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Abstract

Erosion, deposition, filtration and cell growth (EDFG) may seem unrelated at first, but

they all stem from a set of similar first principles. These concepts show up in several differ-

ent industrial applications such as: (i) petroleum geology for discovering natural gases or

other natural resources trapped within the rocks; (ii) membrane filters, which are used in

various critical aspects of human life such as water purification, the biotechnology indus-

try, and kidney dialysis; and (iii) tissue engineering, which is vital in creating functional

tissue and organ samples external to the body to replace damaged or diseased tissues and

organs needed in multiple clinical therapies. In dynamic flow networks, reconfiguration

and changes of topology that may arise due to EDFG, are very complicated processes,

which are also expensive and challenging to study in most real-world applications. This

workshop takes an integrated approach, to formulate (i) Stokes; (ii) advection-diffusion;

and (iii) Navier-Cauchy equations for the flow, particle concentration and elasticity of

complex structures, respectively. It is notable that the experimental literature far out-

weighs the theoretical and numerical literature; and among them there is a paucity of

studies that offer first-principles, predictive mathematical models and simulations. The

discoveries of this field have potential for significant impact in bridging this gap.
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Chapter 1

Introduction

Erosion and deposition of particles alter the solid interface and the internal morphology,

then as a consequence affect properties of the flow, notably the fluid velocity, the exerted

shear stress by the flow and the particle concentration in the feed. These two processes

are ubiquitous within the nature as well as the industry, therefore investigating them is

instrumental to address their desirability within fluid flow systems. Specific easily ob-

servable examples from geomorphology include soil erosion and land degradation (due to

wind or floodwaters), erosion of riverbanks [19],[10] and formation of yardangs or pillar

and toadstool-shaped rock formations known as hoodoos due to wind erosion [23]. Less

obvious examples found in biology include the formation of arterial plaques, bacterial

colonies known as biofilms, as well as the erosion and particle deposition in the porous

media and membrane filters. In the environmental context, erosion represents the de-

struction of the mass caused by forces exerted on the contact interface between a solid

and fluid phase over a long period. For instance, tunnel erosion is one type of erosion

caused by water penetrating through a hole in a sub-surface; parts of the soil are carried

away with flow and leaves behind a small tunnel underneath the surface. The tunnel

becomes larger due to water flow resulting in a substantial likelihood for the soil to col-

lapse. Generally speaking, in geological contexts, erosion of solid bodies and deposition

of debris on or into them is essential in carving and shaping various morphologies in

nature and the environment. The interactions of air and water with the Earth’s surface
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have been modeled and studied up to date; for example [16], [15], [14] and references.

Similarly, fluid flow through a porous medium can erode and/or deposit particles and

thereby change the morphology of the porous media, which results in altering the flow

path [12]. Depending on the flow and the structure of the porous media, two scenarios

will be considered in modeling of erosion and deposition: (i) external and (ii) internal flow

within the geological structures and porous media. In the former case, it is assumed that

the structure is porosity-graded and consists of a collection of solid obstacles or fibers,

which fluid flow moves around them.

On the other hand for the internal flow, which is our focus, the structure is assumed

to consist of slender channels/pores that span the structure from upstream to downstream

side and the viscous fluid flow moves inside the channels/pores Fig. 1.1. For example,

one may consider internal erosion in structures such as embankment dams [6] and porous

media, which can be interpreted as reverse filtration and deposition processes [9]. There

are, therefore, many mathematical similarities in the modeling of deposition and erosion

processes. The purpose of our modeling effort is to propose a model tracing the deposi-

tion/erosion occurrence and their influences on the structure, given specific identifiable

parameters. Different numerical schemes exist in the literature to model the erosion

process. One of the approaches is the resolved computational Fluid Dynamics (CFD)

method. Considerable effort has been devoted to solving this direct method. The fluid

flow and particle interactions are investigated through basic empirical systems of for-

mulas, where the governing equations are being solved using Finite Elements Methods

(FEM), i.e. the Navier-Stokes equations are simulated using a collocated mesh grid in

which the pore geometry defines the structure. Each step taken towards convergence is

expensive and adaptive re-meshing is often used to account for micro-structure evolution.

Therefore, many other authors considered a second approach using an unresolved CFD

approach consisting of a coupled hybrid model. Numerous works adopted this newly

emerged technique to investigate further the fluid path after a reconfiguration of the sys-

tem structure. This technique is less expensive to implement solving the considered equa-

tions on fluid cells much larger than the pore scale level. It does not require re-meshing,
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and thus, the microscopic description of the problem is comparatively inefficient. The

third approach is the Lattice-Boltzmann Methods (LBM), which consists for discretiz-

ing the particle-based model and solving for the flow on a pore-scale level, replacing the

Navier Stokes equations by the discrete Boltzmann equation. The fluid/particle behavior

is resolved through interpolation and extrapolation schemes, modeling the Navier Stokes

equation beyond the known points by drawing a likely approximate form through a fixed

lattice Similarly to the CFD, this technique stimulates the fluid behavior by discretizing

the flow velocity vectors relative to the pore scale. Despite its high ability to resolve a

three-dimensional lattice, LBM is an expensive method to implement and requires high

computation power. The fourth approach is the pore network model (PNM), which

consists of simplifying the system geometry into pore spaces interconnected via their re-

spective inlet structure. The complexity of the flow is, therefore, reduced to the exchange

laws between the adjacent edges. The formulation of the flow equation is based on the

assumption of a unique pressure at each computational node. This technique achieves

high-resolution accuracy running on small scale domains using lower computing costs,

compared to other simulation methods such LBM.

