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1 Introduction 

Biogen employs biochemical separation in chromatography columns as a processing 
step in the production of proteins. The output from a bioreactor is fed into a packed, 
vertical column, and the filtrate containing the desired product drawn from the bot­
tom. The packing consists of resin-coated, agarose-based, relatively soft spherical 
particles, 50 - 150 microns in diameter. Laboratory experiments are typically per­
formed in columns 20 cm in height and 5 cm in diameter, with a flow rate of about 
200 cm/hr and pressure drop of the order of 20 psig. The objective is to scale-up 
to production level, where the columns are 60 - 100 cm in diameter, and estimate 
what pressure drops will be needed to sustain the same flow rate. The crucial factor 
inhibiting the flow appears to be the deformation of the packing material and the 
resulting compaction of the bed. The prohibitive cost of the resin-coated particles 
makes full-scale experiments impractical, and modelling attractive. 

2 Modeling 

We began with the working hypothesis that most of the bed would sag, thereby offer­
ing increased resistance to the flow, except for a thin layer adjacent to the wall of the 
column where wall friction would hold the particles up. However, the realization that 
the critical angle of friction for particle-to-particle contact is significantly larger ( 15°) 
than that for wall-to-particle contact ( 7° ), followed by a simple kitchen experiment 
with salt particles in a plastic tube, convinced us that the bed would prefer to slide 
down the tube as a slug. This, in turn, suggested a model in which variations across 
the horizontal cross section of the bed could be neglected. Before any simplifications 
were made, however, it was deemed prudent to begin with the equations of two-phase 
flow, appropriate for a liquid fl.owing through a bed of solid particles: 

(asPst + "v • (asPsVs) - 0, 

( 0:1Pl) t + "v • ( 0:1P1V1) - 0, 

(1) 

(2) 

(o:sPsVs)t + 'v • (asPsVsVs) - -O:s'vPs + 'v • (o:s(Ts + a's)) 

+(Psi - Ps)'ilo:s +Ms+ CTsPsgex, (3) 
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-o:/v'p1 + v' · ( o:i(-r1 + a-i)) 

+ (Pl; - Pl) 'v 0:1 + M1 + Qf P19ex' (4) 

where the suffixes s and l denote the solid and the liquid phases, respectively; aa 

denotes the volume fraction, Pa the density, Ya the velocity, a-a the Reynolds or 
turbulent stress tensor, Ma the rate of interfacial momentum exchange. for species 
a, and g the acceleration due to gravity, directed along the unit vector ex. Further, 
the stress tensor T for each phase is decomposed as 

(5) 

where p is the spherical portion (pressure) and T the 'extra' part of T. The in­
terfacial value of Pa is denoted by Pai. The volume fractions satisfy the saturation 
constraint 

a.,+ Clg = 1. 

The following simplifications apply to the situation at hand: 

(a) The bed is at rest, i.e., v., ~ 0, and the Reynolds stress, CT., = 0. 

(b) The fl.ow is steady. 

( c) The two phases are incompressible, so that Pa = constant. 

( d) Slow liquid fl.ow causes the inertial terms in the liquid momentum equation to 
be small, and implies rapid pressure equilibration within each phase, allowing 
one to set Pa; - Pa = 0. 

( e) We take the packing material to behave as a linear elastic solid, albeit squishy, 
and hence characterized by a small Young's modulus Ey. Recall that in terms 
of the Lame constants, As and µ.,, Ey is given by 

Ey = µ.,(3A., + 2µ.,). 
A.,+µ., 

Smallness of Ey leads to µ., < < .X.,. That, in turn, implies that in the consti­
tutive expression for the stress tensor, 

T., = -p.,I + T., = .\., tr(E.,) I+ 2µ.,E.,, 

where E., is the deformation tensor, the diagonal components dominate, and 
to a first approximation, equal p.,. By the same token, the off-diagonal or shear 
components of T., are small compared to p.,. 
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(f) \Ve ignore the contributions due to the viscous and Reynolds stress tensors. 
TI and u I respectively, in the liquid-phase momentum equation, arguing that 
during the tortuous motion of the liquid phase through the interstitial space, the 
dominant mechanism of momentum transfer from the liquid is the interphase 
force density, Mi, rather than the molecular or eddy viscosity of the (water­
like) liquid. Further, the primary contribution to M 1 is taken to be in the form 
of Stokes drag. Thus, contributions such as virtual mass effects, significant in 
high-frequency transients, are neglected. 

(g) There are no azimuthal variations, and the flow is entirely axial, i.e., v = vex. 

(h) Buoyancy is removed by setting 

Pa= Pa9X + Pa, (6) 

Under these simplifications, the equations reduce to the simple set considered in 
the next section. For details, see the rather considearble literature on filtration ( [1], 
[2], [3], [4], [5] and [6]). 

3 Governing Equations 

The model used in analyzing the problem ( see [7]) consists of an axial momentum 
equation for the solid phase, 

dp dif 4B 
-+-+-o-=0 dx dx D , 

coupled with Darcy law as the momentum equation for the liquid, 

dp µ -
dx = - kq. 

