predictions. The drying modeling in porous media applies to various indus-

tries and processes. For example, understanding agricultural products’ drying behavior

in food processing can improve preservation methods, reduce waste, and enhance product

quality. In construction, modeling the drying of concrete and other building materials

can help optimize curing times and prevent structural issues. In environmental engineer-

ing, the drying of soils and sediments plays a role in groundwater management and land

reclamation projects [2].

The drying process exhibits a multi-scale nature, which both the microscopic and

macroscopic models can capture. In the macroscopic model, the entire porous medium

is considered as a whole rather than focusing on individual pores. The variables such as

average moisture content (ŷ), average temperature (T̂ ), and length scale (L̂) are used to

describe the overall behavior of the drying process. The macroscopic model provides an

overview of the drying process and is represented by equations such as (ŷ) = hT ((x̂), (t̂))

and (ŷ) = hB((x̂), (t̂)), where hT and hB represent the moisture content at the top

and bottom of the porous medium, respectively. The macroscopic model encompasses

evaporation in the wet region (Ω̂w) and a dry region (Ω̂d), where the drying process

occurs.

Figure 1. Macroscopic model (reproduced from [3])

On the other hand, the microscopic model considers the deposition of particles and

liquid evaporation at the pore scale. It focuses on the interactions between individual

pores and captures the intricacies of particle deposition and liquid evaporation phenom-

ena. The microscopic model provides detailed insights into the mechanisms occurring

at the pore level, including filtration processes. It involves variables such as inlet pres-

sure (p̂inlet) and inlet concentration (ĉinlet) to represent particle deposition and liquid

evaporation processes.
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Figure 2. Microscopic model. The top panel is reproduced from [4].

Both the macroscopic and microscopic models contribute to understanding the drying

process. The macroscopic model provides a broader view and simplifies the analysis,

while the microscopic model offers detailed information about pore-level interactions and

phenomena. By combining these models, a comprehensive understanding of the multi-

scale nature of the drying process can be achieved.

Mathematical modeling of the drying process in porous media is a multidisciplinary

endeavor that combines principles from fluid mechanics, heat transfer, mass transfer, and

material science. It provides a systematic approach to understanding the complex phys-

ical and transport phenomena occurring during drying. By accurately predicting drying

rates, moisture distribution, and energy requirements, these models offer insights for opti-

mizing drying operations in various industrial, environmental, and biological applications.

The advancement of computational techniques has further enhanced the accuracy and

applicability of these models, contributing to improved processes and product quality in

diverse fields.
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2 Microscopic Model

The heat equation

∂T

∂t
= κ∇2T (2.1)

describes the time and spatial evolution of temperature T , with κ being a constant. At

equilibrium,

∂T

∂t
= 0, (2.2)

so that, using cylindrical coordinates, (2.1) becomes

1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2
= 0. (2.3)

Let H and R be scaling factors associated with the height of the liquid and the pore’s

radius respectively. Defining ẑ and r̂, such that [4]

z = Hẑ, 0 ≤ ẑ ≤ 1, (2.4)

r = Rr̂, 0 ≤ r̂ ≤ 1, (2.5)

equation (2.3) can be written as(
H

R

)2
1

r̂

∂

∂r̂

(
r̂
∂T

∂r̂

)
= −∂2T

∂ẑ2
. (2.6)

