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Problem Statement:

Clouds can be very fascinating and romantic to stare at, but they provide great challenges from
a mathematical and numerical modeling point of view. In fact, clouds currently are one of the
greatest sources of uncertainty in climate forecasts. One of the reasons why they are so difficult
to capture in current numerical models is the extreme range of scales involved: from processes
happening on the length scales of individual cloud droplets, to the large scale eddies driving the
air circulation of a cloudy field. It is important to keep track of the microscopic properties of cloud
particles in order to properly resolve, for example, the physics of rain or snow formation. On the
other hand, it is also very important to keep the simulation computationally affordable. How to
make things simple without oversimplifying?

We will look at this question from the point of view of a snowflake. Snowflake crystals come
in many different shapes and sizes. This can, in turn, affect their growth rates, collision rates
and their sedimentation rates. Although these are all very important aspects to take into account,
typically, current cloud models used in the climate and atmospheric science communities can only
afford to predict cumulative quantities, such as the total mass of snow produced in a cloud.

This project will start by considering a simple, idealized model of the shape of a snowflake.
Building upon this idealized model, we will then consider possible variations or extensions to make
the model more realistic. The main goal for this workshop will be to come up with possible
mathematical models that are detailed enough to capture the different possible snowflake shapes,
but simple enough that they can be integrated into a more complex cloud model, and therefore
be useful for climate predictions. Some additional questions that we could answer during this
workshop can then help us build our understanding of how precipitation rates can be affected by
different snowflake geometries, and how we could potentially include more complexity.
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1 Introduction

Earth system modeling is of increasing relevance in our rapidly changing world. Earth system
models are complex models that couple all the interacting systems that make up the Earth: the
atmosphere, the oceans, terrestrial landmasses, rivers, the biosphere, sea ice, glaciers, and human
behavior, among others. These models are how we model climate change decades and centuries
into the future. However, because of the size of the Earth and the complexity of these models,
there are limits on the resolution that these models can be run at. Climate models are generally
run with grid cells on the order of 100 by 100 kilometers. However, these grid cells are far too large
to capture many important processes which impact the atmosphere and oceans. These processes
must be incorporated into earth system models via physical parametrizations.

Figure 1: Left: Schematic depicting the physical processes happening in a cloud. Right: a flow
chart representation of a cloud microphysics software package (often integrated in a larger climate
model).

An example of a parametrized process is cloud microphysics. Clouds are immensely complicated,
and actually modeling the inside of a cloud would require a significantly smaller grid size (see Figure
1). In order to incorporate cloud microphysics into earth system models, there are several different
methods. Zero-th moment cloud microphysics considers only bulk quantities, and is the simplest,
but also least accurate. First moment cloud microphysics considers the interactions between various
cloud constituents, such as water vapor, water droplets, rain droplets, ice crystals, and snow, and
is what we focus on in this work. In particular, we focus on accretion, which is how existing rain
and snow collects more rain and snow from the water droplets and ice crystals floating around in
the cloud.

Tracers (scalar quantities) evolve according to the equation

dQ

dt
= ∇ · (uQ) + S(Q) (1)

where Q is the tracer concentration, u is the wind velocity, and S(Q) is a source or sink of the
tracer. Accretion is a source of rain and snow, and a sink of other cloud quantities, and so this
work focuses on S(Q). In order to simplify matters, we consider u = 0.
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Figure 2: The cylinder model for accretion

2 Accretion Models

We describe models for how the amount of snow in a cloud affects the accretion of more snow in that
cloud. We consider a falling snowflake. It sweeps out a “cylindrical” region, and thus accumulates
an amount of snow. Visually, this is represented in Figure 2. The rate of the corresponding change
in the specific humidity of snow is given in [1] as

dqs
dt

=

∫ ∞

0
nr(r)a(r)vterm(r)qcEcpdr (2)

where nr is the size distribution, a is the surface area, vterm is the terminal velocity, qc is the
relevant humidity, and Ecp is the collision effectiveness, a dimensionless value between 0 and 1.
The terminal velocity is given by the balance of gravitational, buoyancy, and drag forces. The
gravitational body force is Fg = mg, where m is the mass and g the gravitational constant. And
the buoyancy force is given by