(7) 

(8) 

Here, p is the liquid pressure, o-the normal stress in the solid phase along the fl.ow 
direction, k the permeability, µ the viscosity and B a stress factor ( depending 
upon the angle of friction at the wall; see [7]), measuring the ratio between the shear 
and normal streses in the solid phase at the wall of the column. D denotes the 
diameter of the column, and L its length, along which distance is measured by the 
axial coordinate x. The liquid flux through the column is measured by ij. We use 
an overbar to denote dimensional variables, while symbols for parameters are left 
without overbars. 

The permeability itself depends upon the state of stress in the solid, and is pre­
scribed as 

(9) 
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where ao and K0 are constants. The dimensionless function f is monotonically 
increasing with f (0) = 1. The form for f is determined through experimental 
fitting; an example existing in the literature is f(x) = ex [7]. 

We render the problem dimensionless by employing L as the reference length, a-0 

as the reference stress, Ko as the reference permeability and if.o as the reference fllLx, 
where 

Nondimensional variables retain their symbols, but without the overbars. Then the 
system assumes the dimensionless form 

dp + du + Ru - 0, 
dx dx 

dp 
dx - -qf(u), 

with 
1 

K(u) = f(u). 

(11) 

( 12) 

(13) 

The dimensionless quantity R appearing above is a modified aspect ratio, given by 

R = 4BL_ 
D 

(14) 

Equations (11) and (12) may be combined to yield 

(15) 

an equation that describes, for given q, the evolution of solid stress along the length 
of the column. The appropriate initial condition for this equation is1 

a(O) = 0. (16) 

We may also combine (12) and (15) to obtain 

dp q f(a) 

da = - R ( ~ / ( u) - a) ' (17) 

which, in conjunction with the initial condition 

p(O) = 0, (18) 

can be solved for the pressure drop down the column as a function of u. 

1 If a heavy plate is placed at the top of the bed, then the initial condition may be a-(0) = a-o > 0. 
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4 Solution 

For a given flux q, and a given value of the modified aspect ratio R, equations (15) 
and (16) yield the stress profile down the length of the column as 

Rx= 1
(1 d(j 

o if(s) - s· (19) 

Then, the fluid pressure can be computed by integrating (17) and (18) to get 

q r7(x) f(s) 
p(x) = - R lo ~f(s) - s ds. (20) 

The full pressure drop across the column corresponds, of course, to p(l). 
For the purposes of the remaining discussion, we make the choice 

(21) 

We note immediately the existence of critical constants -Xe and (jc, defined by 

i.e., 

(22) 

Note that ,,\c is determined entirely by the permeability function /, and for f(x) = 
ex, the critical constants are 

For 

1 
(j c = 1 and ,,\c = - . 

e 
(23) 

q 
R > ..\c, (24) 

the integral in (19) is bounded when its upper limit is set to oo. In other words, the 
stress (j becomes unbounded at a finite value of x, say x00 ; the larger the value of 
q, the smaller the value of x 00 • Setting x 00 = 1 gives the limiting value of q, say 
qum, corresponding to the value of flux at which the stress just becomes unbounded 
at the downstream end of the column. Implicitly, qlim is defined as a function of the 
modified aspect ratio R by the integral expression 

la
oo d(j 

R= ---. 
o ~ J(s)- s 

(25) 
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Figure 1 shows the graph of qtim(R). \Ve reiterate that this is the maximum flux that 
a column of given dimensions can sustain; as expected, the fatter the column, the 
smaller is the limiting flux through it. 

\Vhen q < qlim, (19) shows that the end of the column will experience only a 
finite value of stress a. In that case, as already indicated, pressure drop across the 
column may be computed from (20). Specifically, we set x = 1 in (19) and compute 
the corresponding value of a(l) for the given q. Then, on setting a(l) as the upper 
limit in (20), we compute the pressure drop p(l). Figure 2 shows q as a function of 
pressure drop for various values of the modified aspect ratio R. This completes the 
solution. 

5 Conclusions 

The figures tell the complete story. Figure 1 displays the maximum dimensionless 
flux rate Qtim, related to the dimensional value Qlim by 

Qlim QlimµL 
qlim = Qo = Koi5"o ' 

as a function of the modified aspect ratio R = 4B L / D. The actual flux must be 
smaller than this limiting value. 

Figure 2 displays how, for a given flux, the needed pressure drop increases as D 
is increased to scale up from experiment to production level. Note the crucial role 
played by the wall stress-factor B; larger the B, the smaller the pressure drop for a 
given L/ D. 

The calculations shown here correspond to the choice ez for the scaled permeabil­
ity function. This function probably represents the greatest uncertainty, and needs 
to be measured accurately for the particle beds under use. 
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Figure 1. Limiting Flux Qlim versus modified aspect ratio 4BL/ D. 
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Figure 2. Discharge versus pressure drop for various values of 4BL/ D. 
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