Assuming that H ≪ R, the left-hand side of (2.6) vanishes, which leads to

T (z, t) = A(t)z +B(t), (2.7)

where A(t) and B(t) are constant with respect to z that need to be determined and that

have absorbed the constant coming from the change of variable performed in (2.4). The

boundary conditions needed to get a particular solution of temperature T (t, z) come from

the conservation of energy at the interface between the liquid and the atmosphere, that

is the evaporation rate E is

E = − ∂T

∂n

∣∣∣∣
z=h

= −∂T

∂z

∣∣∣∣
z=h

, t ≥ 0 (2.8)

at the interface, which is considered to be flat and of height h = h(t). Its normal vector is

n = ẑ, the unit vector pointing in the z direction. Moreover, the evaporation rate must

verify

k0E = k1 (P − Pv) + (T (h, t)− T∞) , t ≥ 0 (2.9)

where k0 and k1 are constants, P is the pressure of the atmosphere at the interface with

the liquid, Pv is the liquid’s vapor pressure, T∞ is the temperature of the atmosphere,

far from the liquid. Additionally, since the bottom of the pore is kept at a constant

temperature T0 from a heat source,

T (0, t) = T0, t ≥ 0. (2.10)

Inserting boundary conditions (2.8)–(2.10) into (2.7) yields

T (z, t) = −Ez + T0, (2.11)
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where

E = E(h) =
T0 − T∞

k0 + h(t)
. (2.12)

The drying of a single pore verifies
∂R
∂t = −χQ(C), 0 < z < h(t)
dh
dt = −E(h)
∂
∂t

(
CR2

)
= D ∂

∂z

(
R2 ∂C

∂z

)
− 2RQ(C), 0 < z < h(t)

(2.13)

with boundary conditions {
D ∂C

∂z

∣∣
z=0

= 0

D ∂C
∂z

∣∣
z=h

= EC
(2.14)

for t > 0 and where χ and D are constants, R = R(z) is the radius of the pore at height

z and C = C(z, t) is the concentration of particles in the liquid. It is assumed that it

is independent on the radial distance from the central axis of the pore. The flux Q of

particles being adsorbed on the walls of the pore is proportional to the concentration

exceeding the saturation concentration Csat, that is

Q(C) = (C − Csat)+, (2.15)

where (·)+ ≡ max(·, 0).
The moving upper boundary z = h(t) in (2.13) can be fixed by introducing the change

of variables

y ≡ z

h(t)
(2.16)

which is such that 0 < y < 1. However, in this case, the quantities of interest R and C

must be transformed by introducing R̂ and Ĉ.

R(z, t) = R̂(y, τ) C(z, t) = Ĉ(y, τ) (2.17)

Performing the chain rule and change of variable, (2.13) and (2.14) change to

∂R̂

∂t
− y

h

dh

dt

∂R̂

∂y
= −χQ(Ĉ), 0 < y < 1 (2.18)

dh

dt
=

T∞ − T0

k0 + h(t)
, (2.19)

∂R̂2Ĉ

∂t
− y

h

dh

dt

∂R̂2Ĉ

∂y
=

D

h2

∂

∂y

(
R̂2 ∂Ĉ

∂y

)
− 2R̂Q(Ĉ), 0 < y < 1 (2.20)[

D

h

∂Ĉ

∂y
+

dh

dt
Ĉ

]∣∣∣∣∣
y=1

= 0 (2.21)

∂Ĉ

∂y

∣∣∣∣∣
y=0

= 0 (2.22)

with t > 0.
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3 Numerical Study of the Microscopic Model

Discretization of the system of equations (2.18)–(2.22) is performed using forward dif-

ferences for time derivatives and central differences for spatial derivatives. Timesteps of

duration ∆t and spatial steps of length ∆y = 1/M are constants. M +1 is the number of

grid points uniformly distributed over the y axis and is chosen sufficiently large compared

to the number of timesteps so that the Courant–Friedrichs–Lewy condition is verified.

Since ∆t is chosen arbitrarily, the maximum of timesteps is chosen so that h(t) > 0 for all

t. Let t∗ be the time associated with the last timestep such that h(t∗) > 0. From (2.19),

the analytical solution for h can be derived using simple variable separation, which leads

to

t∗ =
1 + 2k0

2 (T0 − T∞)
(3.1)

The discretized values of a given variable X are noted Xn
j , with the n superscript

representing the timestep index and the j subscript, the grid point index. Then, (2.19)

becomes
hn+1 − hn

∆t
= −T0 − T∞

k0 + hn
(3.2)

which can be first solved iteratively for hn+1 given the initial height h0 = 1. Equa-

tions (2.18) and (2.20) are discretized as
R̂n+1

j −R̂n
j

∆t + j
hn

T0−T∞
k0+hn

R̂n
j −R̂n

j−1

∆y = −χQ(Ĉn
j ), j = 1, 2, ...,M.