Fb = m(r)
ρa
ρs

g. (3)

We consider two different drags. Kinetic drag is given by

Fd =
1

2
Cdρaa(r)v

2
term, (4)

where Cd is the drag coefficient, ρa is the density of air, a(r) is the surface area, and vterm is the
terminal velocity, and Stokes drag is given by

Fd = 6πrµvterm, (5)

where r is the radius of the sphere and µ is the dynamic viscosity. In either case we can solve the
balance of forces, Fg = Fb + Fd, for the terminal velocity. Given a kinetic drag approximation, we
find

vterm(r) =

√
2m(r)g

Cda(r)

(
1

ρa
− 1

ρs

)
, (6)

where m(r) is the mass of the particle and ρs is the density of snow. Solving the balance of forces,
given the Stokes drag, we have

vterm(r) =

(
1− ρa

ρs

)
m(r)g

6πrµ
. (7)
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The nr(r) in (2) is given by

nr(r) = Nre
−λrr, (8)

where Nr is a fixed parameter, and λr is a parameter depending on many others.

2.1 Stokes Drag for Non-Spherical Shapes

The given Stokes drag, equation (5), is derived from the Navier-Stokes equations, in a setting with
a low Reynolds number, applied to a sphere in a fluid. This Stokes drag may work well in the
model of the accretion of rain water (since rain drops are assumed to be spheres), but we’ll need
to adjust it for non spherical shapes. As described in [2], the Stokes drag force for a nonspherical
object is given by

Fd = 6πµvtermrnKn, (9)

with Kn = 1/3 + 2rs/(3rn), representing some shape factor, and rs being the radius of the sphere
with equivalent effective surface area of the object (in our case cylinder) and rn is the radius of the
sphere with the same projected normal surface area. We note that for a sphere, Kn = 1, recovering
the familiar expression for Stokes drag, given in (5). Also, Kn strongly depends on the shape of
the particle in question. We have rn = r and the effective surface area of the cylinder given by

πr2 + 2πrh = 2πr2s , (10)

which gives us rs =
√

r2+2rh
2 . Altogether, we get

Fd = 6πµvterm

(
1

3
r +

2

3

√
r2 + 2rh

2

)
. (11)

From this, we get a terminal velocity for a cylinder of

vterm(r) =
m(r)g

2πµ(r +
√
2r2 + 4rh)

(
1− ρa

ρs

)
(12)

3 Rain Accretion

First, we model rainfall accretion, as it is considerably easier than modeling snow accretion. For a
sphere, a(r) = πr2 and vterm has two forms as given before so for kinetic drag, we have

dqr
dt

= NrπqrEcp

√
8g

3Cd

(
ρw
ρa

− 1

)∫ ∞

0
e−λrrr

5
2dr (13)

and for Stokes drag, we have

dqr
dt

=
2Nrgπ(ρw − ρa)qrEcp

9µ

∫ ∞

0
e−λrrr4dr (14)

These integrals can be written in terms of the Γ function.
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Figure 3: Rain accretion rate considering collision between rain and ice.

3.1 Computational Results

At first, we consider the rain accretion for verifying our code. The numerical calculations are
done using the Julia programming language. We calculate the rain accretion using the following
equation, which incorporates the collision between rain and ice.

dqr
dt

=

∫ ∞

0

∫ ∞

0

1

ρa
ni(ri)nr(rr)ar(rr)Eirmr(rr)vterm(rr)dridrr.

