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Abstract

Membrane filters are used in various industrial engineering processes and one of the most significant applications is
water purification, where target particles, colloids and macromolecules, are removed from the water flow by applying
microfiltration. Hence mathematical models to predict their efficacy are potentially very useful, as such models can
suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe
particle capture by membrane filters and the associated fluid dynamics, but most of such models are based on a very
simple structure in which the pores of the membrane are assumed to be simple circularly cylindrical tubes spanning the
depth of the membrane. Real membranes used in applications can have much more complex internal structure, with
interconnected pores that may branch and bifurcate, and pore-size variation across the membrane. However, during
the filtration process, membrane fouling due to the block of large particles and deposition of small particles occur
and decreases the membrane performance. Thus, the membrane’s permeability decreases as the filtration progresses.
Two driving mechanisms can be considered an here: (i) constant pressure drop across the membrane specified; and (ii)
constant flux through the membrane specified. In the former case the flux will decrease in time as the membrane becomes
fouled; in the latter, the pressure drop required to sustain the constant flux will rise as fouling occurs. Considering
elasticity to sub-branches in constant flux scenario, in some stage of filtration process, the radius of pores may tend to
expand due to the effect of high pressure on the elastic sub-branches, which is not negligible.

1 Introduction

Membrane filters are crucial in many industrial engineering processes. Most importantly, they are used for water pu-
rification, but other applications include air and other gas purification, treatment of radioactive sludge, and even beer
purification [1]. They also show up in the biotech field, where they are used in artificial kidneys to remove toxic sub-
stances [2]. Filtration was also used to help brew your cup of coffee this morning.

Depending on the application, membrane filters could be made of various materials and geometries [1]. A few different
structures are shown in figure 1. These arise from finding a balance between the control of the particle removal and
minimization of the energy requirements. For consideration, a membrane with small pores such that all of the particles
are filtered will require a large amount of energy to as there will be a high resistance for the flow. Hence, it is commonly
used in the industry that absorption is to be responsible for a significant portion of filtration, that is, the deposition of
small particles on the pore walls within membrane. That way, membranes with larger pores operating with lower pressures
can be used.

The flow through membrane filters is often modeled by studying the flow through rigid pores, one of which is shown
in figure 2, using Darcy’s Law. This is assuming a low Reynolds number and gives the dependence of the flux through
the pores from pressure. It is also usually assumed that the pores are axisymmetric, i,e, the symmetric about the axis.
If the cases where the pores are treated as an elastic system, it can be assumed that the filter is the same material, and
hence, has the same elastic properties as the membrane. This is a property to consider since some industrial membranes
have layers of different material filters.

The goal of this work is to analyze the effects of pressure on the pore size of the filters and the concentration throughput
using the preceding assumptions. In particular, we assume a superficial Darcy velocity of the fluid. The model is applied
to two different cases: thick-walled cylinders and thin-walled cylinders, both of which are considered elastically. Therefore,
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to derive the pore radius deformation, we use the Donnell shell theory [4] for thin-walled cylinders whereas we use the
cylindrical coordinate methods for thick-walled deformation [6].P. Apel / Radiation Measurements 34 (2001) 559–566 563

Fig. 2. A few examples of porous structures produced in thin polymeric !lms using various methods of irradiation and chemical treatment: (A)
cross section of a polycarbonate TM with cylindrical non-parallel pore channels; (B) polypropylene TM with slightly conical (tapered towards
the center) parallel pores; (C) polyethylene terephthalate TM with cigar-like pores; (D) polyethylene terephthalate TM with “bow-tie” pores.

pores can be modi!ed by covalent binding of charged groups
or by adsorption of ionic polyelectrolytes (Froehlich and
Woermann, 1986). The immobilization of aminoacids to the
PET track membranes based on the reactions of end carboxyl
and hydroxyl groups was reported (Marchand-Brynaert
et al., 1995; Mougenot et al., 1996). However, the surface
density of the immobilized in this way species is rather
low.
The radiation-induced graft polymerization onto track

