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1 Introduction

Chronic or degenerative diseases of the eye have been historically difficult to medicate prop-
erly [1]. For many such diseases, medicated eye drops must be administered both frequently
and accurately to ensure successful treatment. Failure to adhere to such guidelines results in
significantly decreased effectiveness [2]. For this reason, researchers continue to explore med-
icated contact lenses as an alternative to eye drops [1][3][4]. We present a simple model to
help understand the effectiveness of drug delivery to the cornea by medicated hydrogel con-
tact lenses. This type of targeted medication has significant applications for the treatment
of glaucoma, an eye disease that can cause permanent blindness[1].

The tear film is a three-layered film that sits on top of the ocular surface and serves to
protect the eye and promote clear vision. The outermost layer is made up of lipids, the
middle and thickest layer is comprised mostly of water, and the innermost layer is formed
by mucins [5]. We ignore the outer and inner layers and consider only the tear film (TF)
and the inserted contact lens (CL).

For this treatment, the contact lens is saturated with some drug, and when inserted into
the eye, the drug diffuses into the surrounding tear films. Figure 1 shows the anatomy of
the eye with an inserted contact lens. Note that the contact lens divides the tear film into
two parts: the pre-lens tear film (PrLTF), which is exposed to the environment, and the
post-lens tear film (PoTF), which borders the cornea.

Figure 1: Anatomy of the eye with an inserted contact lens (not to scale).
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By solving a diffusion equation along with boundary conditions for the PrLTF and PoLTF
thresholds, we derive an analytical solution describing the concentration of the drug in the
CL in space and time. MATLAB 2017a is used to solve the problem numerically along
with equations for the thickness and drug concentration in the PrLTF and PoLTF. We then
visualize the solution with varying parameter values. From these results, we are able to
predict the amount of the drug that reaches the cornea and the amount that is lost to lateral
flow or other factors.

2 Models

We begin with some simple assumptions to build a framework of the model. During CL
wear the drug can diffuse from the CL into the PrLTF and into the PoLTF. Both the PrLTF
and PoLTF thicknesses can change over time; this affects the drug concentration in those
compartments. The drug can be lost from the PrLTF or PoLTF laterally and from the
PoLTF to the cornea; we assume the drug cannot return from these escape routes. The
following schematic captures these assumptions:

Figure 2: Schematic model of the contact lens system. Arrows indicate direction of diffusion.
Concentration values Ci are found for the bolded boxes.

We construct a compartment model consisting of a system of partial and ordinary differ-
ential equations to describe the dynamics of the drug concentration. The three concentration
variables to be considered are:

C, drug concentration in the contact lens
Cpre, drug concentration in PrLTF
Cpost, drug concentration in PoLTF
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We also build ordinary differential equations for the thickness of the PrLTF and PoLTF
over time. The following subsections describe the dynamics of drug flow between the three
regions.

2.1 Assumptions

We now discuss more complex assumptions that we will build into our model. We consider
factors that will change the thickness or concentration of a compartment during a single
blink and across many blink cycles. For instance, evaporation of the PrLTF removes water,
increasing the concentration of the drug in the PrLTF between blinks. During a blink, the
fluid in the PrLTF is replenished and some portion of the drug is swept away during the
blink. During a blink, the contact lens moves due to lid motion in both the lateral (along the
cornea) and transverse (towards/away from the cornea) directions. This creates a squeezing
effect in the PoLTF that removes fluid at the periphery of the contact lens. We assume there
is no deformation of the contact lens shape from blinking, PrLTF or PoLTF motion.

We also assume that the contact lens is initially uniformly saturated with a drug at
concentration Cinit. The contact lens thickness (200 µm) is much smaller than its lateral
extent (1.2 cm) and so diffusion in the lateral direction is neglected. The PrLTF and PoLTF
each have thicknesses on the order of 5µm, and as such are much thinner than the contact
lens. An estimate for the diffusion coefficient in the PrLTF and PoLTF is Dfilm = 5×10−10m2