Here, the subscripts i is for ice, r is for rain and a is for air. Figure 3 shows the rain accretion
rate when considering the collision between rain and ice with the probability Eir. The distribution,
cross-section area and terminal velocity are given in CloudMicrophysics.jl package of the CLiMA
model [1]. The plot is showing instantaneous rain accretion rate given qrain at the previous time
step as a known parameter. Therefore for a given specific rain humidity, qrain, we can compute
the accretion rate at that given time. Now for higher ice specific humidity, we see more rain
accretion. The likely cause of this behavior is the higher collision efficiency between rain and ice.
This plot matches with the one in the CliMA model for the same parameters, which verifies the
code implementation.

We also consider the rain accretion rate without collision and use both kinetic and Stokes drag.
The accretion rate is calculated using (2), where the integral is simplified by using the definitions
for nr(r), a(r), and vterm(r). For the kinetic drag, the expanded equation for rain accretion is then
given by (13), and for Stokes drag, the equation for rain accretion is given by (14). Figure 4 shows
a difference between rain accretion rate between kinetic and Stokes drag. The accretion rate by
Stokes drag is less by factor of 2 compared to the kinetic drag.

3.2 Tests in a Climate Model

Next, we compare kinetic and Stokes drag in CESM, the Community Earth System Model. To
do this, we run an aquaplanet with modified CAM6 physics for 720 days, using a finite volume
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Figure 4: Comparison of Kinetic and Stokes drag for rain accretion rate.

discretization on a 1 by 1 degree grid. We modify the function accrete cloud water rain to account
for the differences between kinetic and Stokes drag.

Figure 5: Comparison of (a) vertically integrated cloud fraction (b) total precipitation rate and (c)
vertically integrated precipitable water for kinetic and Stokes drag.

First, we visualize the results by focusing on the vertically integrated cloud fraction, total
precipitation rate, and vertically integrated precipitable water in Figure 5. We average over the
last 360 days of the model run, and we also average over the longitudes, so we can see how these fields
vary in the latitude. We see that Stokes drag results in higher cloud fractions, higher precipitation
rates, and increased precipitable water. We think that this is sensible. Because Stokes drag results
in less rain accretion, this means that less moisture is drawn out of the clouds, increasing the cloud
fraction. The increased cloud fraction means that there is more moisture to draw precipitation
from, and this ends up increasing the precipitation rate.

We next visualize the results with a Hovmoeller diagram in Figure 6. We average the rainfall
between 5 degrees south and 5 degrees north, as this covers the latitudes where there is the most
rainfall. We then plot the longitude versus the time for a 90 day period after the model has spun
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Figure 6: Hovmoeller diagrams comparing (a) kinetic drag and (b) Stokes drag.

up. The field being plotted is the precipitation rate in millimeters per day, with kinetic drag on
the left and Stokes drag on the right. When looking at the Hovmoeller diagrams, it is hard to see if
there are any true differences. However, one could potentially draw the conclusion that with Stokes
drag, the rain is less spontaneous, and existing storms last for longer. Normally, one would expect
lines of storms moving eastwards as time passes, which we see in both, but with kinetic drag, we
see a number of storms that do not move to the east significantly before disappearing. In contrast,
with Stokes drag, we seem to have fewer storms that last much longer. In particular, there is one
rain system that lasts for close to 80 days, and circles the planet almost twice. This may be because
with Stokes drag, there is less rain accretion, meaning that it is harder for the rain to deplete all
the water vapor available.

4 Snowflake modeling

4.1 Simple Snowflakes

We start by modelling snowflakes as cylinders with radius r and a given height, representing the
thickness of the snowflake, as seen in Figure 7. For snowflakes, the height is much smaller than the
radius. We also assume that the snowflake falls without rotating such that it sweeps out a larger
cylinder.

