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Abstract
Arthropod parasitoids, particularly parasitoid hymenopterans, can be used as sustainable, safe

biological control (biocontrol) agents for agriculturally and ecologically relevant insect pests. While
searching for effective biocontrol methods, mathematical models are a useful tool to predict the out-
comes of host-parasitoid interactions. These interactions are complex and depend on many biotic
and abiotic factors. Generally, host-parasite interactions have been modeled using a discrete ap-
proach, but more recently, a semi-discrete hybrid methodology has been proposed in which a host’s
vulnerable period is modeled continuously, and a discrete update for reproduction ensues after every
vulnerable period for a constant and functional response. In this report, we propose three different
models based on this semi-discrete framework. The first models a hyperparasitoid interaction with
an overlapping vulnerable period. The second incorporates migration of the parasitoid as it forages
for hosts between different locations, and, finally, we propose a five-dimensional model in which
there is a mixed population of generalist and specialist parasitoids infecting two host populations.
These models can be applied to help more effectively implement a multifaceted biocontrol strategy
for insect pests.
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Introduction

The use of parasitoid hymenopterans to control insect pests is a long-known method of safe and
sustainable biological control (biocontrol), but it is met with varying degrees of success. Insect
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pests can cause millions of dollars in damage each year to agricultural crops, and invasive insects
can be devastating to indigenous ecosystems, therefore, biocontrol methods using parasitoids that
target these pests are appealing as they are cost-effective, sustainable, and avoid the application of
pesticides.

Host-parasitoid interactions are a complex relationship that involve a parasitoid, its host and
a multitude of other biotic (host-food abundance, competition) and abiotic (temperature, weather
patterns) factors [4]. The parasitoid life cycle begins with of a female using a specialized ovipositor
to lay its eggs in a host, and subsequently the parasitoid larvae will feed on the host as they develop,
eventually pupating, overwintering, and eclosing as an adult, which in turn kills the host [3]. After
eclosion, the female parasitoid will mate and must then forage for another suitable host to lay its
eggs in. Generally, parasitoids only attack their host at one specific life stage which we refer to as the
vulnerable period. For example, parasitoids that prey on hemipterans (true bugs) and coleopterans
(beetles) commonly infect eggs, while parasitoids that prey on lepidopterans (moths and butterflies)
commonly infect larvae.

Traditionally, because of arthropods’ rigid life cycle, host-parasitoid interactions have been mod-
eled using a discrete framework, namely the Nicholson-Bailey model [5]. More recently, a hybrid
approach has been adopted and can allow room for more complex biological interactions that are
occurring simultaneously [6]. This semi-discrete, hybrid approach uses a continuous framework to
model the vulnerable period of the host (the egg or larval stage) with a discrete update at the end
of each vulnerable period (updating population densities). In this report, we implement this hybrid
framework to propose three new models.

Hyperparasitoidism is the phenomena in which a parasitoid is parasitized by another parasitoid
while it is infecting a host. This phenomena is relatively understudied, but it is important because
hyperparasitoidism can lead to pest outbreaks by lowering the populations of relevant parasitoids
[1]. This can also be detrimental to integrated pest management (IPM) because the hyperparasitoid
can mitigate the desired effects of a beneficial parasitoid. In this report, we model this relationship
synchronously (overlapping vulnerable period for the host and the parasitoid within its host) and
asynchronously (no overlapping vulnerable period).

Arthropod parasitoids are typically winged insects from the families Hymenoptera and Diptera,
and mobility is critical for host foraging. Here, we propose a model that is mindful of multiple
“patches” that the parasitoid can migrate between as it forages for a suitable host.

Parasitoids can be generalists or specialists with regards to host preference [7, 2], so our final
model incorporates five-dimensional parasitoid selective competition that includes two different host
populations, and three different parasitoid populations in which parasitoid populations 1 and 2 are
specific to preying on host populations 1 and 2 respectively, and P3 is a generalist that can prey on
either host populations.

Hyperparasitoid Overlap Model

In the hyperparasitoid model, we consider the case where a hyperparasitoid attacks the parasitoid
while the parasitoid attacks the host during the parasitoid host larvae period. Here we consider
two possible cases: one where we consider the vulnerable period of the host and the parasitoid are
asynchronous and another where we consider the two vulnerable periods to overlap with each other.