Looking at the Membrane filters, they are used in many industrial engineering pro-

cesses that require separating particles and contaminants of any given size from a fluid.

Water purification [11], many separation processes in the biotech industry [1], treatment

of radioactive sludge, and beer clarification are just a few of the widespread applica-

tions. The details of the filtration in these applications may vary dramatically depending

on the size of particles to be removed, the flow speed of the particle-laden solvent, the

rigidity of the particles and so on; however, maintaining the desired separation control

at a reasonable flow rate, using the least energy possible, is usually the ultimate goal.

Therefore, for a given application, membrane filters with specific characteristics such as

flat or pleated [20], specific internal structure, specific pore sizes and shape [17], pore

connectivity and distribution within the membrane [8] may be needed. A multilayered

membrane consists of a stack of membranes, with different physical properties such as

pore size and porosity, usually laminated at the layer junctions. Multilayered membranes
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are used widely in a variety of industrial applications, such as separation of cells or

particles [8], or they can be combined to form the filtration support layers required in

ultrafiltration, gas separation, and catalysis [13]. It has been demonstrated experimen-

tally that a well-designed multilayer membrane performs better (according to a range of

selected performance criteria) than a homogeneous membrane [24]. Mathematical char-

acterization and modeling of multilayered membranes can help our understanding of how

the properties of each layer affect the performance of the overall membrane stack. Various

models that attempt to analyze the performance of multilayered membrane filters have

been formulated and examined to date. For instance, simple network models, in which

the porous material is represented by a rectangular network where bonds and nodes repre-

sent pores and inter-pore connections (with each pore represented by a straight cylindrical

capillary of specified length and diameter), respectively, have been studied by several au-

thors. Such network models can quickly generate performance data, such as flux and

particle retention characteristics, for a broad sweep of filter geometries (membrane mi-

crostructures). Early variants of such models [5] assume identical pores, but more recent

versions [17] attempt to capture the depth variation of pore structure that is engineered

in real membranes, allowing pore size and connectivity to be a function of depth through

the membrane by adopting a layered structure, with changes in pore size/connectivity

occurring at layer boundaries. An important application of such models is in identifying

optimal configurations for the pore microstructure, in terms of (for example) maximizing

throughout of filtered fluid and filter lifetime, while removing an acceptable fraction of

particles. Particles removed by the filter inevitably foul it, via three principal distinct

fouling modes: (a) standard blocking or adsorptive fouling, in which particles smaller

than the membrane pores are deposited or adsorbed within pores and shrink the pore

radius; (b) blocking (complete or partial) of pores by large particles, which are “sieved”

from the fluid; and (c) cake formation (once pores are blocked by large particles, other

particles can accumulate on top of the membrane, forming a “cake” layer, adding addi-

tional resistance via a secondary porous layer on top) [1],[18],[4], [7] Many studies, both

experimental and theoretical, have shown that a negative porosity gradient in the depth
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of the filter can improve filter efficiency as measured by, for example, the total volume

of filtrate fluid processed by the filter over its lifetime; the energy consumed in obtaining

the filtrate; and also the level of contaminant remaining in the filtrate. This may be

understood by noting that filter fouling necessarily is heaviest at the upstream side of the

filter, where the feed suspension enters, thus this side needs to be more porous than the

downstream side in order to deal with the heavier fouling burden. Filtration efficiency

considerations are complicated by the frequent need for a very clean filtrate, which in-

evitably means that a large (downstream) portion of the filter membrane must remain

nearly unfouled [8]. On the other hand, Cell proliferation within a fluid-filled porous

tissue-engineering scaffold depends on a sensitive choice of pore geometry and flow rates:

regions of high curvature encourage cell proliferation, while a critical flow rate is required

to promote growth for certain cell types. When the flow rate is too slow, the nutrient

supply is limited; when it is too fast, cells may be damaged by the high fluid shear stress.

As a result, determining appropriate tissue-engineering-construct geometries and oper-

ating regimes poses a significant challenge that cannot be addressed by experimentation

alone.

In this report, we present a mathematical theory for the fluid flow within a pore of a

tissue-engineering scaffold, which is coupled to the growth of cells on the pore walls. We

exploit the slenderness of a pore that is typical in such a scenario, to derive a reduced

model that enables a comprehensive analysis of the system to be performed. We derive

analytical solutions in a particular case of a nearly piecewise constant growth law and

compare these with numerical solutions of the reduced model. Qualitative comparisons

of tissue morphologies predicted by our model, with those observed experimentally, are

also made.