Figure 7: The cylindrical disc model for a snowflake
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4.1.1 Height Proportional to Radius

We start by considering the height of the disc proportional to the radius. We have a(r) = πr2

and h(r) = αr for a constant of proportionality α. First, we consider kinetic drag. Then, we have
m(r) = πr2hρs = απr3ρs which gives

vterm(r) =

√
2αg

Cd

(
ρs
ρa

− 1

)
r

1
2 , (15)

which gives an accretion rate

dqs
dt

=

∫ ∞

0
nr(r)a(r)vterm(r)qcEcpdr = Nrπ

√
2αg

Cd

(
ρs
ρa

− 1

)
qcEcp

∫ ∞

0
e−λrr5/2dr (16)

=
15

8
NrπqcEcp

√
2αgπ

Cdλ7
r

(
ρs
ρa

− 1

)
. (17)

Next, we consider Stokes drag. In this case, we have

vterm(r) =
αr2g(ρs − ρa)

2µ(1 +
√
2 + 4α)

, (18)

so the accretion takes the form

dqs
dt

=
Nrαπg(ρs − ρa)qcEcp

2µ(1 +
√
2 + 4α)

∫ ∞

0
e−λrrr3dr (19)

=
12NrπαgqcEcp(ρs − ρa)

µ(1 +
√
2 + 4α)λ5

r

. (20)

4.1.2 Constant Height

Next, we consider snowflakes as cylinders with constant heights h0. First, we consider kinetic drag.
Then, we have

vterm(r) =

√
2h0g

Cd

(
ρs
ρa

− 1

)
. (21)

so we have accretion of the form

dqs
dt

= NrπqcEcp

√
2h0g

Cd

(
ρs
ρa

− 1

)∫ ∞

0
e−λrrr2dr (22)

=
2NrπqcEcp

λ3
r

√
2h0g

Cd

(
ρs
ρa

− 1

)
. (23)

Next, we consider Stokes drag. Now, we have

vterm(r) =
r2h0g(ρs − ρa)

2µ(r +
√
2r2 + 4rh0

, (24)

leading to the accretion

dqs
dt

=
Nrπh0gqcEcp(ρs − ρa)

2µ

∫ ∞

0

e−λrrr4

r +
√
2r2 + 4rh0

dr, (25)

which cannot be integrated analytically.
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4.1.3 Constant Mass

Next, we consider snowflakes with constant mass, so m(r) = m0. Then, for kinetic drag, we have

vterm(r) =

√
2m0g

Cdπr2

(
1

ρa
− 1

ρs

)
, (26)

which we substitute into the accretion expression, giving

dqs
dt

= NrqcEcp

√
2πm0g

Cd

(
1

ρa
− 1

ρs

)∫ ∞

0
e−λrrrdr (27)

=
NrqcEcp

λ2
r

√
2πm0g

Cd

(
1

ρa
− 1

ρs

)
. (28)

Next, for Stokes drag, we have that h = m0
πr2ρs

giving

vterm(r) =
m0g

2πµ
(
r +

√
2r2 + 4m0

πrρs

)(1− ρa
ρs

)
, (29)

leading to

dqs
dt

=
Nrm0gqcEcp

2µ

(
1− ρa

ρs

)∫ ∞

0

e−λrrr2

r +
√

2r2 + 4m0
πρsr

dr, (30)

which cannot be integrated analytically.

4.1.4 A Given Mass Distribution

Next, we integrate over mass with a given mass distribution. We assume that nm(m) = Nme−λmm.
The terminal velocities are as given in (4.1.3). For kinetic drag, we integrate

dqs
dt

=

∫ ∞

0
Nme−λmmNrqcEcp

λ2
r

√
2πmg

Cd

(
1

ρa
− 1

ρs

)
dm (31)

=
NmNrπqcEcp

λ2
rλ

3
2
m

√
g

2Cd

(
1

ρa
− 1

ρs

)
, (32)

For Stokes drag, we have

dqs
dt

=
NmNrgqcEcp

2µ

∫ ∞

0

∫ ∞

0

me−λmmr2e−λrr

r +
√

2r2 + 4m
πρsr

drdm. (33)

4.2 Snowflakes with Holes

We define the area ratio β as the percent of a circle of radius r that the snowflake’s area takes up,
so a(r) = βπr2. Then, the area of the holes is (1 − β)πr2. This is seen in Figure 8. We consider
the snowflake as a circle, and the area of the snowflake is β of the full circle.
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Figure 8: The disc with holes model for a snowflake

4.2.1 Constant Area Ratio

For this case, we start by using the kinetic drag for now. First, we assume that β = β0 is a constant.
Because this doesn’t affect the terminal velocity, β only affects the final accretion through the a(r)
term in the integral, so we have a β0 in front of what we had before (17, 23, 28, 32):

dq̃s
dt

= β0
dqs
dt

. (34)

We call this the scalar approximation.