Asynchronous Model

In the asynchronous model, assume that the vulnerable period of the parasitoid larvae will occur
after the vulnerable period of the host larvae. Define the interval [0, T ] as the vulnerable period
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of the host and the interval [T, S] as the vulnerable period of the parasitoid. Define L(τ, t) as the
uninfected host larvae, Ip(τ, t) and Iq(τ, t) as the infected host larave from the parasitiod and hyper-
parasitiod,respectively, and P (τ, t) and Q(τ, t) as the adult female parasitiod and hyperparasitiods
with eggs, respectively. For τ ∈ [0, T ], we obtain the following system of differential equations:

dL

dτ
= −gp(·)LP L(0, t) = RHt

dIP
dτ

= gp(·)LP Ip(0, t) = 0

dP

dτ
= 0 P (0, t) = Pt

dQ

dτ
= 0 Q(0, t) = Qt

dIq
dτ

= 0 Iq(0, t) = 0

(1)

where gp(·) denotes the parasitim rate of the parasitoid. If we assume that gp = cp, where cp is
constant, we obtain the following solutions for (1):

L(τ, t) = RHte
−cpPtτ

Ip(τ, t) = RHt

(
1− e−cpPtτ

)
P (τ, t) = Pt

Qt(τ, t) = Qt

Iq(τ, t) = 0.

Now we set up the system of equations for the hyperparasitiod. For τ ∈ [T, S], we have the following
system of differential equations:

dL

dτ
= 0 L(T, t) = RHte

−cpPtT

dIp
dτ

= −gq(·)QIp Ip(T, t) = RHt

(
1− e−cpPtT

)
dP

dτ
= 0 P (T, τ) = Pt

dQ

dτ
= 0 Q(T, τ) = Qt

dIq
dτ

= gq(·)QIp Iq(T, t) = 0

(2)

where gq(·) denotes the parasitism rate of the hyperparasitiod. If we assume that gq = cq, where cq
is constant, we obtain the following solutions for (2):

L(τ, t) = RHte
−cpPtT

Ip(τ, t) = RHt

(
1− e−cpPtT

)
e−cqQt(τ−T )

P (τ, t) = Pt

Q(τ, t) = Qt

Iq(τ, t) = RHt

(
1− e−cpPtT

) (
1− e−cqQt(τ−T )

)
4



From our solutions of (2), we have the following discrete update:

Ht+1 = RHte
−cpPtT

Pt+1 = kpRHt

(
1− e−cpPtT

)
e−cqQt(S−T )

Qt+1 = kqRHt

(
1− e−cpPtT

) (
1− e−cqQt(S−T )

) (3)

From our discrete update (3), this suggests that our escape responses are

f(Pt) = e−cpPtT

g(Qt) = e−cqQt(S−T )

where both follow the Nicholson-Bailey model.
If we now add a functional response to the vulnerable period for the host (gp = cpL

m), we obtain
the following changes to our solutions above after overall vulnerable period [0, S]:

L(τ, t) = RHt

(
1

(1 + cpm(RHt)mPtτ)1/m

)
Ip(τ, t) = RHt

(
1−

(
1

(1 + cpm(RHt)mPtτ)1/m

))
e−cqQt(τ−T )

Iq(τ, t) = RHt

(
1−

(
1

(1 + cpm(RHt)mPtτ)1/m

))(
1− e−cqQt(τ−T )

)

which will follow the discrete update in (3) where now f(Pt) =
1

(1 + cpm(RHt)mPtτ)1/m
. The case

where we have a functional response to the vulnerable period of the hyperparasitoid is similar. The
results for the asynchronous hyperparasitoid model are provided in Figures 1 and 2

Figure 1: Trajectory Diagram with Functional Response
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Figure 2: Trajectory Diagram with Constant Response

Considering the Beddington-Free-Lawton model, we consider a new functional response exp(r(1−
Ht
k )) in (3), the new model has the following form:

Ht+1 = Hte
r(1−Ht

k
)−cpPtT

Pt+1 = kpHt

(
1− e−cpPtT

)
e−cqQt(S−T )

Qt+1 = kqHt

(
1− e−cpPtT

) (
1− e−cqQt(S−T )