Also, we take an integrated approach to formulate and study mathematical models of

deposition and erosion in re-configurable flow networks, in geologic structures and other

materials, alongside analytically exact validation from experimental data. The experi-

ments will help calibrate and validate the mathematical models, and of course are much

cheaper than gathering data from real-world examples. The paper is organized as follows:
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Figure 1.1: Schematic showing a structure and channels with the pore radii a(θ, z, t) and
small-particle concentration c(θ, z, t).

(a) we introduce the mathematical model for flow in a channel, as well as the governing

equations of particles in the fees. (b) We introduce appropriate scaling, for the flow and

particles concentration, to non-dimensionalize the models from ‘a’. Then, (c) We present

simulations that address the erosion and deposition of particles in a structure, specifically

the pore evolution under the erosion and deposition scenarios. Finally, we summarize our

modeling results and provide some insight into real-world applications as well [3].
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Chapter 2

Flow in a Channel

Let’s started by introducing the dimensional and dimensionless parameters:

Parameter Description

Qi Inlet flux

R Fluid-cell-layer interface radius

L Fluid-cell-layer interface length

ε Dimensionless fluid-cell-layer interface aspect ratio

µ Fluid viscosity

p Pressure drop across membrane

c Total concentration of particles in feed suspension

ζ Dimensionless pressure drop across the length of the pore

2.1 Governing Equations

In order to model the fluid flow, we consider a low Reynolds number, which leads to the

inertia term within the Navier-Stokes equation to be neglected. This results in the pore

velocity u = (u, v, w) satisfying the Stokes equation

∇p = µ∇2u, ∇ · u = 0, (2.1)
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where p represents the pressure along the channel, µ is the viscosity of the fluid. These

equation must satisfy the following boundary conditions:

u = v = w = 0 at r = a(θ, z, t). (2.2)

We also enforce the no-slip and no penetration boundary conditions along with the sym-

metry condition

u = v =
∂w

∂r
= 0 at r = 0. (2.3)

We consider a constant flux scenario along the channel, where we define the pressure at

the inlet as p = ζ(t) at z = 0, and a trivial pressure p = 0 at z = L, the outlet of the

channel. Therefore, enforcing constant fluid flux we obtain,

∫ 2π

0

∫ a

0

|u| r dr dθ = Qi, (2.4)

where Qi is the inlet flux of flow at the top of the channel. In order to close our model,

we consider the shear forces exerted by the fluid flow at the wall of the channel given by

σs = µ
(
∇u+∇uT

)
n · t

∣∣
r=a(θ,z,t)

(2.5)

=
√
τ · τ − |τ · n|2. (2.6)

n is the unit normal to the wall and is defined as n = ∇(r−a)
|∇(r−a)| and t is the unit tangential

vector to the channel wall. Writing equation (2.1) in cylindrical coordinates yields:

∂p

∂r
= µ

[
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2
− u

r2
− 2

r2

∂v

∂θ

]
, (2.7)

1

r

∂p

∂θ
= µ

[
1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2

∂2v

∂θ2
+
∂2v

∂z2
− v

r2
+

2

r2

∂u

∂θ

]
, (2.8)

∂p

∂z
= µ

[
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
+
∂2w

∂z2

]
, (2.9)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z
= 0. (2.10)
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These equations must be solved subject to the following boundary conditions represent-

ing enforcing no slip and no penetration at the fluid-cell-layer interface, as well as the

symmetry conditions respectively:

u = v = w = 0 at r = a(θ, z, t), and u = v =
∂ω

∂r
at r = 0. (2.11)

Similarly, we expand the velocity variable componentwisely to obtain:

∫ 2π

0

∫ a

0

√
u2 + v2 + w2 r drdθ = Qi. (2.12)

Next, we expand the shear stress from (2.6) as

τ = µ


2∂u
∂r

1
r
∂u
∂θ
− v

r
+ ∂v

∂r
∂u
∂z

+ ∂w
∂r

1
r
∂u
∂θ
− v

r
+ ∂v

∂r
2(1

r
∂v
∂θ

+ u
r
) ∂v

∂z
+ 1

r
∂v
∂θ

∂u
∂z

+ ∂w
∂r

∂v
∂z

+ 1
r
∂v
∂θ

2∂w
∂z
,

 · n, (2.13)

where we derive the normal vector to the channel wall as follows:

n =
∇(r − a)

|∇(r − a)|

=
1√

|∂(r−a)
∂r
|2 + |1

r
∂(r−a)
∂θ
|2 + |∂(r−a)

∂z
|2

(
∂(r − a)

∂r
,
1

r

∂(r − a)

∂θ
,
∂(r − a)

∂z

)

=
1√

1 + 1
r2
aθ2 + az2

(
1,−1

r
aθ, az

)
.

(2.14)
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2.2 Scaling and Non-Dimensionalization

We introduce the following scalings, where given arbitrary variable x, x̂ denotes x in

dimensionless form [17]:

R

L
= ε� 1,

u =
Qi

πR2
u =

Qi

πR2
(εû, εv̂, ŵ),

(p, ζ) =
µLQi

πR4
(p̂, ζ̂),

(r, a, z) = L(εr̂, εâ, ẑ), (2.15)

(τ , σs) =
µQi

πR3
(T̂ , σ̂s).