4.2.2 Normally Distributed Area Ratio

Next, we consider a distribution for the area ratio β. Based on [5], we say that β is normally
distributed with µ = 0.64 and σ = 0.173. Because β ranges from 0 to 1, we multiply by a constant
so that nβ(β) integrates to 1. Then, we have that

nβ(β) =
Nβ√

2π(0.173)
e
− (β−0.64)2

2(0.173)2 (35)

with Nβ chosen such that ∫ 1

0
nβ(β)dβ = 1. (36)

Then, we have that

dqs
dt

=

∫ 1

0
nβ(β)βdβ

∫ ∞

0
n(r)a(r)vterm(r)qcEcpdr. (37)

We have that Nβ ≈ 2.45. We note that only the first two terms depend on β so we can integrate
this separately, and we have that ∫ 1

0
nβ(β)βdβ ≈ 0.632. (38)

4.2.3 Area Ratio as a Function of Radius

Next, we consider β as a function of r. We take

β(r) = βmin + (1− βmin)e
−λβr. (39)

The idea is that as snowflakes become bigger, they become emptier, down to some baseline. If a
snowflake is too empty, it will break apart, which is where βmin comes from. Then, we have that

a(r) = β(r)πr2. (40)
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Now, we have kinetic drag with h = αr. Then

m(r) = β(r)απr3ρs. (41)

Next, we have

dqs
dt

=

∫ ∞

0
Nre

−λrr(βmin + (1− βmin)e
−λβr)

√
2αrg

Cd

(
1

ρa
− 1

ρs

)
qcEcpdr, (42)

which gives

dqs
dt

=
15NrqcEcp

8

√
2π3αg

Cd

(
1

ρa
− 1

ρs

)(
1

(λr + λβ)
7
2

+ βmin

(
1

λ
7
2
r

− 1

(λr + λβ)
7
2

))
. (43)

We note that because of how kinetic drag affects the terminal velocity, the vterm terms here are the
same as those given in (4.1.1, 4.1.2, 4.1.3). Next, we take h = h0. Then, we have that

dqs
dt

= NrπqcEcp

√
2π3h0g

Cd

(
1

ρa
− 1

ρs

) βmin

λβ − βmin−1
(λr+λβ)3

. (44)

Next, we have a constant mass m0. Then, we have that

dqs
dt

= NrπqcEcp

√
2m0g

Cdπ

(
1

ρa
− 1

ρs

)∫ ∞

0

e−λrrr√
β(r)

dr. (45)

This cannot be integrated analytically. Next, we integrate over the mass distribution, giving

dqs
dt

= NmNrqcEcpπ

√
g

2Cdλ3
m

∫ ∞

0

e−λrrr√
β(r)

dr. (46)

4.2.4 Stokes Drag with Holes

How do we deal with Stokes drag with holes? Assume that we have k identical holes, each with
radius rk. Then, the normal projection surface area is βπr2 which equals πr2n so rn =

√
βr.