) (4)

Considering the effect of changing cp, cq, k and r, we have the following bifurcation diagrams (see

Figure 3: Attractors of the system (4) for different r

Figs (5)-(8)):
Based on our results, when gp(·) and gq(·) are both constants, we conclude that the system is

unstable, which makes sense since they follow the Nicholson-Bailey model. When we add functional
response to the model, we conclude that the host and the parasitiod will experience coexistence while
the hyperparasitoid dies out given specific values of parameter m.
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Figure 4: Attractors of the system (4) for different r

Figure 5: Bifurcation diagram with respect to k

Overlap Model

In the overlap model assume that the vulnerable periods of the parasitoid larvae and host larvae
coincide for some period of time. Along with the defined functions in asynchronous model, define
Tq as the starting time within the vulnerable period that the hyperparasitoid begins its attack on
the parasitoid and Tp as the time where the vulnerable period for the host ends. Doing this will
partition the overall vulnerable period into three sub-intervals: [0, Tq], [Tq, Tp], and [Tp, T ].

For simpliplicity, assume that the parasitism rates for the parasitoid and the hyperparasitoid are
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Figure 6: Bifurcation diagram with respect to r

Figure 7: Bifurcation diagram with respect to cp
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Figure 8: Bifurcation diagram with respect to cq

constants cp and cq, respectively. The system of equations for subintervals [0, Tq], [Tq, Tp], and [Tp, ]
are given in equations (5)-(7), respectively:

dL

dτ
= −cpLP L(0, t) = RHt

dIP
dτ

= cpLP Ip(0, t) = 0

dP

dτ
= 0 P (0, t) = Pt

dQ

dτ
= 0 Q(0, t) = Qt

dIq
dτ

= 0 Iq(0, t) = 0

(5)

Using similar techniques in the asynchronous hyperparasitoid model in [0, T ], the corresponding
solutions are as follows:

L(τ, t) = RHte
−cpPtτ

Ip(τ, t) = RHt(1− e−cpPtτ )

P (τ, t) = Pt

Q(τ, t) = Qt

Iq(τ, t) = 0
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From this, we now construct the system of differential equations for the interval [Tq, Tp] :

dL

dτ
= −cpPL L(Tq, t) = RHte

−cpPtTq

dP

dτ
= 0 P (Tq, t) = Pt

dQ

dτ
= 0 Q(Tq, t) = Qt

dIp
dτ

= cpPL− cqQtIp Ip(Tq, t) = RHt(1− e−cpPtTq)

dIq
dτ

= cqQtIp Iq(Tq, t) = 0

(6)

The corresponding solutions for the overlap interval of the parasitoid and the hyperparasitoid are
given below:

Their respective solutions using the initial conditions are:

L(τ, t) = RHte
−cpPtτ

Ip(τ, t) = RHt(1− e−cpPtTq) +
cpPtRHt

cqQt − cpPt
(e−cpPtτ − e−cpPtTq)

P (τ, t) = Pt

Q(τ, t) = Qt

Iq(τ, t) = RHt − L(τ, t)− Ip(τ, t)

where the solutions for Ip and Iq were obtained using an integrating factor and conservation laws.
From this, we have the following system of equations on the interval [Tp, T ] :

dL

dτ
= 0 L(Tp, t) = RHte

−cpPtτ

dP

dτ
= 0 P (Tp, t) = Pt

dQ

dτ
= 0 Q(Tp, t) = Qt

dIp
dτ

= −cqQtIp Ip(Tp, t) = RHt(1− e−cpPtTq) +
cpPtRHt

cqQt − cpPt
(e−cpPtTp − e−cpPtTq)

dIq
dτ

= cqQtIp Iq(Tp, t) = 0

(7)

From this, we obtain the following solutions on this subinterval:

L(τ, t) = RHte
−cpPtTp

Ip(τ, t) = UecqQtTpe−cqQtτ

P (τ, t) = Pt

Q(τ, t) = Qt

Iq(τ, t) = U + V − UecqQtTpe−cqQtτ

10



From our above solutions, we have the following discrete update:

Ht+1 = RHte
−cpPtT

Pt+1 = kpUe
cqQtTpe−cqQtT

Qt+1 = kq(U + V − UecqQtTpe−cqQtT )

Our results for the overlap model with constant response rates are provided below:

Figure 9: Trajectory Diagram of Overlap Model

During the overlapping model, we concluded that for constant response rates, we have the system
being unstable. For functional response, we have the system being unstable for low number m. A
further extension of the model is to try to incorporate other techniques (e.g. Beddington Model) to
attempt to make the system stable.