/s [6]. Using the thickness hfilm = 5µm gives an estimate for the time scale of diffusion across
the thickness of the contact lens as h2

film/Dfilm = 0.05s. In the contact lens the effective
diffusion coefficient is Deff = 5 × 10−12m2 s−1. The corresponding time scale for diffusion
across the lens is H2/Deff = 8000s. Given the time scale estimates above, we assume that
the PrLTF and PoLTF are uniformly mixed and have concentrations Cpre(t) and Cpost(t)
that depend only on time. The diffusion problem in the contact lens neglects diffusion in the
lateral direction (along the cornea) and addresses only diffusion in the transverse direction.
Osmosis adds water to the PoLTF from the cornea, diluting the concentration of the drug
in the PoLTF (although we do not directly include this effect). A restoring term (that could
be driven by osmosis and/or by elastic rebound of the lens after a blink) will be included to
allow the PoLTF to, on average over multiple blink cycles, maintain a steady thickness. The
drug cannot come around the CL from the PrLTF and get to the PoLTF [6].

2.2 The Contact Lens Solution

If we begin by ignoring the PrLTF and PoLTF, we can focus on the CL itself and create a
simple model for the dynamics of the drug concentration. The simplest possible is a basic
diffusion model:

∂tC = D∂2
zC, −L < z < L (1)

with C(z, 0) = 1 for−L < z < L and C(z, 0) = 0 else, with a symmetry condition ∂zC(0, t) =
0. This assumes that the drug can diffuse outward into an infinite bath of fluid. If we assume
instead that ∂zC(±L, t) = 0, we are assuming no drug concentration escapes through the
top or bottom of the lens.
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Under this simple model, the amount of drug released up to time t, denoted Mt is
(counting both sides)

Mt = −2

∫ t

0

D
∂C

∂z
(x = L, t)dt

The problem listed above has an exact solution and the fractional drug release can be ex-
pressed as

Mt

M∞
= 1−

∞∑
n=0

8

(2n+ 1)2π2
exp

[
−(2n+ 1)2π2

4

Dt

L2

]
In the contact lens, we must account for the different layers. We assign the PoLTF-

cornea boundary the value z = 0. Let hpost(t) be the width of the PoLTF, H be the
width of the contact lens and hpre the width of the PrLTF. Then if Cpost and Cpre are the
concentrations in PoLTF and PrLTF, respectively, then we impose a new boundary condition
for the concentration C on the contact lens. This boundary condition couples the contact
lens concentration to that of the PrLFT and PoLFT.

Thus we obtain the model shown below. Here, k is the partition coefficient of the lens-
tearfilm boundary. See Figure 3 for a visual representation of the model with boundary
conditions.

C(hpost, t) = kCpre(t) t > 0
∂tC = D∂2

zC, hpost < z < hpost +H
C(hpost, t) = kCpost(t) t > 0

(2)

Figure 3: The concentration C of drug on the contact lens satisfies the PDE and boundary
conditions displayed. Direction of flow is indicated by arrows.

2.3 Pre-Lens Tear Film Equations

We develop the model in the PrLTF by considering the physical aspects of blinking and
evaporation. The height of the PrLTF hpre will decrease depending on the evaporation J ,
only to be replenished by blinking. We choose the simplest possible expression for J and let
it be constant. We model a blink by a repeated Gaussian G(t); this restores the height of
the fluid. Thus we get a differential equation for hpre:
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dhpre

dt
= −J + J ·G(t) (3)

Next we consider how the mass mpre of the drug in the PrLTF fluctuates due to diffusing
from the contact lens and decreasing during a blink. We find the mass by its physical
definition. Here, A is the cross-sectional area of the TF.

mpre(t) = A · hpre · Cpre (4)

The influx of mass from the contact lens will be the spatial derivative of the CL solution
C evaluated at the CL-PrLTF boundary. During a blink, fresh fluid wipes away some
proportion rpre of the amount of mass mpre present. This removal happens in a wave similar
to the rise of hpre. Thus we get a differential equation of the form

d

dt
(mpre) = A

(
−rprehpreCpreG(t)−D ∂C

∂z

∣∣∣∣
z=H+hpost

)
(5)

Writing in terms of Cpre, and canceling the common term A, we obtain our system for
PrLTF.

dhpre

dt
= −J + J ·G(t) t > 0

d

dt
(hpreCpre) = −rprehpreCpreG(t)−D ∂C

∂z

∣∣∣∣
z=H+hpost

(6)

2.4 Post-Lens Tear Film Equations

For the PoLTF, we have
dhpost

dt
= Qpost

B +Qpost
rebound (7)

d

dt
(hpostCpost) = D

∂C

∂z

∣∣∣∣
z=H

− kCCpost −Qpost, C
B +Qpost, C

rebound (8)