Using the scaling, we can express the governing flow equations as follows. For simplicity,

we drop hats.

1

ε2
∂p

∂r
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
+ ε2

∂2u

∂z2
− u

r2
− 2

r2

∂v

∂θ
, (2.16)

1

ε2
1

r

∂p

∂θ
=

1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2

∂2v

∂θ2
+ ε2

∂2v

∂z2
− v

r2
+

2

r2

∂u

∂θ
, (2.17)

∂p

∂z
=

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
+ ε2

∂2w

∂z2
, (2.18)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z
= 0. (2.19)

The boundary condition and velocity variables become

u = v = w = 0 at r = a(θ, z, t), and u = v =
∂ω

∂r
at r = 0, (2.20)

p = ζ(t) at z = 0, and p = 0 at z = 1, (2.21)∫ 2π

0

∫ a

0

√
ε2u2 + ε2v2 + w2 r drdθ = π. (2.22)
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Therefore, the shear stress in (2.13) now become

τ = µ


2ε∂u

∂r
ε( 1
v
∂u
∂θ
− v

r
+ ∂v

∂r
) ε2 ∂u

∂z
+ ∂u

∂r

ε( 1
v
∂u
∂θ
− v

r
+ ∂v

∂r
) 2ε(1

r
∂v
∂θ

+ u
r
) ε2 ∂v

∂z
+ 1

r
∂u
∂θ

ε2 ∂u
∂z

+ ∂u
∂r

ε2 ∂v
∂z

+ 1
r
∂u
∂θ

2ε∂w
∂z

 · n, (2.23)

where the normal vector to the wall is:

n =
1√

1 + 1
r2

(∂a
∂θ

)2 + ε2(∂a
∂z

)2

(1,−1

r

∂a

∂θ
,−ε∂a

∂z
).

2.3 Asymptotic Analysis

The complete system described in the above section is extremely hard to solve analytically,

and is also computationally costly to solve numerically in a brute force way. We make

use of the fact that the pore aspect ratio ε = R/L � 1. This allows us to achieve a

simpler, computationally-feasible, reduced asymptotic model. We also assume that the

channel radius is roughly circular with small axial and azimuthal variation, we determine

the dependence of the change of channel radius on the axial and azimuthal coordinates

at first order in the pore aspect ratio ε. We assume that the channel radius is expressed

as

a(θ, z, t) = a0(t) + εa1(θ, z, t), (2.24)

where

a1(θ, z, t) = Λ(z, t) cos(nθ) + Υ(z, t), (2.25)

where Λ(z, t) and Υ(z, t) are functions to be pinned down and n is an integer that describes

the number of lobes in the geometry of the underlying substrate. Although the above

assumption imposes constraints on the class of channels we can study, this assumption

is later to be found essential in attaining a balance between some level of generality

and feasible asymptotic calculations. Here the initial configuration of the channel radius

a(θ, z, 0) is given by the shape of the underlying substrate, and its subsequent evolution
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is described by the equation of erosion, elasticity and deposition equations, which will be

explained in next chapters. Below, we asymptotically expand the variables u, v, w, p, ζ

and σs in the form

x = x0 + εx1 +O(ε2), (2.26)

where x is any variable listed above.

2.3.1 Leading-Order Analysis

Rewriting (2.16) and (2.17) at O(1/ε2) gives

∂p0

∂r
= 0,

1

r

∂p0

∂θ
= 0, (2.27)

At O(1), (2.18) gives

∂p0

∂z
=

1

r

∂

∂r
(r
∂w0

∂r
) +

1

r2

∂2w0

∂θ2
. (2.28)

For the channel wall configuration (2.25), the flow will be independent of θ, therefore

(2.28) simplifies to

∂p0

∂z
=

1

r

∂

∂r
(r
∂w0

∂r
), (2.29)

According to no slip boundary condition (2.11) where w(a) = 0, we have the equation

w0(a0 + εa1 + . . . ) + εw1(a0 + εa1 + . . . ) +O(ε2) = 0.

By using Taylor expansions and matching coefficients, we have:

w0

∣∣∣∣
r=a0

= 0,
∂w0

∂r

∣∣∣∣
r=0

= 0. (2.30)
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Solve (2.28) with (2.30) together, we get:

w0 =
1

4

dp0

dz
(r2 − a2

0) (2.31)

Plug it into (2.22), simplify the results and match the coefficients of O(ε), we get:

O(1) :

∫ 2π

0

∫ a0

0

w0rdrdθ = π (2.32)

O(ε) :

∫ 2π

0

∫ a0

0

w1rdrdθ = 0 (2.33)

Solving the integrals, we obtain the following solutions:

u0 = v0 = 0 (2.34)

w0 =
ζ0

4
(a2

0 − r2) (2.35)

ζ0 =
8

a4
0

(2.36)

p0 = ζ0(1− z) (2.37)

2.3.2 First-Order Analysis

At O(ε), using similar technique, we seek a θ-independent solution to the governing

equations, we find:

w1 =

[
Λ

2
a1−n

0 rn cosnθ +
Υ

2a0

(2r2 − a2
0)