R̂n+1
j −R̂n

j

∆t = −χQ(Ĉn
j ), j = 0.

(3.3)

Ĉn+1
j

(
R̂n+1

j

)2
− Ĉn

j

(
Rn

j

)2
∆t

+
j

hn

T0 − T∞

k0 + hn

Ĉn
j+1

(
R̂n

j+1

)2
− Ĉn

j−1

(
R̂n

j−1

)2
2

=
D

(hn)2∆y


(
R̂n

j+1 + R̂n
j

)2
4

Ĉn
j+1 − Ĉn

j

∆y
−

(
R̂n

j + R̂n
j−1

)2
4

Ĉn
j − Ĉn

j−1

∆y


− 2R̂n

j Q(Ĉn
j ) j = 1, 2, ...,M − 1

(3.4)

The boundary conditions (2.21) and (2.22) become

D

hn+1

3Ĉn+1
M − 4Ĉn+1

M−1 + Ĉn+1
M−2

2∆y
=

T0 − T∞

k0 + hn
Ĉn+1

M (3.5)

and

−3Ĉn+1
0 + 4Ĉn+1

1 − Ĉn+1
2

2∆y
= 0. (3.6)

respectively.

Given initial concentration {Ĉ0
j }Mj=0 and radius {R̂0

j}Mj=0, {R̂1
j}Mj=0 can be determined

using (3.3). Using these values, {Ĉ1
j }

M−1
j=1 is obtained using (3.4). The missing Ĉ1

0 and

Ĉ1
M can then be calculated with (3.5) and (3.6). This process is repeated for all subse-

quent timesteps, until t = t∗. Two sets of parameters are considered for the numerical

examples, see table 1. In the first simulations initial radius considered to be uniform
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Parameter description Symbol Cylindrical pore Non-uniform case

Timestep ∆t 2.5 · 10−3 10−4

Number of spatial gridpoints M 20 20
Volume scaling coefficient χ 0.8 1

Precipitation rate coefficient λ 1 0.7
Saturation concentration Csat 0.4 0.25

Initial concentration C0 0.5 + 0.1 sin (πy) 0.4− 0.1z
Diffusion coefficient D 0.1 1

Initial radius R0 1 0.1 + 0.05 sin (3πz)
Source temperature T0 1.2 1.3

Environment temperature T∞ 1 1
Evaporation coefficient k0 1 0.2

Table 1. Numerical values of parameters appearing in system of equations (3.2)–(3.6)

with respect to z, i.e. case of cylindrical pore. The solution is over-saturated with a sinu-

soidal distribution of particles. The simulation results are shown in figure 3; as a result

of the small change in evaporation rate over time the height of the fluid decreases almost

linearly, the concentration at different timesteps in function of the normalized spatial

coordinate y is constant in space with small increase at the fluid interface, and uniformly

decreases with each time-step. Similarly, radius of the pore decreases linearly over time.

Courant–Friedrichs–Lewy (CFL) condition imposes small ∆t relative to ∆y. Therefore,

to limit computational requirements the simulations are done over short period of time.