membranes is a process which has been studied in more
detail (Zhitariuk et al., 1989; Zhitariuk, 1993; Tischenko
et al., 1991; Shtanko and Zhitariuk, 1995). Styrene (St),
methacrylic acid (MAA), N -vinyl pyrrolidone (VP),
2-methyl 5-vinyl pyridine (2M5VP), N -isopropyl acryl-
amide (NIPAAM) and some other monomers have been
grafted onto PET track membranes. Grafting of St in-
creases the chemical resistance and makes the membrane
hydrophobic. MAA and VP were grafted onto TMs to in-
crease wettability which is especially important when aque-
ous solutions are !ltered through small-pore membranes.
2M5VP was grafted with the aim to make the membrane
hydrophilic and change its surface charge from negative to
positive. During the past decade the grafting of NIPAAM
and other intelligent polymers were extensively studied in
the research work carried out at TRCRE (Takasaki) and
GSI (Darmstadt) (Yoshida et al., 1993, 1997; Reber et al.,
1995).

7. Applications

Applications of commercially produced track membranes
can be categorized into three groups: (i) process !ltration;
(ii) cell culture; (iii) laboratory !ltration. The process !l-
tration implies the use of membranes mostly in the form
of cartridges with a membrane area of at least 1 m2. Pu-
ri!cation of deionized water in microelectronics, !ltration
of beverages, separation and concentration of various sus-
pensions are typical examples. There is a strong competi-
tion with other types of membranes available on the mar-
ket. Casting membranes often provide a higher dirt load-
ing capacity and a higher throughput. For this reason the
use of track membranes in this !eld is still limited (Brock,
1984).
In the recent years a series of products were de-

veloped for the use in the domain called cell and tis-
sue culture (Stevenson et al., 1988; Sergent-Engelen
et al., 1990; Peterson and Gruenhaupt, 1990; Roth-
man and Orci, 1990). Adapted over the years to a va-
riety of cell types, porous membrane !lters are now
recognized as providing signi!cant advantages for cul-
tivating cells and studying the cellular activities such
as transport, absorption and secretion (van Hinsbergh
et al., 1990). The use of permeable support systems based
on TMs has proven to be a valuable tool in the cell biology
(Costar=Nuclepore Catalog, 1992).

Figure 1: Membrane filters

2 Thick-Walled Cylinders

2.1

The thick-walled cylinder can be seen as shown in figure 2. Here, X is the axial direction, C(X,T ) denotes the concentration
of small particles, A(X,T ) is the radius of the pore at X and time T , D is the length of the pore, and 2W denotes width
and depth of an element of the membrane containing a single pore. We describe the deformation of the elastic membrane
using Navier-Cauchy equation

µ1∇2Ω + (µ2 + µ1)∇(∇ ·Ω) + H = ρ
∂2Ω

∂T 2
, (1)

where Ω = (ΩR,Ωθ,ΩX) is the displacement vector in cylindrical coordinates, ρ denotes the density, µ1 and µ2 are Lamé’s
first and second parameters, respectively. Lamé’s parameters are given by

µ1 =
E

2(1 + ν)
,

µ2 =
Eν

(1 + ν)(1− 2ν)
,

(2)

where E is Young’s modules, and ν is Poisson’s ratio.
Let body force H = 0, as we will consider the force due to pressure at the boundary conditions. Assuming an

elastostatic condition (the condition of equilibrium, in which all forces on the body sum to zero), we have

∂2Ω

∂T 2
= 0. (3)

Putting equation (1), (2) and (3) together, it follows that

∇2Ω + 2ν∇(∇ ·Ω) = 0. (4)

Write the governing equation (4) componentwisely in cylindrical coordinates,

∇2ΩR −
ΩR
R2
− 2

R2

∂Ωθ
∂θ

+
1

1− 2ν

∂

∂R
(∇ ·Ω) = 0, (5)

∇2Ωθ −
Ωθ
R2
− 2

R2

∂ΩR
∂θ

+
1

1− 2ν

∂

∂R
(∇ ·Ω) = 0, (6)

∇2ΩX +
1

1− 2ν

∂

∂X
(∇ ·Ω) = 0, (7)

since divergence operator and Laplacian operator in cylindrical coordinates has the form

∇ ·Ω =
1

R

∂

∂R
(RΩR) +

1

R

∂Ωθ
∂θ

+
∂ΩX
∂X

, (8)

∇2Ωi =
1

R

∂

∂R

(
R
∂Ωi
∂R

)
+

1

R2

∂2Ωi
∂θ2

+
∂2Ωi
∂X2

. (9)
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Figure 2: Schematic showing the single unit of membrane, assumed repeated in a square lattice. Small particles, at
concentration C(X,T ), which enter pores and deposit within, are indicated, as are large particles, which block the pore
inlet.