]
ζ0 (2.38)

p1 =
4ζ0

a0

∫ z

1

Υ(z′)dz′ (2.39)

ζ1 = −4ζ0

a0

∫ z

1

Υ(z′)dz′ (2.40)
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2.3.3 Second-Order Analysis

Similarly as previous analysis, plug (2.31) and (2.39) into (2.22), we obtain:

∫ 2π

0

∫ a

0

[
Λ

2
a1−n

0 rn cos (nθ) +
1

4ζ0

dP1

dz
(r2 − a2

0) + a0
Υ(z)

2

]
r drdθ = 0. (2.41)

We expand the shear stress as:

τ =


O(ε2) O(ε2) ∂w0

∂r
+ ε∂w1

∂r
+O(ε2)

O(ε2) O(ε2) ε
r
∂w1

∂θ
+O(ε2)

∂w0

∂r
+ ε∂w1

∂r
+O(ε2) ε

r
∂w1

∂θ
+O(ε2) 2ε∂w0

∂r
+O(ε2)




1

O(ε)

O(ε2)

 ,

τ |r=a0 =


O(ε2)

O(ε2)

∂w0

∂r
+ ε∂w1

∂r
+O(ε2)

 ,

τ · n = O(ε2), (2.42)

where we derive the normal vector to the wall as follows:

n = (1,− ε
r

∂a1

∂θ
,−ε2∂a1

∂z
). (2.43)

σs =
√
τ · τ − |τ · n|2|r=a0

=

∣∣∣∣[∂w0

∂r
+ ε

∂w1

∂r

]
|r=a0

∣∣∣∣
= −ζ0a0

2
+ ε(

nΛ

2
cos (nθ) + 2Υ)ζ0

(2.44)

Set

σs = σs0(t) + ε
(
σs1,a(z, t) cos (nθ) + σs1,b(z, t)

)
(2.45)

Matching the coefficients of (2.44) and (2.45), we get:
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σs0(t) =
ζ0(t)a0

2

σs1,a(z, t) =
nΛζ0

2

σs1,b(z, t) = 2Υζ0

(2.46)
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Chapter 3

Erosion in a Channel

3.1 Governing Equations

The fluid exerts forces on the wall of the channel and subsequently its radius responds

by expansion as follows:

∂a

∂t
= λf(σs), (3.1)

3.2 Scaling and Non-Dimensionalization

We use the scalings from (2.15) along with the time scaling

t =
πR4

λµQi

t̂, (3.2)

After dropping hats, (3.1) and (3.2) gives

∂a

∂t
= f(σs). (3.3)
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3.3 Asymptotic Analysis

Using (2.25) and (3.2), we can obtain:

∂a0

∂t
+ ε

(
∂Λ

∂t
cos (nθ) +

∂Υ

∂t

)
= λσs0(t) + ε

(
σs1,a(z, t) cos (nθ) + σs1,b(z, t)

)
(3.4)

Matching the corresponding terms using (2.46), we get:

∂a0

∂t
=

4λ

a3
0

(3.5)

∂Λ(t)

∂t
=

4nλ

a4
0

Λ(t) (3.6)

∂Υ

∂t
=

16λ

a4
0

Υ(t) (3.7)

Solving the three equations above, we obtain

a0(t) =
(
16λt+ a4

0(0)
) 1

4 (3.8)

Λ(t) = Λ(0)

[
16λt+ a4

0(0)

a4
0(0)

]n
4

(3.9)

Υ(t) = Υ(0)

[
16λt+ a4

0(0)

a4
0(0)

]
(3.10)

21



Chapter 4

Elasticity of the Channel

4.1 Governing Equations

We now want to consider elasticity of the material of the wall of the channels. Let

Ω = (Ωx,Ωy,Ωz) be the displacement of the channel. The displacement is modeled by

the Navier-Cauchy equation

E

2(1 + ν)
∇2Ω +

E

2(1 + u)(1− 2ν)
∇(∇ · Ω) = ρm

(
∂2Ω

∂T 2

)
, (4.1)

where E is Young’s modulus, ν is Poisson’s ratio, and T is time [22]. We assume that the

time scale of the fluid dynamics in the problem is much smaller than the elastic response

of the channel material to the hydraulic stress. Therefore, the right hand side of (4.1) is

negligibly small. Once we simplify Eq. (4.1), we get

∇2Ω +
E

2(1− ν)(1− 2ν)
∇(∇ · Ω) = 0. (4.2)

In our set up the channels are clamped above and below. Therefore,
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Ω

∣∣∣∣
z=0

= Ω

∣∣∣∣
z=L

= 0 (4.3)

We have that the strain in the radial direction at the boundary is the pressure p.