Each of the terms is described in the table below:
Qpost
B compression of the PoLFT during the blinking phase

Qpost
rebound the return of hpost to the initial maximum height hinit

post

D ∂C
∂z

∣∣
z=H

influx due to diffusion from the contact lens

−kCCpost outflux from PoLFT into the cornea

Qpost, C
B mass flux leaving the system due to squeezing of the PoLFT during blinking

Qpost, C
rebound mass flux reentering the system during rebound

The following sections explain these terms and how they are used on the model.
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2.4.1 Blink force

We first consider the fluxes in the PoLTF resulting from the blink. We can model the
situation as a classic fluid mechanics problem of a force applied to a flat plate sitting on top
of a thin film [7]. The film is assumed to have thickness h(t). Let the coordinate horizontally
along the film be x and vertically through the film be z. We will think of the CL as applying
a downward force F to the PoLTF, where the CL has its edges at x = ±W. The thin film
approximation of the Navier-Stokes equations in 2D is

0 = −∂zp, (9)

0 = −∂xp+ µ∂2
zu, (10)

0 = ∂xu+ ∂zv, (11)

where the first two equations are conservation of momentum in the z− and x− directions,
respectively, and the last is the continuity equation. The boundary conditions are no slip
and no flux at z = 0: u = 0, v = 0, no slip on the plate at z = h: v = dh

dt
, and we allow for

tangential movement of the fluid along the bottom of the plate: u = U0(t) at z = h. We also
have a pressure boundary condition: p = 0 at x = ±W . Here, we are letting p = p′ − p0,
where p′ is the actual pressure and p0 is atmospheric pressure.

We begin by noting that Eqn. (9) implies p is independent of z, and thus we may integrate
Eqn. (10) twice in z to find that

u(x, z, t) =
1

2µ
∂xp(z

2 − hz) +
U0(t)z

h
, (12)

where we have implemented the boundary conditions. Next, using the continuity equation,
we see that

v = − 1

2µ
∂2
xp

∫ z

0

(s2 − sh) ds = − 1

µ
∂2
xp

(
z3

6
− z2h

4

)
. (13)

Evaluating v at the film/plate interface gives

dh

dt
=
∂2
xp

12µ
h3. (14)

Rearranging for an equation for p, integrating twice in x and applying boundary conditions
gives

p =
6µ

h3

dh

dt
(x2 −W 2). (15)

We now note that the force applied to the fluid by the CL should balance the total pressure
across the lens:

0 = F +

∫ W

−W
p dx. (16)

Thus, integrating pressure along the lens, we find

F = −6µ

h3

dh

dt

∫ W

−W
(x2 −W 2)dx =

8µ

h3

dh

dt
W 3. (17)
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This suggests a form for Qpost
B given below:

Qpost
B =

Fh3
post

8µW 3
. (18)

It is worth noting that h(t) � W for all times. Thus, this force applied by the lens must
be very large in order to change the thickness of the PoLTF. We will choose this expression
for dh/dt for Qpost

B , and at least initially choose QE (elastic flux) so that it restores the fluid
lost by Qpost

B .
Another way we could arrive at Qpost

B is by computing

Qpost
B =

∫ h

0

u dz (19)

at both edges of the lens. Here, we are assuming this is the flux of fluid that escapes laterally
beyond the lens. Then we will choose Qpost,C

B to be CpostQ
post
B . To this end,∫ h

0

u|x=Wdz =
1

2µ
∂xp

∫ h

0

(z2 − zh) dz +
U0

h

∫ h

0

z dz = − h3

12µ
∂xp|x=W +

U0h

2
. (20)

Differentiating Eqn. (15) in x and subtituting this into Eqn. (20), after cancelation we have

−dh
dt
w +

U0h

2
. (21)

Note that this is the outward flux at x = W , where the outward normal vector points in the
same direction. The outward flux at x = −W points opposite the outward normal vector,
so that we will choose

Qpost,C
B = −Cpost

dhpost

dt
(22)

for the total concentration flux if dh/dt < 0, and Qc,post
B = 0 if dh/dt > 0.