Note that Ωθ = 0 due to the axisymmetric geometry. Denote n the normal vector to the pore wall, and note that it is

parallel to ∇(R−A) =
(
∂(R−A)
∂R , 0, ∂(R−A)

∂X

)
= (1, 0,− ∂A

∂X ). Furthermore,

ΣR =
E(1− ν)

(1 + ν)(1− 2ν)

∂ΩR
∂R

+
Eν

(1 + ν)(1− 2ν)

1

R

(∂Ωθ
∂θ

+ ΩR

)
+

Eν

(1 + ν)(1− 2ν)

∂ΩX
∂X

, (10)

Σθ =
Eν

(1 + ν)(1− 2ν)

∂ΩR
∂R

+
E(1− ν)

(1 + ν)(1− 2ν)

1

R

(∂Ωθ
∂θ

+ ΩR

)
+

Eν

(1 + ν)(1− 2ν)

∂ΩX
∂X

, (11)

ΣX =
Eν

(1 + ν)(1− 2ν)

∂ΩR
∂R

+
Eν

(1 + ν)(1− 2ν)

1

R

(∂Ωθ
∂θ

+ ΩR

)
+

E(1− ν)

(1 + ν)(1− 2ν)

∂ΩX
∂X

. (12)

We would like to scale all of the variables to render the equations dimensionless. We introduce the following change of
variables

X = Dx, A = Wa = εDa, R = Wr = εDr, (ΩR,Ωθ,ΩX) = W (ωr, ωθ, ωx), (Σ, P ) =
8µDQpore
πW 4

(σ, p), (13)

where ε := W
D � 1.

The axisymmetric assumption gives Ωθ = 0 and therefore there is no θ-dependency. We rewrite equations (5), (6), and
(7) using (8), (9) and (13) and get

1

εD

{
1

r

∂

∂r

(
r
∂ωr
∂r

)
+

1

r2
∂2ωr
∂θ2

+ ε2
∂2ωr
∂x2

− ωr
r2
− 2

r2
∂ωθ
∂θ

+
1

1− 2ν

∂

∂r

[
1

r

∂

∂r
(rωr) +

1

r

∂ωθ
∂θ

+ ε
∂ωx
∂x

]}
= 0, (14)

0 = 0, (15)

1

εD

{
1

r

∂

∂r

(
r
∂ωr
∂r

)
+ ε2

∂2ωx
∂x2

+ ε
1

1− 2ν

∂

∂x

[
1

r

∂

∂r
(rωr) + ε

∂ωx
∂x

]}
= 0. (16)

Extracting the leading order terms of equation (14) and (16), we get

1

r

∂

∂r

(
r
∂ω0r

∂r

)
− ω0r

r2
+ 2ν

1

r

∂

∂r
(rω0r) = 0, (17)

1

r

∂

∂r

(
r
∂ω0x

∂r

)
= 0. (18)

The boundary conditions are

ΣR

∣∣∣
R=A

= P,
∂ΣR
∂R

∣∣∣
R=W

= 0, (19)
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which become

σr

∣∣∣
r=a

= p,
∂σr
∂r

∣∣∣
r=1

= 0. (20)

The clamped boundary conditions take on the form

ωx

∣∣∣
x=0

= 0, ωx

∣∣∣
x=1

= 0, (21)

8µDQpore

πW 4
σr =

E

(1 + ν)(1− 2ν)

[
(1− ν)

∂ωr
∂r

+ ν
ωr
r

+ νε
∂ωx
∂x

]
, (22)

leading to

σr =
πEW 4

8µDQpore(1 + ν)(1− 2ν)

[
(1− ν)

∂ωr
∂r

+ ν
ωr
r

+ νε
∂ωx
∂x

]
. (23)

By letting η = πEW 4/[8µDQpore(1 + ν)(1− 2ν)], the first-order terms give

σr0 = η

[
(1− ν)

∂ω0r

∂r
+ ν

ω0r

r

]
. (24)

Defining y := ω0r and y′ := ∂ω0r

∂r allows us to obtain the ordinary differential equation

1

r
(ry′)