σr

∣∣∣∣
r=a

= p (4.4)

We also assume that the the strain is symmetric across channels which suggests that

∂σr
∂r

∣∣∣∣
r=R

= 0 (4.5)

Given the near-cylindrical shape of our channels, it is natural to work on cylindrical

coordinates. Transforming (4.2) under cylindrical coordinates we get

Ω = (Ωr,Ωθ,Ωz) (4.6)

∇2Ωr −
Ωr

r2
− 2

r2

∂Ωθ

∂θ
+

1

1− 2ν

∂

∂r
(∇ · Ω) = 0 (4.7)

∇2Ωθ −
Ωθ

r2
− 2

r2

∂Ωr

∂θ
+

1

r

1

1− 2ν

∂

∂θ
(∇ · Ω) = 0 (4.8)

∇2Ωz +
1

1− 2ν

∂

∂z
(∇ · Ω) = 0 (4.9)

where ∇ = ( ∂
∂r
, 1
r
∂
∂θ
, ∂
∂z

)

We also have the strain-displacement equations which model the interaction of the strain

and displacement of the channel wall [22].
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σr =
E(1− ν)

(1 + ν)(1− 2ν)

∂Ωr

∂r
+

Eν

(1 + ν)(1− 2ν)

1

2

(
∂Ωθ

∂θ
+ Ωr

)
(4.10)

σθ =
Eν

(1 + ν)(1− 2ν)

∂Ωr

∂r
+

E(1− ν)

(1 + ν)(1− 2ν)

1

2

(
∂Ωθ

∂θ
+ Ωr

)
(4.11)

σz =
Eν

(1 + ν)(1− 2ν)

∂Ωr

∂r
+

Eν

(1 + ν)(1− 2ν)

1

r

(
∂Ωθ

∂θ
+ Ωr

)
+

E(1− ν)

(1 + ν)(1− 2ν)

∂Ωz

∂z

(4.12)

4.2 Scaling and Non-Dimensionalization

As before we want to scale parameters in order to work with dimensionless parameters.

We use the following scaling.

(r, a, z) = L(εr̂, εâ, ẑ)

(Ωr,Ωθ,Ωz) = R(Ω̂r, εΩ̂θ, Ω̂z)

(σ, p) =
µLQi

πR4
(σ̂, p̂)

for some small ε = R/L << 1 [2]. Here we have added hats to indicate new variables

but shall drop them from now on. Under this scaling and cylindrical coordinates, (4.7),

(4.8), and (4.9), become

1

r

∂

∂r
(r
∂Ωr

∂r
) +

1

r2

∂2Ωr

∂θ2
+ ε2

∂2Ωr

∂z2
− Ωr

r2
− 2

r2
ε
∂Ωθ

∂θ

+
1

1− 2ν

∂

∂θ

[
1

r

∂

∂r
(rΩr) + ε

1

r

∂Ωθ

∂θ
+ ε

∂Ωz

∂z

]
= 0,

(4.13)

ε

r

∂

∂r
(r
∂Ωθ

∂r
) +

ε

r2

∂2Ωθ

∂θ2
+ ε2

∂2Ωθ

∂z2
− εΩθ

r2
− 2

r2
+

2

r2

∂Ωr

∂θ

+
1

1− 2ν

1

r

∂

∂θ

[
1

r

∂

∂r
(rΩr) + ε

1

r

∂Ωθ

∂θ
+ ε

∂Ωz

∂z

]
= 0,

(4.14)

and
1

r

∂

∂r
(r
∂Ωz

∂r
) +

1

r2

∂2Ωz

∂θ2
+ ε2

∂2Ωz

∂z2

+
1

1− 2ν
ε
∂

∂z

[
1

r

∂

∂r
(rΩr) + ε2

1

r

∂Ωθ

∂θ
+ ε

∂Ωz

∂z

]
= 0

(4.15)

24



After scaling and rewriting the strain-displacement equations (4.10), (4.11), (4.12) and

dropping the hat notation respectively, we have

σr =
πER5

(1 + v)(1− 2v)LµQi

[
(1− v)

∂Ωr

∂r
+ v

1

r
(
∂Ωθ

∂θ
+ Ωr) + vε

∂Ωz

∂z

]
(4.16)

σθ =
πER4

(1 + v)(1− 2v)LµQi

[
v
∂Ωr

∂r
+ (1− v)

1

r
(
∂Ωθ

∂θ
+ Ωr) + vε

∂Ωz

∂z

]
(4.17)

σz =
πER4

(1 + v)(1− 2v)LµQi

[
v
∂Ωr

∂r
+ v

1

r
(
∂Ωθ

∂θ
+ Ωr) + (1− v)ε

∂Ωz

∂z

]
(4.18)

For sake of simplicity, let 1
η

= πER5

(1+v)(1−2v)LµQi
.

Lastly, we scale our boundary conditions (4.3) - (4.5) and we get

σr

∣∣∣∣
r=a

= p
∂σr
∂r

∣∣∣∣
r=1

= 0 Ωz

∣∣∣∣
z=0

= Ωz

∣∣∣∣
z=L

= 0 (4.19)

We assume ∂
∂θ

Ω = 0 and Ωθ = 0. Since the channel is nearly cylindrical we expect most

displacement would be radially and vertically. Using these dimensionless equations, in

the next sections we are going to preform an asymptomatic analysis of the system of

equations.

4.3 Asymptotic Analysis

4.3.1 Leading-Order Analysis

Next, we are going to introduce an extension of our variables Ω, p with powers of ε� 1.