Migration Model

We are interested in looking at the vulnerable period τ (see Fig. (??)) changes from τ = 0 to τ = T ,
where the L1, I1, P1, P2 and P3 follow the following continuous system:

dL1

dτ
= −cL1 P1

dI1
dτ

= cL1 P1

dP1

dτ
= −(m12 +m13)P1 +m21P2 +m31P3

dP2

dτ
= m12P1 − (m21 +m23)P2 +m31P3

dP3

dτ
= m13P1 +m23P2 − (m31 +m32)P3

11



Given the above system, assuming small migration size, we have shown numerically how the popu-
lation of parasitoid, uninfected larvae and infected larvae are changing in the vulnerable period (see
Fig. (10)).

Figure 10: Time evolution of parasitoid, uninfected larvae and infected larvae during the vulnerable
period

Selective Competition Model

In the selective competition model, we have three separate species of parasitoids that attack two
separate species of host. As seen in Figure 11, Parasitoid 1 attacks Host 1, and Parasitoid 2 attacks
Host 2. Parasitoid 3 attacks both Host 1 and Host 2. This model can be represented by the following
system of differential equations:

dL1

dτ
= −c1P1tL1 − c3P3tL1

dL2

dτ
= −c2P2tL2 − c3P3tL2

dI1
dτ

= c1P1tL1

dI2
dτ

= c2P2tL2

dI3
dτ

= c3P3tL1 + c3P3tL2

dP1

dτ
= 0

dP2

dτ
= 0

dP3

dτ
= 0
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Figure 11: Diagram of selective competition model

where L1 and L2 represent the concentrations of uninfected Host 1 larvae and Host 2 larvae,
respectively; I1, I2, and I3 represent the concentrations of host larvae infected by Parasitoids 1, 2,
and 3, respectively; g1, g2, and g3 represent the general rates at which the parasitoids attack the
hosts by Parasitoids 1, 2, and 3, respectively; and P1, P2, and P3 represent the concentrations of
each type of adult female parasitoids with eggs. R1, R2 represent the number of viable host eggs
per adult host. c1, c2, c3 represent the constant rates at which the parasitoids attack the hosts.
Since Parasitoid 3 attacks both Hosts 1 and 2, we initially assume that it attacks them at equal
rates. k1, k2, k3 represent the average number of each type of parasitoid larvae that emerge from
an infected host and survive to adulthood. We define the initial conditions to be L1(0, t) = R1H1t,
L2(0, t) = R2H2t, I1(0, t) = I2(0, t) = I3(0, t) = 0, P1(0, t) = P1t, P2(0, t) = P2t, and P3(0, t) = P2t.
Since the rates of change for each parasitoid concentration is 0, those concentrations will be constant.
Solving the differential equations, we find that:

L1(τ, t) = R1H1te
−(c1P1t+c3P3t)τ

L2(τ, t) = R2H2te
−(c2P2t+c3P3t)τ

I1(τ, t) =
c1P1tR1H1t

c1P1t + c3P3t
(1− e−(c1P1t+c3P3t)τ )

I2(τ, t) =
−c2P2tR2H2t

c2P2t + c3P3t
(1− e−(c2P2t+c3P3t)τ )

I3(τ, t) = R1H1t(1− e−(c1P1t+c3P3t)τ ) +R2H2t(1− e−(c2P2t+c3P3t)τ )

+
c1P1tR1H1t

c1P1t + c3P3t
(e−(c1P1t+c3P3t)τ − 1) +

c2P2tR2H2t

c2P2t + c3P3t
(e−(c2P2t+c3P3t)τ − 1)

Next, perform the discrete update:

H1,t+1 = R1H1tf1
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H2,t+1 = R2H2tf2

P1,t+1 =
k1c1P1tR1H1t

c1P1t + c3P3t
(1− f1)