Additionally, because we know that

πr2 − kπr2k = βπr2, (47)

so rk =
√

1−β
k r. Then, we find that

rs =

√
(1 +

√
k(1− β))(rh) +

β

2
r2. (48)

Now, we have that Fd = 6πµvterm
(
rn
3 + 2rs

3

)
, giving

Fd = 2πµvterm

(√
βr + 2

√
(1 +

√
k(1− β))rh+

β

2
r2

)
, (49)

and from this, we find the terminal velocity

vterm =
m(r)g

2πµ(
√
βr + 2

√
(1 +

√
k(1− β))rh+ β

2 r
2)
. (50)

At this point, one could assume a distribution on the number of holes and perform similar analysis
to what we have done previously. We refrain from such activities at this time.
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4.3 Snowflakes as Fractals

Instead of assuming that a(r) ∼ r2, we assume that a(r) ∼ rd, where d ∈ [1, 2]. When d = 1, the
snowflake is a line, and when d = 2, the snowflake is fully two dimensional.

4.3.1 A Fixed Dimension

Consider a(r) = Crd, where C is some scaling constant and d is fixed. First, we consider a constant
height h = h0. For this, we get a terminal velocity of

vterm(r) =

√
2h0g

Cd

(
ρs
ρa

− 1

)
, (51)

which gives an integral

dqs
dt

= NrCqcEcp

√
2h0g

Cd

(
ρs
ρa

− 1

)∫ ∞

0
e−λrrrddr (52)

=
NrCqcEcpΓ(d+ 1)

λd+1
r

√
2h0g

Cd

(
ρs
ρa

− 1

)
. (53)

Next, we consider h = αr, which gives a terminal velocity of

vterm(r) =

√
2rαg

Cd

(
ρs
ρa

− 1

)
, (54)

which gives an integral

dqs
dt

= NrC

√
2αg

Cd

(
ρs
ρa

− 1

)
qcEcp

∫ ∞

0
e−λrrrd+

1
2dr (55)

=
NrCqcEcpΓ(d+

3
2)

λ
d+ 3

2
r

√
2αg

Cd

(
ρs
ρa

− 1

)
. (56)

Next, we consider m = m0 which gives a kinetic energy of

vterm(r) =

√
2m0g

CdCrd

(
1

ρa
− 1

ρs

)
, (57)

which gives the integral

dqs
dt

= NrqcEcp

√
2Cm0g

Cd

(
1

ρa
− 1

ρs

)∫ ∞

0
e−λrrr

d
2 dr (58)

=
NrqcEcpΓ(

d
2 + 1)

λ
d
2
+1

r

√
2Cm0g

Cd

(
1

ρa
− 1

ρs

)
. (59)

Next, we integrate this over a mass distribution, which gives

dqs
dt

=
NrNmqcEcpΓ(

d
2 + 1)

λ
d
2
+1

r

√
2Cg

Cd

(
1

ρa
− 1

ρs

)∫ ∞

0
e−λmm√

mdm (60)

=
NrNmqcEcpΓ(

d
2 + 1)

λ
d
2
+1

r λ
3
2
m

√
Cgπ

2Cd

(
1

ρa
− 1

ρs

)
. (61)
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4.3.2 Varying Fractal Dimension

Now, instead of fixing d, we assume that d is uniformly distributed between 1 and 2. We would
then integrate the expressions (53, 56, 59, 61) with respect to d from 1 to 2. None of the integrals
can be computed analytically.

4.3.3 Fractal Stokes Drag

Assume that h(r) ≪ r, as noted in [3]. In this case, when working with the Stokes drag, the
effective surface area and the normal projected surface area are the same because there are no
sides. Then, if we have the surface area a(r) = Crd, we have that πr2n = Crd and 2πr2s = Crd

giving us rn =
√

C
π r

d
2 and rs =

√
C
2π r

d
2 . Then, we have that

rnKn =
rn
3

+
2rs
3

=

√
C

π

(1 +
√
2)r

d
2

3
, (62)

leading to Stokes drag of the form

Fd = 6πµvterm
(1 +

√
2)r

d
2

3

√
C

π
. (63)

Now, we find that the terminal velocity is of the form

vterm =
m(r)g

2µ(1 +
√
2)
√
a(r)π

(
1− ρa

ρs

)
. (64)

4.4 Hexagonal Snowflakes

We also try using hexagonal plates as an approximation of a snowflake, as this is one shape in
which snowflakes do naturally form (see [4], Fig. 9).