2.4.2 Other fluxes

We choose the quantity Qpost
rebound to reflect the relatively slow bounce-back of hpost to hinit

post.
According to Maki and Ross [8] the eye can take up to 5 second after a blink to return to the
equilibrium length hinit

post. Thus we choose Qpost
rebound so that the resultant hpost behaves like a

hill function: we want rapid initial rebound, then a slow-down as hpost rises. Thus we choose

Qpost
rebound = KR(hinit

post − hpost), (23)

with KR chosen to ensure the correct qualitative behavior of hpost.
Furthermore, we assume that during rebound, none of the escaped drug returns to the

system. Therefore we set Qpost,C
rebound = 0. Combining, we get the following equations for

PoLTF:

dhpost

dt
= −

Fh3
post

8µW 3
G(t) +KR(hinit

post − hpost), (24)
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d

dt
(hpostCpost) = Cpost

(
dhpost

dt

)−
G(t) +D∂zC|z=hpost − kcCpost(t), (25)

where kc is the partition coefficient of the cornea-PoLTF boundary and(
dhpost

dt

)−
= min

{
dhpost

dt
, 0

}
.

perhaps GR = κ(1 − G(t)) so that the restoring force acts only between blinks. This
might need to be, in total on a blink cycle, around hpost − heq so that the PoLTF thickness
never goes to zero.

3 Analytical Solution to the Contact Lens Layer

Here we show our analysis of an explicit solution to the diffusion equation governing the
concentration C(t) of the drug within the contact lens. This is based on [9], although we
believe their solution to be erroneous. We provide our analysis of their solution, ignoring
errors. We also include our own, corrected solution in Section 3.6.

The system we wish to solve is:
C(hpost +H, t) = k · Cpre(t)
∂C
∂t

= D ∂2C
∂z2

C(hpost, t) = k · Cpost(t)

(26)

We incorporate the PrLTF and PoLTF boundary conditions separately by making sub-
stitutions of z = s and z = H − s into the solution from [9]. This yields two independent
solutions which we can add to find C(t):

3.1 Li-Chauhan Solution

Li et al started with a system similar to ours:
C(z = H, t) = k · Cpre(t)
∂C
∂t

= D ∂2C
∂z2

C(z = 0, t) = 0
C(z, t = 0) = Cinit

(27)

C(z, t) = Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)πz

H

)
e

−(2n+1)2π2

H2 D·t

+KCpre(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin(

nπz

H
)

]

−K
∫ t

0

Cpre(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin
(nπz
H

)
e

(−n2π2)D(t−τ)
H2 dτ

(28)

We adapt this solution for our diffusion system in two separate parts as below:
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3.2 System 1

By substituting (H − z) for z we obtain a solution for diffusion system with zero concentra-
tion within the PrLTF and drug diffusion to only to the PoLTF; call this the PoLFT solution.

C1(z = hpost +H, t) = 0

∂C1

∂t
= D

∂2C1

∂z2

C1(z = hpost, t) = k · Cpost(t)

C1(z, t = 0) =
1

2
Cinit

(29)

The full analytical solution is found to be:

C1(z, t) =
1

2
Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π(H − z)

H

)
e

−(2n+1)2π2

H2 D·t

+KCpost(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin(

nπ(H − z)

H
)

]

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin

(
nπ(H − z)

H

)
e

(−n2π2)D(t−τ)
H2 dτ

(30)

3.3 System 2

Equation 27 gives a direct solution for the diffusion system with zero concentration within
the PotLTF and drug diffusion only to the PrLTF; call this the PrLFT solution.

C2(z = hpost +H, t) = k · Cpre(t)

∂C2

∂t
= D

∂2C2

∂z2

C2(z = hpost, t) = 0

C2(Z, t = 0) =
1

2
Cinit

(31)

The full analytical solution is as follows:

C2(z, t) =
1

2
Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)πz

H

)
e

−(2n+1)2π2

H2 D·t

+KCpre(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin(

nπz

H
)

]

−K
∫ t

0

Cpre(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin
(nπz
H

)
e

(−n2π2)D(t−τ)
H2 dτ

(32)