As shown in Fig. 4, we present a series of snapshots that provide insight into the

behavior of the channel during the drying process. As indicated in the figure, this row

represents a particular time point, which represents the evolution of the channel between

t = 0.01, t = 0.51 and t = 0.91. From these snapshots, it is evident that the pore interface

has changed over time. As an example, in Fig. 4(b), we can see a snapshot of the pore

at a particular time (t = 0.51). It has been observed that the radius of the pore and the

concentration of solute decrease along the length of the pore. There is no expansion of the

channel, rather it continues to shrink until it reaches a steady state. During the course

of time, the three-dimensional representation of the pore changes, showing alterations

throughout its length. The change in shape is the result of several factors, including a

shrinking radius, a decrease in pore concentration, an increase in temperature, and a

decrease in pore height (3).

Figure 5 illustrates snapshots of the pore’s cross-section from a top view, illustrating

how its radius changes with time (t). During the drying process, these snapshots provide

a visual representation of how the pore radius changes over time. We can observe in

the figures the temporal variation in the pore radius, which sheds light on its dynamic

behavior. As a result of these insights, it is possible to gain a better understanding of

the drying process and its effects on pore structure. As a result of such data, drying

operations can be optimized, energy efficiency can be improved, and product quality can

be improved in a variety of industries and applications.
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Figure 3. Plot of concentration C, radius R in space over 400 time steps and height h(t),

respectively, with the parameter k0 = 1, T0 = 1.2, T∞ = 1, χ = 0.8, D = 0.1, and final

time is tf = 1.

Figure 4. Changing the channel. Snapshots of the pore at t = 0.01, t = 0.51 and t = 0.91

are shown in (a)-(c), for the parameters k0 = 1, T0 = 1.2, T∞ = 1, χ = 0.8, D = 0.1,,

C0 = 0.5+0.1∗sin(π ∗ y) and final time is tf = 1. The color-bar shows the concentration.

For a clear visualization, see Video.mov as a Supplementary Information (SI).
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Figure 5. Snapshots of the radius at t = 0, t = 0.5 and t = 1 are shown in (a)-(c), for

the parameters k0 = 1, T0 = 1.2, T∞ = 1, χ = 0.8, D = 0.1, and final time is tf = 1. The

color-bar shows the concentration. For a clear visualization, see simulation-video.mov as

a Supplementary Information (SI).

Figure 6. Overall shape of the pore with the solution given for t ≈ 0, 1.25, 2 where the

parameters chosen are given in Table 1 non-uniform case columns. The color bar show

the concentration of particles, C(z, t), in the solution.
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In the second simulation, the pore is considered to have a non-uniform initial shape.

Since the solution is oversaturated initially, particles get absorbed into the walls of the

pore. This causes an overall reduction in the concentration. Then as the fluid is evapo-

rated at the interface, the concentration is in increases starting at the interface. In Figure

6 the evaluation of the pore is shown for three different time frames, where the color bar

indicates the concentration of particles. The same behavior is clearly observed in Figure

7a where oversaturated concentration decreases initially then starts to increase due to

high evaporation rate and the radius of the pore decreases in particular on the interface,

see Figure 7b.

(a) Concentration of the first wet-dry cycle. (b) Radius of the first wet-dry cycle.

Figure 7. Concentration and radius of the pore during the first wetting-drying cycle

where parameters are chosen as in Table 1 non-uniform case.

Figure 8. After the first cycle the pore is filled with a diluted solution of 0.2 concentra-

tion. The overall shape of the pore with the solution given for t ≈ 2, 3.25, 4 where the

parameters were chosen as the final state of the first cycle with added fluid. The color

bar shows the concentration of particles, C(z, t), in the solution.
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(a) Concentration of the second wet-dry cycle.

(b) Radius of the second wet-dry cycle.

Figure 9. Concentration and radius of the pore during the second wetting-drying cycle

where the initial state is chosen to be as the final state of the first cycle with the addition

of diluted solution.

After the first cycle the pore is filled with a diluted solution of 0.2 concentration and a

second drying cycle is considered, see Figure 8. This time due to a lower concentration

of particles initial decrease in the radius is not observed. However, due to evaporation

the concentration increases and the radius decreases at the boundary, see Figure 9.