Thus we get that:

Ωr = Ωr,0 + εΩr,1 +O(ε2)

p = po + εp1 + +O(ε2)
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The notation Ωr,i represents the i-th order of the ε term. If we apply this perturbation

to equation (4.15) and take the leading order we get

1

r

∂

∂r

(
r
∂Ωz,0

∂r

)
= 0 (4.20)

Solving (4.20) we obtain,

Ωz,0 = 0. (4.21)

Given (4.21), the leading order of (4.13) becomes

1

r

∂

∂r

(
r
∂(rΩr0)

∂r

)
− Ωr0

r2
+

1

1− 2ν

∂

∂r

(
1

r

∂(rΩr0)

∂r

)
= 0

Solving this equation we get that

Ωr,0 = c1(z)r +
c2(z)

r
(4.22)

Combining (4.16) with these values of Ωz0 and Ωr0 and the boundary conditions (4.19)

we obtain

1

η

[
(1− ν)(c1 −

c2

r2
) + ν(c1 +

c2

r2
)
] ∣∣∣∣

r=a

= p0

∣∣∣∣
r=a

(4.23)

and

∂σr
∂r

∣∣∣∣
r=1

=
1

η
[(1− v)(2c2 − v2c2)] = 0 (4.24)

It follows that from (4.24), we find that c2 = 0 which tells us from (4.23) that c1 = ηp0

∣∣∣∣
r=a

Therefore plugging everything into equation (4.22) we get that:

Ωr,0(r = a0, z) = ηp0a0 (4.25)
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4.3.2 First-Order Analysis

From equation (4.13) focusing on the second highest order, thus O(ε), we get that:

1

r

∂

∂r

(
r
∂(rΩr1

∂r

)
− Ωr1

r2
+

1

1− 2ν

∂

∂r

(
1

r

∂(rΩr1)

∂r

)
= 0

Solving this equation we get that

Ωr,1 = c1(z)r +
c2(z)

r
(4.26)

and just as before we get

Ωr,1(r, z) = ηp1a0 (4.27)
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Chapter 5

Particle Concentration in the

Channel

Another important phenomena that affects the shape of the channel in the filtration

process is the deposition of particles to the membrane channel wall.

5.1 Governing Equations

The transport of particles in the flow occurs due to the advection via fluid velocity and

diffusion of the particles due to the gradient of the particle’s concentration. Using the

mass balance, the governing equation is:

∂c

∂t
+ ∇ ·Qc = 0, Qc = −Ξ∇c+ uc, (5.1)

where c is the particle concentration, Qc is the flux of particles, Ξ is the diffusion coeffi-

cient.

The concentration of the particles at the inlet of the channel is c0 and at the end of the

channel we considered the zero gradient concentration for the particles [21]. In addition,

the particles are deposited on the wall, so there is a negative flux at the wall. Therefore,

the boundary conditions are:
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c|z=0 = c0,
∂c

∂z
|z=L = 0, Qc · n|r=a = α1c|r=a (5.2)

which α1 is the stickiness coefficient of particles.

Timescale of the deposition process is much bigger than the flow, so we can assume

quasi static assumption and consider that c is not function of time. Using the continuity

equation and no slip boundary condition, the equations (5.1) and (5.2) reduces to the

following equation in the cylindrical coordinate system:

Ξ

(
1

r

∂

∂r

(
r
∂c

∂r
+

1

r2

∂2c

∂θ2
+
∂2c

∂z2

))
= u

∂c

∂r
+
v

r

∂c

∂θ
+ w

∂c

∂z
(5.3)

− Ξ

[
∂c

∂r
− 1

r2

∂c

∂θ

∂a

∂θ
+
∂c

∂z

∂a

∂z

]
= α1c|r=a (5.4)

5.2 Scaling and Non-dimensionalization

Using the scaling for the concentration as c = c0ĉ, which ĉ is the non-dimensionalized

concentration, and other scaling constants are as defined in (2.15). Dropping ˆ symbol,

for the non-dimensionalized parameters, the equations (5.3) and (5.4) reduce to:

1

εPe

[
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2

∂2c

∂θ2
+ ε2

∂2c

∂z2

]
= u

∂c

∂r
+
v

r

∂c

∂θ
+ w

∂c

∂z
, (5.5)

c|z=0 = 1,
∂c

∂z
|z=1 = 0,

−1

εPe

[
∂c

∂r
− 1

r2

∂c

∂θ

∂a

∂θ
+ ε2

∂c

∂z

∂a

∂z

]
= αc|r=a. (5.6)

which Pe = Qi
πΞR

and α = πα1LR
Qi

.