It can be easily verified that
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C = C1 + C2 (33)

is a solution for the diffusion system of 26. Also note that the middle term consisting of
the product of KCpre(t) and z/H plus an infinite sum in equation 30 and equation 32 is zero.
To evaluate the drug influx quantities from the PoLTF and PrLFT in 8 and 6, we compute:

dC1

dz

∣∣∣∣
z=0

=
2

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2(−1)n
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (34)

dC2

dz

∣∣∣∣
z=0

= − 1

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (35)

dC1

dz

∣∣∣∣
z=H

= − 2

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

+K

∫ t

0

Cpre(τ)
∞∑
n=1

2
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (36)

dC2

dz

∣∣∣∣
z=H

= − 2

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

−K
∫ t

0

Cpre(τ)
∞∑
n=1

2
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (37)

3.4 Pre-lens and post-lens flux solutions

We now have enough materials for evaluating Fpre(t):

Fpre(t) =
dC

dy

∣∣∣∣
z=y

=
dC1

dy

∣∣∣∣
y=0

+
dC2

dy

∣∣∣∣
y=0

(38)

By appropriate cancellation and merging terms based on results above, we have:
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Fpre(t) =
dC

dy

∣∣∣∣
y=0

= Ci

∞∑
n=0

− 4

H
e−

−(2n+1)2π2

H2 D·t

+K

∫ t

0

∞∑
n=1

2(−1)n(Cpre(τ) cos(nπ)− Cpost(τ))
n2π2D

H3
e

−π2n2
H2 D·(t−τ)dτ

(39)

Similarly, we find Fpost(t):

Fpre(t) =
dC

dy

∣∣∣∣
y=H

=
dC1

dy

∣∣∣∣
y=H

+
dC2

dy

∣∣∣∣
y=H

(40)

Fpost(t) =
dC

dy

∣∣∣∣
y=0

= Ci

∞∑
n=0

4

H
e−

−(2n+1)2π2

H2 D·t

+K

∫ t

0

∞∑
n=1

2(−1)n(Cpost(τ) cos(nπ)− Cpre(τ))
n2π2D

H3
e

−π2n2
H2 D·(t−τ)dτ

(41)

We note that we could use numerical techniques with this solution to find the fluxes into
the PrLTF and PoLTF by approximating ∂Cz. One option would be to use cubic splines
along with boosting to find a discrete prediction of Cpre(t) and Cpost(t). Then we could
employ an appropriate quadrature rule for numerical integration.

3.5 Issues with Li-Chauhan Solution

We end this section by commenting on the solution in [10]. It is repeated below for consid-
eration.

C1(z, t) =
1

2
Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π(H − z)

H

)
e

−(2n+1)2π2

H2 D·t

+KCpost(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin

(
nπ(H − z)

H

)]

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin

(
nπ(H − z)

H

)
e

(−n2π2)D(t−τ)
H2 dτ

If one attempts to verify that it is a solution to the heat equation, then one must be
careful in passing the derivative under the infinite summations. In fact, when we take the
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derivatives with respect to t of the second and third terms, we run into major issues. In
both terms, we find that the putative derivative is not uniformly convergent–not convergent
at all in this case! Thus we cannot pass the derivative under the summations.

We note that the Fourier series in the second term, with coefficients 2(−1)n

nπ
, is the Fourier

series for − z
H

, and thus the second term is actually 0. The third term is not so easily
dispatched, as far as we can tell, and attempts to take its t derivative will be unsuccessful
for the above reasons.

This solution is still quite close to the one we obtain below, and perhaps a formal inte-
gration by parts would bridge the gap between the two.

3.6 Analytic Solution to the Diffusion Equation in the Lens

The diffusion equation within the lens for our model is a homogeneous heat equation with
non-constant boundary conditions, Cpre and Cpost. It is coupled with the compartments
generating these boundary conditions as well. We write our solution using Fourier Series,
and so we take an approach using Duhamel’s Principle.

The problem is to find C(z, t) satisfying the conditions below.



dC

dt
= D

d2C

dz2
0 < z < H, 0 < t

C(z, 0) = Ci = 1 0 < z < H

C(0, t) = Cpost(t) 0 < t

C(H, t) = Cpre(t) 0 < t

We approach this problem by first dealing with the two boundary conditions. We define
two simple functions, fpre and fpost, to account for the respective boundary conditions. We
define

fpre(y, t) = Cpre(t)
y

H
(42)

fpost(y, t) = Cpost(t)
H − y
H

(43)

These solve the following systems of equations. We recall that Cpre and Cpost are both 0
when t = 0.