′ − y

r2
+

1

1− 2ν

(
1

r
(ry)′

)′
= 0, (25)

which has the solution

ω0r = c1(x)r +
c2(x)

r
. (26)

Hence,

σr0 = η
[
(1− ν)

(
c1 −

c2
r2

)
+ ν

(
c1 +

c2
r2

)]
. (27)

Since σr0|r=a = p0 and ∂σr0

∂r |r=1 = 0 we have

p0 = η
[
(1− ν)

(
c1 −

c2
a2

)
+ ν

(
c1 +

c2
a2

)]
, (28)

from which
0 = η [(1− ν)2c2 − ν(2c2)] . (29)

This allows us to conclude that
c2 = 0, c1 =

p0
η
, ω0r =

p0r

η
. (30)

3 Thin-Walled Cylinders

To analyze the flow through the membrane pore, we consider cylindrical geometry having a much smaller cross-sectional
area than the “stream-wise” dimension and a negligible thickness compared to the cross-sectional dimension. In other
words, apart from the assumption of steady and axisymmetric flow, we assume that the length, D, and the pore radius,
A, satisfy A/D � 1. This is shown in figure 3.

When analyzing the membrane pore, we make use of Donnell’s Shell Theory which takes into account the bending of
the membrane pore as well [4]. Though we skip the intricate details associated with the equation expressing the momentum
balance, the reader is encouraged to consult DYM [5]. Also, the thickness of the pore, Υ, is assumed to be small compared
to the pore radius, i.e., Υ/A� 1.

3.1 Donnell Shell Equation

Following Anand and Christov [4], we introduce elasticity in our system with the following equation

EΥ3

12(1− ν2)

(
∂4Ωr
∂X4

+
12Ωr
Υ2A2

)
= P (X), (31)

in which we substitute the dimensionless variables

X = Dx, A = Wa, Ωr =
8µDQpore

πEW 3
ωr, P =

8µDQpore

πW 4
p (32)
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X
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Figure 3: Schematic showing the single unit of membrane with a thin shell. Small particles, at concentration C(X,T ),
which enter pores and deposit within, are indicated, as are large particles, which block the pore inlet.

in order to obtain (
Υ

a

)2 ( a
D

)4 ∂4ωr
∂x4

+
12ωr
W 2

=
12(1− ν2)a2

ΥW
p. (33)

For our thin-walled and slender shell, the relationships Υ � A and A � D indicate that the partial derivative term can
be neglected to the leading order in Υ/A and A/D. It follows that the pore radius deformation from the terms left over
is given by

ωr =
(1− ν2)W

Υ
pa2. (34)

This relationship will dictate how the pore expands as its radius and the fluid pressure change.

4 Computations

Our goal is to use the current pore radius and pressure values to update the radius. We begin by computing the particle
concentration by resolving the ordinary differential equation

∂c

∂x
= −λ̃ca, c(x = 0, t) = 1 (35)

and the concentration is employed in finding the radius by solving

∂a

∂c
= −β̃c, a(x, t = 0) = a0(x). (36)

We use the obtained quantities to determine the number of unblocked pores using

dn

dt
=

[
−n
(
n+

1− n
1 + ρba4

)−1
(1− g(a))

]
x=0

(37)

and, in turn, we solve the following integral for the pressure

p =

∫ 1

x

dx′

a4[n+ (1− n)/(1 + ρba4)]
. (38)

Now we seek the radial deflection value, ωr, which we then use in obtaining the new pore radius. There are two cases:

1. If the thick-wall model is assumed, we use the right-most of equations equation (30). The updated radius is obtained
with the previous radius and pressure values:

a← a+ ω0r

∣∣
r=a

= a+
pa

ν
. (39)

2. If the thin-wall model is assumed, we use instead equation (34). The updated radius is obtained with the previous
radius and pressure values:

a← a+ ωr
∣∣
r=a

= a+
Wpa2

Υ
. (40)

Equipped with the next-step radius, we repeat the entire process above to uncover the subsequent radii.
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(a) (b)

Figure 4: (a) is the pore radius and particle concentration at selected times up to 10 under thick wall model, as indicated
in the legends; (b) is the pore radius and particle concentration at selected times up to 10 under thin wall model, as
indicated in the legends. Both simulations are for uniform initial pore radius profiles a(x, 0) = 0.904.