Observe that the concentration rate increases beyond the saturation levels even in

the undersaturated conditions, see Figure 9a. In some of the simulations, the ”blowing-

up” of the concentration levels is observed. This can be seen to be the result of a high

evaporation rate where the adsorption of particles into pore walls is not sufficiently fast

to compensate for the loss of fluid. This discrepancy can be fixed by considering the effect

of change in radius and concentration at the interface.
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4 Macroscopic Model

In this section, we extend to the multiple-pore structure or continuum model. We extend

the findings from the pore-scale model to more complex scenarios. This includes consider-

ing a multiple-pore structure or developing a macroscopic continuum model. The results

broaden our understanding of the drying process, considering the interactions and collec-

tive behavior of multiple pores or the overall media structure. This extension contributes

to the development of more efficient and optimized drying techniques and improves our

ability to predict the structure and performance of porous media after the drying process.

We start by looking at two cases: First, we assume that the evaporation is negligible.

We consider
dh

dt
= −E (4.1)

koE = k1(P − Pv) + T − T∞ (4.2)

We start assuming that h does not move, which implies

dT

dt
= 0

On the other hand we also assume k1 = 0, that is,

koE = T − T∞ (4.3)

Using the above assumption and the heat equation dT
dt = α2∇2T , we get

∇2T = 0.

Since T (z, t) = T0 and T (z, t) = T∞ the solution for T is given by

T = T0 +
(T∞ − T0)z

h
.

We are interested in having h dependent on time. However, if we consider

T = T0 +
(T∞ − T0)z

h(t)
, (4.4)

we have dT/dt ̸= 0, contradicting one of our assumptions.

Next, we assume that the temperature is quasi-static, with

dT

dt
≈ 0.

Obtaining from equation (4.4)

(T∞ − To)z

h2

dh

dt
≈ 0,

which implies from the evaporation equation (4.6)

E ≈ 0.

Now, using equation (4.3) T (h) ≈ T∞, then we have

To ≈ T∞.
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On the other hand, to work numerically we introduce the change of variables

y =
z

h(t)

so that the computational domain becomes y ∈ [0, 1]. From the heat equation

dT

dt
= α2 d

2T

dz2

and using chain rule we get

dT

dt
− y

h

dh

dt

dT

dy
=

α2

h2

d2T

dy2
(4.5)

with the domain fixed on [0, 1]. If z = h we get y = 1 then from equation (4.3)

dh

dt
= −E =

T∞ − T (1, t)

k0
(4.6)

where T (1, t) is the interface temperature. We have the boundary conditions{
T (0, t) = T0, t ≥ 0
∂T
∂y = (T∞−T (1,t))

k0
h(t), y = 1.

(4.7)

To numerically solve the system of equations (4.5)-(4.6), we employ the forward Euler

method on time and centered spatial discretization. We mesh the domain (y ∈ [0, 1]),

where y0, y1, · · · , yN represent discrete points on the grid.

From equations (4.5) and (4.6) with boundary conditions we have the following nu-

merical scheme

hj+1 − hj

∆τ
=

T j
N − T∞

k0
(4.8)

T j+1
i − T j

i

∆τ
− i

hj+1

hj+1 − hj

∆τ

T j
i+1 − T j

i−1

2
=

α2

(∆yhj+1)2
T j
i−1 − 2T j

i + T j
i+1

(∆y)2
(4.9)

In figure 10 (a), we present the temperature at different y values over time changing.

In figure 10 (b), we illustrate the temperature and the moving boundary h(t), we can

appreciate how the liquid height h is decreasing when we heat the bottom, with an initial

value of 1.0. We shrink the temperature along y by times h(t).