Figure 9: A hexagonal snowflake

Because the kinetic drag force does not depend on the shape of our object, the balance of forces
leads us to the same terminal velocity as in the cylindrical case given in (21). The projected area
of a hexagonal plate defined by the radius of the circle in which it is inscribed is a(r) = 3

2

√
3r2.

This terminal velocity, vterm(r), and projected area, a(r), will define the integral in (2), yielding
the source term we want in this case.
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We can also do the Stokes drag analysis on the hexagonal plate. We do this with a fixed h0,
but alternative cases for describing snowflake thickness follow quickly. As we’ve done previously,
the comparison of effective surface areas

3

2

√
3r2 + 6rh0 = 2πr2s , (65)

yields

rs =

√
12rh0 + 3

√
3r2

2
. (66)

Similarly, comparing the projected surface areas of a sphere and the hexagonal plate (a circle and
a hexagon) yields

rn =

√
3
√
3

2π
r. (67)

Thus the drag force on a hexagonal plate is

Fd = 2πµvterm(rn + 2rs) (68)

= πµvterm

√3
√
3

2π
r +

√
12rh0 + 3

√
3r2

. (69)

From the balancing of Fb, Fg, and Fd we find

vterm =

3
2

√
3r2h0ρsg

(
1− ρa

ρs

)
πµ

√
3
√
3

2π r +
√

12rh0 + 3
√
3r2

. (70)

Again, in combination with the projected area for a hexagonal plate, a(r) = 3
2

√
3r2, we can find

the form of (2) in this case. Again, this has no analytical solution.

4.5 Snowflakes with Varying Angles

If a snowflake is falling at an angle θ, the normal projected surface area will be

ã(r) = a(r) cos θ, (71)

so as a snowflake becomes more tilted, it will sweep out a smaller cylinder. This can be seen in
Figure 10.

4.5.1 A Fixed Angle

We assume that all snowflakes fall at the same angle θ0. Then, we have a kinetic drag of the form

vterm(r) =

√
2m(r)g

Cda(r) cos θ0

(
1

ρa
− 1

ρs

)
. (72)

In this case, all that happens is we get equations (53, 56, 59, 61) but with an additional factor of

(cos θ0)
− 1

2 in front.
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Figure 10: A snowflake falling at an angle

4.5.2 Varying Angles

We assume that the angles are normally distributed between 0 and π
2 . We can restrict to this

instead of varying between 0 and 2π by symmetry. In this case, we would get a factor of

2

π

∫ π
2

0

√
cos θdθ = Γ

(
3

4

)2( 2

π

) 3
2

≈ 0.763. (73)

5 Computational Results

We model snow accretion rate numerically using various models explained in Section 4.

5.1 Simple Snowflakes

We first consider the snowflake as a disc with 1) a height that is proportional to the radius and 2)
a constant height. Figure 11 shows the snow accretion rate using a height that is proportional to
the radius with constant of proportionality α. We calculate the accretion rate for three different
cases of α, which means varying the thickness of a snowflake. We see higher accretion rate for
smaller α. Figure 12 explains the accretion rate using a constant height of the disc, which means
constant snowflake thickness. In this case, the plots suggest that the accretion rate is higher for
thicker snowflakes. This is contradictory compared to the previous case. This behavior is probably
due to a difference in the nature of the integral function.

Also, both cases are shown with kinetic and Stokes drag. The difference in magnitude between
these two drag forces for both cases is of order 10. The Stokes drag is derived from the Navier-
Stokes equations using a small Reynolds number limits. The Reynolds number for the snowflakes
is of order 1 because the length scale of the snowflake is much smaller. Therefore, for relatively
small size of snowflakes, the Stokes drag might be reasonable to use. However, as the snowflake
size increases, it not only increases the length scale but also the terminal velocity. This ultimately
increases the Reynolds number. In those case, the kinetic drag might serve well for the accretion
rate calculation.
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Figure 11: Snow accretion rate for(a) Stokes drag and (b) Kinetic drag
using the disc model with the height proportional to the radius.