5 Results

We will present and illustrate some results that we get from simulation of both thick wall and thin wall model as
we introduced in section §2 and 3. In section 5, we will first demonstrate how small particle concentration and pore
radius evolve during the filtration process considering membrane elasticity in a constant flux scenario; then, we will show
filtration performance changes when we switch between constant flux and a constant pressure scenario. Our model has
several dimensionless parameters:λ, which captures the physics of the attraction between particles and the pore wall
and β, which describes the pore radius shrinkage. While conducting the simulations, we used the same assumptions on
values of dimensionless parameters proposed by Sanaei and Cummings [1]. Therefore we fixed the additional resistance
ρb = 2 and distribution of large-particle sizes g(a)|x=0 = 0 in equation (37). In reality, the values of these parameters
vary in different applications and different membrane materials; however, we believe that our models can give reliable
predictions when detailed data from industries are given. We considered a uniform initial pore profile where pore radius
is characterized by a(x, 0) = 0.904. Although we run simulations for uniform pore profile, our model can be easily applied
to any axisymmetrical pore profile.

We used numerical methods to solve the model and stopped the model when the pore shrinks to zero (a → 0), since
the membrane is not permeable anymore and the flux through it drops to zero at the stopping time t = tf . The numerical
scheme employed is center in space, backward in time, based on second-order accurate finite difference spatial discretization
of the equations, with a simple implicit time step. For equations that involved integrals, trapezoidal quadrature were
employed.

Figure 4 shows the pore radius a(x, t) and the concentration of small particles c(x, t) up to 10 in both models. From
both figures, pore radius shrinks more in pore inlet, which is consistent with the shrinkage feature in Sanaei and Cummings
results [1]. It needs to be noticed that the filtration process does not stop at time 10, since the radius is not 0, but if we
let the process to continue, the displacement of the membrane would be too large and the pressure needed to sustain the
flow would be too large.

As Figure 5 shows, the pressure needed at the pore inlet of both models are increasing quickly. Since the pressure is
dimensionless and should be at order 1, we considered the pressure at 10 to be the maximum pressure that we apply to the
filtration. Hence, as long as the pressure exceeds 10, we maintained the pressure at pore inlet to be 10 for all the following
filtration processes until the final stopping time. If we maintained the pressure in the upstream, the scenario would be
switched to a constant pressure instead of constant flux mentioned in the previous sessions. Sanaei and Cummings [1]
studied the constant pressure scenario and proposed mathematical models in this condition. Hence, we switched between
two kinds of models in the simulation and presented the results in Figure 6.

In Figure 6(a), the thick wall model is firstly considered to simulate the constant flux scenario. The curves with respect
to early filtration process, for example, at time 0 and 0.4tf , the evolution of particle concentration, and radius shrinkage
are consistent with Figure 4. After the switching of the model, the radius at the final filtration stage expands a little
bit, which is indicated at the cross of the two curves. The same situation also appears at the simulation of the thin wall
model. However, the expansion of the radius at the final stage in the thick wall model is more than the thin wall model.
The final stopping time for the thick wall model is 11.025 and the stopping time for the thin wall model is 9.975.
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(a) (b)

Figure 5: (a) is the evaluation of pressure in thick wall model in 10; (b) is the evaluation of pressure in thin wall model
in 10.

(a) (b)

Figure 6: (a) is the pore radius and particle concentration at selected times up to the final blocking time (tf = 11.025)
under thick wall model, as indicated in the legends; (b) is the pore radius and particle concentration at selected times
up to the final blocking time (tf = 9.975) under thin wall model, as indicated in the legends. Both simulations are for
uniform initial pore radius profiles a(x, 0) = 0.904

6 Future Work

Our model represents an interesting result for internal membrane complexity, but the real membranes are much more
complicated in their structure than our simple assumptions. They may consist of many randomly oriented pores, which
branch and reconnect [2] (Figure 7), so that the solution becomes difficult through the membrane rather than the simple
flow assumed here. In the future, we can consider more sophisticated models, which include branching and reconnecting
pores, to better account for such internal membrane complexity with multiple membrane fouling modes (including so-called
cake filtration, which occurs normally at a late stage of the filtration process). We considered cylindrical pores here and
due to elasticity, the geometry of the pores may change after a certain amount of time. Therefore, we can make some
predictions on what type of membrane might offer optimal filtration performance.
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Figure 7: Filters with branches
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