dfpre

dt
= D

d2fpre

dz2
+ C ′pre

y

H
0 < z < H, 0 < t

fpre(z, 0) = 0 0 < z < H

fpre(0, t) = 0 0 < t

fpre(H, t) = Cpre(t) 0 < t



dfpost

dt
= D

d2fpost

dz2
+ C ′post

y

H
0 < z < H, 0 < t

fpost(z, 0) = 0 0 < z < H

fpost(0, t) = Cpost(t) 0 < t

fpost(H, t) = 0 0 < t

We will construct our solution C = fpre + fpost + u, where u solves the inhomogeneous
system below.
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

du

dt
= D

d2u

dz2
+ C ′pre

y

H
+ C ′post

H − y
H

0 < z < H, 0 < t

u(z, 0) = Ci = 1 0 < z < H

u(0, t) = 0 0 < t

u(H, t) = 0 0 < t

This system is solved through the use of a sin Fourier series expansion of the initial
condition. The boundary conditions are accounted for using Duhamel’s principle, and this
gives us the following formula for the concentration.

C(y, t) =

Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π

H
z

)
e

−(2n+ 1)2π2

H2
Dt

+
1

H
[Cpre(t)z + Cpost(t)(H − z)]

+
1

H

∞∑
n=1

t∫
0

(
2(−1)n

nπ

)[
C ′pre(τ) sin

(nπ
H
z
)

+ C ′post sin
(nπ
H

(H − z)
)]

e
−D

(nπ
H

2

(t−τ)

)
dτ

We invite the reader to verify that this does solve the system 3.6. The first term of C(y, t)
is itself a solution of the homogeneous heat equation with Dirichlet boundary conditions.
The second term clearly satisfies the nonzero boundary conditions, but upon derivation with
respect to t, new terms appear. Careful differentiation of the third term using Leibniz rule
yields a term which cancels with this one.

To check the initial and boundary conditions, it is important to note that the first term
contains the sine series for the constant 1, and that the third term contains the sign series
for −z, used twice.

We note that the solution given in [10, eq.A2-15] is very similar to ours. They take
a Laplace transform approach. However, careful examination shows that their formula is
incorrect, and in fact not differentiable. The second term in their equation is actually zero–
although this is hidden behind a sine series–and the third term is not differentiable in time,
if one pays attention to the convergence rate of the derivative. However, if one naively
differentiates through the summation sign, without respect to appropriate convergence, then
you can verify that their formula “formally” solves the problem. Our solution is very close
to theirs, and may only differ by a formal integration by parts.

4 Nondimensionalization

We now move towards a numerical solution of the full problem. In doing so we will dis-
cretize even the diffusion problem discussed above, although as mentioned it has an analytic

13



solution. Whether solved analytically or numerically, nondimensionalization is required to
identify dominant parameters and to make the problem physically relevant. In order to
nondimensionalize the system, we must pick essential quantities in several different units
used in our problem. We choose the height of the contact lens in meters, H, as our char-
acteristic length, the time of one blink cycle in seconds, tB, and the initial concentration of
the drug in the contact lens Cinit as our base variable for concentration. All other variables
are nondimensionalized in terms of these.

4.1 Justification of 1D diffusion model

Note that if we look again at the problem just in the CL, we could begin with a two dimen-
sional version of the diffusion equation and argue that due to our scalings, the problem may
be reduced to one in a single spatial variable.

Defining scalings for our variables in terms of characteristic units:

x̄ =
x

W
, z̄ =

z

H
, t̄ =

t

tB
, C̄ =

C

Cinit

,

we let bars denote dimensionless variables and W � H. Here, we are modeling the TF-CL
system so that the z-axis is aligned perpendicular to the lens and the x-axis is aligned along
the lens. Inserting this into the 2D diffusion equation gives

Cinit

tB
∂tC =

CinitD

H2

(
∂2
zC +

(
H

W

)2

∂2
xC

)
(44)

Letting H/W = ε, we see that at leading order in ε, the above equation becomes

∂tC =
tBD

H2
∂2
zC. (45)

This suggests that in a lubrication theory setting like the TF, a one-dimensional model
in space is sufficient to capture the dynamics of the system.
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4.2 Variables

We list variables that are now non-dimensionalized:

t =
t

tB
(46)

z =
d

H
(47)

h pre =
hpre

H
(48)

h post =
hpost

H
(49)