P2,t+1 =
k2c2P2tR2H2t

c2P2t + c3P3t
(1− f2)

P3,t+1 = k3

[
R1H1t(1− f1) +R2H2t(1− f2) +

c1P1tR1H1t

c1P1t + c3P3t
(f1 − 1) +

c2P2tR2H2t

c2P2t + c3P3t
(f2 − 1)

]
We define f1 = e−(c1P1t+c3P3t)T and f2 = e−(c2P2t+c3P3t)T .
We find the fixed points. Let H∗

1 , H
∗
2 , P

∗
1 , P

∗
2 , P

∗
3 be the nontrivial fixed points of the system of

discrete difference equations. We find the following:

H∗
1 =

lnR1

k1TC1(R1 − 1)

H∗
2 =

lnR2

k2TC2(R2 − 1)

c1P
∗
1 + c3P

∗
3 =

lnR1

T

c2P
∗
2 + c3P

∗
3 =

lnR2

T
k3
k1
P ∗
1 +

k3
k2
P ∗
2 + P ∗

3 =
k3 lnR1

k1TC1
+
k3 lnR2

k2TC2

The equations in terms of P ∗
1 , P ∗

2 , and P ∗
3 can be solved symbolically, but the results differ

drastically depending on whether we assume k1 = k2 = k3 = 1 or not. If we make this assumption,
then we find that

P ∗
1 =

lnR1

c1T

P ∗
2 =

lnR2

c2T

P ∗
3 = 0

In other words, Parasitoid 3, which can attack either host, will die out. This scenario is not
desirable, so we examine the scenario in which k1, k2, k3 are not all equal to 1. In this case the fixed
point becomes

P ∗
1 =

c2c3k2 lnR1 + c1c3k1k3 lnR1 + c1c3k1 lnR2 − c1c3k1k2 lnR2 − c1c2k1k2 lnR1

c1T (c1c3k1k3 + c2k2(c3k3 − c1k1))

P ∗
2 = −c2c3k2k3 lnR1 − c2c3k2 lnR1 − c2c3k2k3 lnR2 − c1c3k1 lnR2 + c1c2k1k2 lnR2

c2T (c1c3k1k3 + c2k2(c3k3 − c1k1))

P ∗
3 =

c1k1k3 lnR2 + c2k2k3 lnR1 − c2k2 lnR1 − c1k1 lnR2

T (c1c3k1k2 + c2k2(c3k3 − c1k1))

We analyze the eigenvalues of the Jacobian of this system of differential equations in order to
test for stability. In order to do this, we will fix various parameters and vary others. Initially, we
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will vary R1 for fixed values of the other parameters, and selected values of c13 and c23. These values
are displayed in Table 1.

In Figure 15, we examine the stability of the system when the value c23 > c13; i.e., Parasitoid 3
is more likely to attack Host 2 than Host 1, and as R1 varies from 1 to 4. We see that the maximum
eigenvalue is never less than 1, so the fixed point is not stable. The populations of each parasitoid
and host are calculated by evaluating the fixed points for each parameter, and these are shown for
scenario A as R1 varies from 1 to 4. As Host 1 increases the number of eggs laid from 1 to 4, the
population of host 1 will decrease, while the population of host 2 will remain essentially constant,
the populations of Parasitoids 1 and 3 will increase, and the population of Parasitoid 2 will decrease.

In Figure 19, we examine the stability of the system when the value c13 = c23; i.e., Parasitoid
3 is equally likely to attack both hosts, and as R1 varies from 1 to 4. We see that the maximum
eigenvalue is never less than 1, so again the fixed point is not stable. The populations of each
parasitoid and host are calculated by evaluating the fixed points for each parameter, and these are
shown for scenario B as R1 varies from 1 to 4. The populations of each host and each parasitoid
will change in the same ways as they did in scenario A: Host 1 decreases, Host 2 stays constant,
Parasitoids 1 and 3 increase, and parasitoid 2 decreases.