5.3 Asymptotic Analysis

Let x = x0 + εx1 + ε2x2 + . . . where x ∈ {c, u, v, w} and a = a0 + εa1(θ, z), substituting

in equations (5.5) and (5.6), the governing equations and boundary conditions for orders

O
(

1
ε

)
, O(1) and O(ε) are derived and solved below.
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5.3.1 Leading Order Analysis

The leading order in equations (5.5) and (5.6) is O
(

1
ε

)
. Collecting all the terms with

order of O
(

1
ε

)
, the governing equation and boundary conditions for the leading order are:

1

r

∂

∂r

(
r
∂c0

∂r

)
+

1

r2

∂2c0

∂θ2
= 0, (5.7)

c0|z=0 = 1,
∂c0

∂z
|z=1 = 0,

∂c0

∂r
|r=a0 = 0. (5.8)

For the channel wall configuration (2.25), the particle will be independent of θ in the

leading order, so (5.7) reduces to:

∂

∂r

(
r
∂c0

∂r

)
= 0⇒ ∂c0

∂r
= const. (5.9)

Using boundary condition (5.8), we conclude that the constant value is zero and c0 is not

a function of r, then:

c0 = c0(z). (5.10)

5.3.2 First-Order Analysis

The next term in the governing equations and boundary conditions is O(1). Collecting

the terms with O(1), we have:

1

Pe

[
1

r

∂

∂r

(
r
∂c1

∂r

)
+

1

r2

∂2c1

∂θ2

]
= w0

dc0

dz
, (5.11)

c1|z=0 = 0,
∂c1

∂z
|z=1 = 0,

−1

Pe

∂c1

∂r
|r=a0 = αc0|r=a0 . (5.12)

In the above equation, there are two unknowns c0 and c1. To reduce the number of the

unknowns, we integrate the whole the equation with
∫ 2π

0

∫ a0
0
· rdrdθ, then we can use the

third part of equation (5.12) to relate ∂c1
∂r

to c0 at r = a0 and as c0 is not function of r,

then c0|r=a0(z) = c0(z). Moreover, the second term in the left hand side of the equation

(5.11) is zero due to the periodicity of ∂c1
∂θ

at θ = 0 and 2π. Then, the final differential
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equation for c0 after substituting w0 using (2.35) is:

∂c0

∂z
= −2αa0c0 ⇒ c0(z) = e−2αa0z, (5.13)

which equation (5.8) is used to compute the integration constant.

5.3.3 Second-Order Analysis

To compute c1, we need to go one order further. The next term in the governing equations

and boundary conditions is O(ε). Collecting the terms with O(ε) and using the result of

the previous part (5.13) and (2.34), we have:

1

Pe

[
1

r

∂

∂r

(
r
∂c2

∂r

)
+

1

r2

∂2c2

∂θ2
+
∂2c0

∂z2

]
= w0

∂c1

∂z
+ w1

∂c0

∂z
, (5.14)

−1

Pe

[
a1
∂2c1

∂r2
+
∂c2

∂r
− 1

r2

∂c1

∂θ

∂a1

∂θ

]
= αc1|r=a0 . (5.15)

Similar to the previous part, we take the integral of the equation and use (5.15) to get

an equation for c1 which leads us to:

a0

∫ 2π

0

{
− 1

Pe

[
a1
∂2c1

∂r2
− 1

r2

∂c1

∂θ

∂a1

∂θ

]
− αc1

}
r=a0

dθ +
4α2π

Pe
a2

0e
−2αa0z =

2

a4
0

∫ 2π

0

∫ a0

0

∂c1

∂z
(a2

0 − r2)r dr dθ. (5.16)

We assume that c1 is only function of z, so the above equation is simplified and using the

second part in the boundary condition of (5.12), the solution for c1 is:

c1(z) =
4α2a4

0

Pe
ze−2αa0z (5.17)
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5.4 Final solution

Putting two first orders of c together from equations (5.13) and (5.17), the asymptotic

solution for particle concentration is:

c = e−2αa0z +
4α2a4

0

Pe
ze−2αa0zε+O(ε2) (5.18)
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Chapter 6

Results

In this section, we present some results simulating erosion and elasticity.

6.1 Channel with active erosion:

The figure below shows a channel with an initial radius of a0= 0.6, at different times.

Figure 6.1: Erosion over time. Parameters include n = 4, λ = 0.1, Υ(z, 0) = 2 − z,
Λ(z, 0) = 2− z, a0(0) = 0.6 and n = 4.

Figures 6.2 and 6.3 show the effect of a 0.1 increase on λ.
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Figure 6.2: Erosion over time. Parameters include n = 5, λ = 0.2, Υ(z, 0) = 2 − z,
Λ(z, 0) = 2− z, a0(0) = 0.9 and n = 4.

Figure 6.3: Erosion over time. Parameters include n = 5, λ = 0.1, Υ(z, 0) = 2 − z,
Λ(z, 0) = 2− z, a0(0) = 0.9 and n = 4.
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Chapter 7

Conclusions

7.1 Conclusions/Extensions

We have presented a simplified mathematical model for the evolution of a channel to gain

insight into the effect of erosion and elasticity on the channel morphology. The flow and

elasticity were captured by the Stokes and Navier-Cauchy equations respectively, while

the erosion was modelled by a law that accounted for the effects of the fluid shear stress

at the increasing channel wall. Exploiting the geometrical features of a typical structure,

namely a structure composed of a series of pores that are nearly cylindrical, allowed

us to proceed via an asymptotic approach that led to a reduced system of four simple

differential equations, while in many cases we were able to solve them analytically. The

resulting equations were analyzed numerically and analytically for a typical erosion law,

and an analytic expression was obtained when the erosion law is presented.
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