After implementing our PDE code, we changed our parameter values T0, α, and k0 to

visualize how these parameters affect the evaporation. We show the results of some of

these experiments in Figures 11 - 13. Figure 11 displays how changing these parameter

values affects the evaporation rate, or the decrease of the height h(t) of the evaporation

boundary over time. Figure 12 displays how changing these parameter values affects the

increase of the temperature of the evaporation boundary over timexf. Figure 13 displays

how changing these parameter values affects the temperature profile throughout the

solution at a single time step.

The second scenario we consider here is more general, where we assume that the

evaporation is not negligible. We set the temperature as a linear equation on z, i.e

T (z) = To + bZ,
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(a) Vertical axis is y (b) Vertical axis is z

Figure 10. Plot of temperature T and height h(t) in space over 400 time steps with the

parameter k0 = 1, T0 = 2, T∞ = 1, α = 1,∆y = 0.01,∆t = 0.00001.

(a) Varying α values. k0 = 1, T0 = 2

(b) Varying k0 values. α = 1, T0 = 2 (c) Varying T0 values. α = 1, k0 = 1

Figure 11. Plot of height h(t) of interface over 100 time steps with common parameters

T∞ = 1, ∆y = 0.1, ∆t = 0.00001.
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(a) Varying α values. k0 = 1, T0 = 2

(b) Varying k0 values. α = 1, T0 = 2 (c) Varying T0 values. α = 1, k0 = 1

Figure 12. Plot of temperature of interface over 100 time steps with common parameters

T∞ = 1, ∆y = 0.1, ∆t = 0.00001.

with boundary conditions {
koE = T − T∞, z = h

E = −∂T
∂z , z = h

(4.10)

then we have
dT

dz
= b = −E,

which leads to

T (Z) = To − Ez.

If z = h, then

T (h) = To − Eh = To −
(T (h)− T∞)h

ko
.

Denoting T (h) = TI as the interface temperature, we have

koTI = KoTo − (TI − T∞)h

TI =
koTo + T∞h

ko + h
.

Note that if To = T∞, we get TI = To, so the interface temperature is the same. Besides,
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(a) Varying α values. T0 = 2, k0 = 1, ∆y = 0.01

(b) Varying k0 values. α = 1, T0 = 2, ∆y = 0.1 (c) Varying T0 values. α = 1, k0 = 1, ∆y = 0.01

Figure 13. Plot of the temperature profile of the solution sampled at all heights at step 50

with common parameters T∞ = 1, ∆t = 0.000001. ∆y had to be changed to compensate

for numerical instability.

if h goes to infinity, we obtain

lim
h→∞

TI(h) = T∞.

We now present a model for the drying process. As time evolves, the particle concen-

tration in the fluid region changes due to evaporation at y = h and deposition of particles

on the membrane internal structure. Here, we assume there is no effective flow in the

fluid region during the drying process, therefore the particle concentration in the fluid

region follows a reaction-dispersion equation,{
∂(ϕC)

∂t = D ∂2(ϕC)
∂z2 − γfd(ϕ,C)

∂ϕ
∂t = −αfd(ϕ,C)

(4.11)

with boundary conditions {
∂(ϕC)
∂z = −ωEϕC, z = h

∂(ϕC)
∂z = 0, z = 0

(4.12)
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where 0 < z < h(t), fd is the deposition function for the drying process, fd depends

on the porosity and local particle concentration and models how particles are deposited

locally within the membrane. ϕ is the porosity, C is the concentration. Here, we consider

a particular fd.

fd(ϕ,C) = ϕ1/2(C − Csat).