In Figure 23, we examine the stability of the system when the value c13 > c23; i.e., Parasitoid 3
is more likely to attack Host 1 than Host 2, and as R1 varies from 1 to 4. We see that the maximum
eigenvalue is never less than 1, so again the fixed point is not stable. The populations of each
parasitoid and host are calculated by evaluating the fixed points for each parameter, and these are
shown for scenario C as R1 varies from 1 to 4. The populations of each host and each parasitoid will
change in the same ways as they did in scenarios A and B: Host 1 decreases, Host 2 stays constant,
Parasitoids 1 and 3 increase, and Parasitoid 2 decreases.

Next, we examine the impact on the eigenvalues, host population, and parasitoid population
when we vary k3 and c13. k3 represents the average number of Parasitoid 3 larvae that emerge from
an infected host and survive to adulthood, and we vary k3 from 0.5 to 2. Here we do not differentiate
between whether these larvae emerge from Host 1 or 2. c13 represents the constant rate at which
Parasitoid 3 attacks Host 1, ranging from 10−2 to 102, and the rate at which Parasitoid 3 attacks
Host 2 remains fixed.

In Figure 27, we analyze the stability of this scenario. The three-dimensional plot of the maximum
eigenvalues demonstrates that there is no situation with these parameters that results in the fixed
point being stable. Both Host 1 and Host 2’s populations remain constant as k3 changes, and the
populations of Parasitoids 2 and 3 remain constant while Parasitoid 1’s population decreases as k3
increases. These graphs are generated at the last value of c13 in the range, 102.

Finally, we examine the impact on the eigenvalues, host populations, and parasitoid populations
when we vary R1 and c13. As in the previous examples, we will vary c13 from 10−2 to 102, and R1

from 1 to 4. The values of the other fixed parameters are displayed in Table 3.
We analyze the stability of the scenario in Figure 31. From the three-dimensional plot of the

maximum eigenvalues, we can see that there is no situation with these parameters that results in
stability. The population of Host 1 decreases, while the population of Host 2 remains constant as
R1 varies from 1 to 4. The population of Parasitoid 1 increases as R1 varies from 1 to 4, while the
populations of Parasitoid 2 and 3 remain constant. These graphs are generated at the last value of
c13 in the range, 102.
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Table 1: Values of parameters for selective competition model for varying R1

R1 A R1 B R1 C

c1 0.1 0.1 0.1
c2 0.1 0.1 0.1
c13 0.1 0.1 0.2
c23 0.2 0.1 0.1
k1 1 1 1
k2 1 1 1
k3 1.5 1.5 1.5
r1 [1.01,4,100] [1.01,4,100] [1.01,4,100]
r2 2 2 2
t 1 1 1

Table 2: Values of parameters for selective competition model for varying k3 and c13
k3 c13

c1 0.1
c2 0.1
c13 logspace(-2,2,100)
c23 0.1
k1 1
k2 2
k3 [.5,2,100]
r1 2
r2 2
t 1
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Figure 12: Maximum eigenvalues

Figure 13: Host population

Figure 14: Parasitoid population

Figure 15: Stability analysis for scenario A as R1 varies
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Figure 16: Maximum eigenvalues

Figure 17: Host population

Figure 18: Parasitoid population

Figure 19: Stability analysis for scenario B as R1 varies
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Figure 20: Maximum eigenvalues

Figure 21: Host population

Figure 22: Parasitoid population

Figure 23: Stability analysis for scenario C as R1 varies
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Figure 24: Maximum eigenvalues

Figure 25: Host population

Figure 26: Parasitoid population

Figure 27: Stability analysis for varying k3 and c13
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Table 3: Values of parameters for selective competition model for varying R1 and c13
r1 c13

c1 0.1
c2 0.1
c13 logspace(-2,2,100)
c23 0.1
k1 1
k2 1
k3 1.1
r1 [1.01,4,100]
r2 2
t 1

Functional Response

Next, we implement a functional response, where instead of the rates of parasitoid attacks on the
hosts being constant, we assume the rates of attacks are functions of the density of the uninfected
host larvae. Assume that the functions are g1 = c1L

m, g2 = c2L
m, g13 = c13L

m, and g23 = c23L
m.