Now, we consider the cases with 1) a constant mass and 2) mass distribution. For the case of
constant mass we use formula we use (27) for the kinetic drag and (30) for Stokes drag. In the case
of Stokes drag we utilized the QuadGK package to numerically approximate the integral in (30).
We consider three cases of fixed mass m0 = 10−6, 5 × 10−6, 10−5 kg. These results are shown in
Figure 13. We see that mass and accretion rate have an inverse relationship. We believe this is
because a snowflake with higher mass will have higher terminal velocity as seen in (26) and (29).
Since the collision efficiency between cloud ice and snow is so low, a faster moving snowflake will
accrete at a slower rate.

As in section 4.1.4 we can consider a distribution of the mass of snowflakes to refine the accretion
rate. In Eq(33) we consider an exponential distribution, however, further literature review is
needed to determine if this is an accurate assumption, and to determine realistic parameters for
the distribution. We tested several values of λm in our code but our results did not seem physically
realistic.

5.2 Snow with holes

The case with snow with holes involves a distribution for β(r) that comes with two free parameters;
βmin and λβ. Here, βmin is a minimum fraction of filled surface area of the disc that is equivalent
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Figure 12: Snow accretion rate for(a) Stokes drag and (b) Kinetic drag
using the disc model with a constant height.

to the snow flake are. We use this distribution for surface area and also mass. However, the free
parameters involved in the distribution need to be evaluated using some experimental studies. We
could not fit more literature study in the time frame of this workshop but this is something to be
considered in detailed in future.

5.3 Hexagonal shape model

A snowflake model using a hexagonal shape is also explored numerically. This case can be compared
with the disc assumption because of the difference in the cross section area. Figure 14 shows the
snow accretion rate using kinetic drag and considering the constant height case. The plot is very
similar to the one with the disc assumption but with a small scaling. This is the ratio of the areas
between a circle and a hexagon.

5.4 Fractal model

A snowflake model using a fractal dimension is explored numerically in this section. This case can
be compared with the disc assumption because of the difference in the cross section area. Figure 14
shows the snow accretion rate using kinetic drag and considering the constant height case. The
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Figure 13: Snow accretion rate for (a) Stokes drag and (b) Kinetic drag
using the disc model with a constant mass.

plot is very similar to the one with the disc assumption but with a small scaling. This is the ratio
of the areas between a circle and a hexagon.

6 Conclusion

In this work, we considered the cylinder model for snow accretion in first moment cloud microphysics
calculations. We started with a simple cylindrical disc snowflake, varying both the height and
mass, before we considered snowflakes with holes, snowflakes as fractals, hexagonal snowflakes, and
snowflakes falling at varying angles. We considered all of these with both kinetic and Stokes drag,
and saw very different behavior between them. We implemented many of these snowflake models
and evaluated them numerically as well. However, we were unable to implement some of them
because of time constraints.

There remains further work to be done. All of the integrals used are indefinite integrals from 0 to
∞, which is unphysical. We could instead definite integrals. We could also consider time dependent
parameters. For example, snowflakes fall according to a back and forth (leaf-like) pattern so they
do not quite sweep out a cylinder. Even if we do not consider a fully time dependent model, we
would like to see if we can model this effect in some averaged way. We could also consider a more
detailed hole model, or consider heterogeneous snow. Snow takes on a wide variety of shapes, sizes,
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Figure 14: Snow accretion rate for (a) Hexagonal shape model and (b) fractal dimension with a
constant height

.

and morphologies, and all of them interact differently with their surroundings. Additionally, as
snow falls, snowflakes can clump together. This adds a number of complications. For example, as
snowflakes clump, they likely clump in three dimensions, giving a fractal dimension d ∈ [1, 3]. We
would also like to consider a potential intermediate domain where kinetic drag and Stokes drag
approach each other in some limit.
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