To have a fixed domain, we make the next change of variable

y =
z

h(t)

and using the chain rule, we get the next equations{
∂(ϕC)
∂τ − y

h
dh
dτ

∂(ϕC)
∂y = D 1

h2

∂2(ϕC)
∂y2 − γfd(ϕ,C)

∂ϕ
∂τ − y

h
dh
dτ

∂ϕ
∂y = −αfd(ϕ,C)

(4.13)

For simplicity of the model, we define β = ϕC, then the equation to consider is given by{
∂β
∂τ − y

h
dh
dτ

∂β
∂y = D 1

h2
∂2β
∂y2 − γfd(ϕ, β)

∂ϕ
∂τ − y

h
dh
dτ

∂ϕ
∂y = −αfd(ϕ,C)

(4.14)

with boundary conditions {
∂β
∂y = 0, y = 0
1
h

∂β
∂y = ωβ (T (1,t)−T∞)

kO
, y = 1

(4.15)

After implementing the code of our PDE, we show the results of some of these experi-

ments next. To numerically solve the system of equations (4.10)-(4.11), we use an explicit

backward Euler method and centered spatial discretization. To discretize the spatial do-

main, y ∈ [0, 1], we divide it into M subintervals. The grid points within these intervals

are denoted as yj = j∆y, where y0, y1, ..., yN represent specific points on the grid. To

differentiate between values at different time steps, we utilize the superscripts “j + 1”

and “j”. These superscripts refer to the matters of new and old times, respectively.

Equations (4.11 and 4.12) with boundary conditions lead to

Bj+1
i −Bj

i

∆τ
− y

h

dh

dτ

Bj
i −Bj

i−1

∆y
=

D

h2

Bi − 1j − 2Bj
i +Bj

i+1

(∆y)2
− γΦ

1
2 (

Bj
i

Φj
i

− Csat) (4.16)

Φj+1
i − Φj

i

∆τ
− y

h

dh

dτ

Φj
i − Φj

i−1

∆y
= −αΦ

1
2 (

Bj
i

Φj
i

− Csat) (4.17)

Bj
i −Bj

i−1

2∆y
= 0 (4.18)

Bj
i+1 −Bj

i−1

2∆y
= hwBj

i

(T (1, t)− T∞)

k0
(4.19)

We solve the following equations iteratively for β and ϕ within a region characterized

by moving boundaries h(t). The values of h and dh
dt used in the equation (4.5) and (4.6)

for the drying process in Case I are updated in each iteration. Once we obtain the values

of ϕ and β, we calculate concentration C using the equation C = β/ϕ.
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Figure 14. Plot showing the concentration (C) and porosity ϕ in space at different times

with the parameters γ1, ω = 0.10, D = 1 and Csat = 0.5.

Figure 14 (a) illustrates the porosity at different time points. Assuming a uniform

initial porosity of 0.8, the porosity gradually increases over time. Notably, the porosity

significantly increases as we approach the interface. Similarly, in Figure 14 (b), we present

the concentration at different time points. Assuming a uniform initial concentration of

0.8, the concentration profile decreases as time progresses. In particular, the concentration

decrease is more rapid when nearing the interface.

Also, we numerically investigated the effects of the different parameters on the drying

dynamics. This analysis involved varying parameters such as pore geometry, temperature

field, and initial particle concentration in assessing their influence on the evaporation

rate and particle deposition. The sensitivity analysis results provided insight into the key

factors affecting the drying process.

5 Conclusions and Discussions

To summarize, mathematical modeling of drying processes in porous media provides a

helpful tool for comprehending and improving drying operations. These models offer

valuable insights into drying dynamics and enable designing of effective and sustainable

drying processes in various industrial applications by considering the underlying physical

and transport phenomena.

While introducing temperature to the filter modeling problem answers some questions,

it raises many more. In the macroscopic case, we note that previous efforts [4] have

considered the issue in which the evaporation boundary is nonlinear and dependent on

particle concentration and porosity. It would be interesting to combine the temperature

effects with this aforementioned model. We also discarded the reliance on the evaporation

term on pressure, another thing that presents future modeling opportunities. We also

know the value of integrating multiple evaporation fronts into the model. While we

did not connect the microscopic and macroscopic models, this is another avenue for

future exploration. We expect that a network-based approach could give valuable insight

into the possibility that the interactions between pores and their neighbors give rise to

macroscopic changes in drying behaviors.
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