The solutions to the differential equations will thus be

L1(τ, t) = R1H1t

[
1

[1 +m(c1P1t + c13P13t)(RH1t)mτ ]1/m

]

L2(τ, t) = R2H2t

[
1

[1 +m(c2P2t + c23P23t)(RH2t)mτ ]1/m

]

I1(τ, t) =
c1P1tR1H1t

c1P1t + c3P3t

(
1− 1

[1 +m(c1P1t + c13P13t)(RH1t)mτ ]1/m

)

I2(τ, t) =
−c2P2tR2H2t

c2P2t + c3P3t

(
1− 1

[1 +m(c2P2t + c23P23t)(RH2t)mτ ]1/m

)

I3(τ, t) = R1H1t

(
1− 1

[1 +m(c1P1t + c13P13t)(RH1t)mτ ]1/m

)

+R2H2t

(
1− 1

[1 +m(c2P2t + c23P23t)(RH2t)mτ ]1/m

)

+
c1P1tR1H1t

c1P1t + c3P3t

(
1

[1 +m(c1P1t + c13P13t)(RH1t)mτ ]1/m
− 1

)

+
c2P2tR2H2t

c2P2t + c3P3t

(
1

[1 +m(c2P2t + c23P23t)(RH2t)mτ ]1/m
− 1

)
When we perform the discrete update, we find that these equations have the same form as the

difference equations in the original selective competition model,

H1,t+1 = R1H1tf1
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Figure 28: Maximum eigenvalues

Figure 29: Host population

Figure 30: Parasitoid population

Figure 31: Stability analysis for varying R1 and c13
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H2,t+1 = R2H2tf2

P1,t+1 =
k1c1P1tR1H1t

c1P1t + c3P3t
(1− f1)

P2,t+1 =
k2c2P2tR2H2t

c2P2t + c3P3t
(1− f2)

P3,t+1 = k3

[
R1H1t(1− f1) +R2H2t(1− f2) +

c1P1tR1H1t

c1P1t + c3P3t
(f1 − 1) +

c2P2tR2H2t

c2P2t + c3P3t
(f2 − 1)

]
with updated functions for f1 and f2. In this case, f1 = 1

[1+m(c1P1t+c13P13t)(RH1t)mT ]
1/m and

f2 = 1

[1+m(c2P2t+c23P23t)(RH2t)mT ]
1/m .

We also find that the trajectory of the functional response depends on m. Namely if m < 1,
the population is oscillatory with an increasing amplitude, whereas if m = 1 the population has
consistent oscillations. If m > 1 the populations stabilize. This is shown in Figure 32. The values of
the fixed parameters are shown in Table 4.

Table 4: Fixed parameters for functional response model
Parameter Value

r1 2
r2 2
c1 0.5
c2 0.4
c13 0.05
c23 0.01
t 1
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Figure 32: Functional response trajectory at varying m values
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Conclusion

This paper presents three variations on a standard host-parasitoid relationship model. The first
model working with the hyperparasitoid evaluates an asynchronous and synchronous timeframe for
the two infections. The asynchronous model provides a basis for the more realistic synchronous
time frame, where the two parasitoids’ vulnerable phase transiently overlap. In the model working
with the migration of parasitoids between patch locations, up to five locations were used to migrate
between and are shown to give different results depending on the migration rates, as expected. It
is not generalized yet for n locations, but this is an extension to the two location model. Finally,
the third model demonstrates selective competition between three parasitoid populations and two
hosts. As it stands, the model is unstable for all currently tested values, but a major discovery was
the significance of the average number of emerging parasitoids in this particular version of the model
in order to ensure that the third population does not die out. This is different compared to the
other model variations where the average number of emergence of the parasitoid populations do not
impact stability.

The model extensions as described in the sections above demonstrate an attempt to model the
different complex aspects that make up the reality of the host-parasitoid relationship, which can then
help us conceive feasible biocontrol methods For the overlap model, there is more work to be done
in examining the synchronous overlap of the hyperparasitoid and parasitoid infections. In the model
about migration, a generalization to n locations would be the next step. The selective competition
model can also be more generalized to include more host and parasitoid populations with different
preferences and selections than chosen in this model. In addition, the functional response model
could be altered such that the exponents on the g1 and g13 functions are different than the exponents
on the g2 and g23 functions. Other factors that could be considered for future model extensions
are the effects of intentional release of a population of parasitoids, incorporation of hymenopteran
specific sex ratio determination, and modeling species-specific defense behaviors.
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