C =
C

Cinit

(50)

C pre =
Cpre

Cinit

(51)

C post =
Cpost

Cinit

(52)

G ( t ) = tBG(t) (53)

W =
W

H
(54)

J =
tB
H
J (55)

D =
tB
H2

D (56)

F =
tBFblink

8µH W 3
(57)

K L =
KLtB
H

(58)

σ =
σ

tB
(59)

Many of these are standard substitutions, but we highlight the function G(t). We have
chosen G(t) to be an approximation of the Dirac delta function. (Several such substitutions
might be made, with various levels of accuracy in correctly approximating the motion and
effect of an eye blink.) However, this necessitates G(t) have the units 1/s, and so even this
must be nondimensionalized.

We also remark on the variables W , J , D , F , and KL as they are governing parameters
for the system. These are the parameters that affect the behavior and outcome of the system,
such as total drug absorbed into the cornea, or lost into the rest of the eye.

4.3 Numerical Parameter Values

Parameter values k, Kc andD were obtained from the paper by Li & Chauhan [10]. Estimates
for the blink force were from papers by Chauhan & Radke (2002) and Martin & Holden
(1986). From a study involving 42 healthy TF subjects, the average blink rate was measured
at 11 blinks/min [11]. Consider moving this to the results section: The drug diffuses out

of the contact lens after approximately (2×10−4m)2

5×10−12m2 s, or about 2 hours. This corresponds to
about 1600 blinks, assuming the subject blinks every 5 seconds. For the post- and pre- lens,
the drug diffuses through these regions in about 0.05 seconds [12].

Many of our parameter values were taken from [6], whose authors used a similar model
framework. We list these values below, along with their corresponding dimensionless param-
eters.
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4.3.1 Table of Variables and Parameters

tB length of blink cycle 5 s t B 1
H CL height 2−4 m H 1
J PrLTF evaporation rate 1

6
× 10−7m/s J 4.167× 10−4

hinit
pre PrLTF initial height 5× 10−6 m h init

pre 2.5× 10−2

hinit
post PoLTF initial height 5× 10−6 m h init

post 7.5× 10−2

W CL width 7× 10−3 m W 35
D CL diffusion constant 5× 10−12 m2/s D 6.25× 10−4

CL-TF boundary diffusion coefficient k 5
Kc PoLFT-cornea boundary diffusion coefficient 1.5× 10−7m/s K c 3.75× 10−3

KR PoLFT rebound coefficient 5 K R 1
µ TF viscosity 1.3× 10−3Pa· s
F force exerted by CL on PoLTF 1-10 N/m F 5.61× 102

4.4 Equations in Nondimensional Form

We now write out our system of equations in these new variables, beginning with the ordinary
differential equations, followed by the partial differential equation governing the diffusion of
the drug through the hydrogel lens. In the upcoming section, we compute a numerical
solution to this system of differential equations.

d h pre

d t
= − J + J G ( t ) (60)

d h preC pre

d t
= rpreC pre h preG ( t )− D

dC

d z

∣∣∣∣
z=1+h post

(61)

d h post

d t
= F h post G ( t ) + K R(h init

post − h post) (62)

d h post C post

d t
= C post

(
d h post

d t

)−
+ D

dC

d z

∣∣∣∣
z=h post

− K LC post (63)


dC

d t
= D

d2C

d z 2
z ∈ (h post, h post + 1)

C = k C pre z = hpost + 1

C = k C post z = h post

5 Results

The following solutions are obtained numerically. We begin by discretizing the spatial domain
of the CL using the Chebyshev spectral collocation method [13]; the resulting system of ODEs
at the Chebyshev points along with the ODEs for the thickness of the PrLTF, drug mass in
the PrLTF, thickness of the PoLTF, and drug mass in the PoLTF is solved in Matlab 2017a
via ode15s.
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5.1 Numerical solutions

For the plots that follow, we use a decay rate of r = 10 to control the mass of the drug
leaving the PrLTF and kr = 5 to control the restoring rate at which the PrLTF thickness
returns to its initial value. Our nondimensional CL domain is represented by a unit length,
where z = 0 is the CL/PoLTF boundary, and z = 1 is the CL/PrLTF boundary.

There is a distinct difference in the qualitative nature of solutions at short times versus
long times. The following two plots highlight the slowness of diffusion in the CL. Each curve
represents a different time level measured in number of blink cycles completed. We note that
at short times, the middle of the CL remains near initial concentration, while more drug is
diffused to the PrLTF than the PoLTF. At long times, the drug has diffused away from
the middle of the CL and the concentration is approaching zero at the PrLTF and PoLTF
boundaries. We remind the reader that a rough estimate of the time it would take all drug
concentration to leave the CL is 1600 blinks; Fig. 5 shows this.

Figure 4: Drug concentration in the CL from the PrLTF (z = 0) to the PoLTF (z = 1) over
25 blink cycles.
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Figure 5: Drug concentration in the CL from the PrLTF to the PoLTF.

Figure Fig. 6 looks at the dynamics in the PrLTF and PoLTF for short times. We recall
our assumption that these layers are thin enough relative to the CL that we treat them
as point quantities in space that vary over time. The PrLTF over time is changed slightly
by evaporation; we expect this tiny oscillation due to the blink action G(t) and our small
evaporation force J . The action of the blink on the PrLTF concentration can be seen by the
periodic spikes in the lower left corner plot of Fig. 6. The PoLTF thickness has a greater
oscillation than that of the PrLTF due to the downward force from the CL (discussed in
section 2.4.1). However, just like the blink action on the PrLTF, there is a restorative force
that acts to bring the PoLTF thickness closer to its starting value after each blink. The drug
concentration in the PoLTF is not affected by the blink cycle and thus is non-oscillatory,
but ultimately decreases over time due to the drug mass lost to the cornea and laterally
beyond the CL. The dynamics shown in Fig. 6 are shown only at short times, but their
trends continue if we increase the number of blink cycles.
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Figure 6: PrLTF and PoLTF thickness and concentration dynamics over 20 blink cycles.

Figures 7, 8, and 9 track the mass of the drug over time as well as how much of the drug
has been delivered to the cornea. The force acting on the PoLTF is an order of magnitude
greater for the case plotted in Figure 7 than for the case in Figure 8. The lower force case
delivers approximately 18% of the initial drug to the cornea, while the higher drug case
delivers approximately 25% of the initial drug to the cornea.

In Figure 9, the value of rpre (which controls how much drug is lost during blinking)
has been lowered in addition to the force on the PoLTF. As expected, the resulting amount
of drug delivered to the cornea is higher than in either of the previous two cases, with
approximately 27% of the drug being delivered to the cornea.

In all cases, the drug leaves the system at a decreasing rate, and the proportion of the drug
leaving the system that goes to the cornea appears to approach a constant after hundreds of
blinks. Moving most of the mass out of the system appears to require around 1200 blinks,
which corresponds to one to two hours.
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Figure 7: Mass tracked over time.

Figure 8: Mass tracked over time with a lower force acting on the PoLTF.
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Figure 9: Mass tracked over time with a lower force acting on the PoLTF.

6 Summary

Starting from a very simple diffusion model for the contact lens, we have introduced a
framework to incorporate the PrLTF and PoLTF and explored both analytic and numerical
solutions in our quest for a model for the diffusion of a drug from a contact lens into the
cornea. Our model involves ODEs for the PrLTF and PoLTF and keeps the diffusion equation
for the CL. By coupling these models together at the boundaries, we have found a system of
ordinary differential equations and solved that system numerically for various values of the
governing parameters.

Exact values for the governing parameters are unknown, but using reasonable estimates
from the literature has given results that are consistent with other findings. Specifically,
the main result is that approximately 20% of the drug is eventually delivered to the cornea,
while 80% is lost to non-targeted areas. The actual amount delivered to the cornea depends
on the specific parameters chosen to model what happens to the drug during the blink, such
as the force on the PoLTF and the factor capturing how much fluid is washed away from the
PoLTF during a blink, kpre.

Avenues for future work include:

• Incorporating the analytical solution to the diffusion equation for the contact lens with
time-varying boundary conditions discussed in this paper into the numerical scheme.

• Including the lateral motion of the contact lens in the model.

• Modeling the spatial dependence of the concentration in the PrLTF and PoLTF.

• Considering more complicated expressions for the evaporation function J , perhaps

involving an van der Waals term, such as J = 1 −
(
heq

h

)3

, that further serve to

prevent the film from thinning to zero.
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