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1 Introduction 

The problem described by the representative from BOC concerns the behavior of liquid and 

gas within a packed column used for distillation. The column is cylindrical in shape and 

contains layers of corrugated plates over which the liquid falls from input points, called drip 

points, from the top while gas flows up from the bottom. The aim of the work presented in 

this report is to provide mathematical models that describe the behavior of the liquid and 

gas flows. The analysis of these models provides information concerning the distribution of 

liquid and gas based on the geometry of the corrugated plates and the location of the drip 

points. This information is of interest to engineers at BOC. 

Previous experience with such flows indicates that the two phases can be considered 

independently and thus the behavior of the liquid and gas flows are handled separately 

in the discussion below. The analysis of the liquid phase considers both the derivation of 

suitable model equations that describe the flow and possible techniques to solve the equations 

for the problems of interest. For the gas flow, the analysis centers on a systematic derivation 

of the relevant equations. 

2 The Liquid Phase 

The liquid in the system is injected from drip points at the top of the column and falls 

through the packed column. We first derive the governing equations, which are shown to 

be diffusive, and then give various suggestions for solving the equations subject to given 

locations of the drip points. 
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Figure 1: Lattice for liquid flow. 

2.1 Model Equations 

The flow of the liquid is dominated by gravity with the fluid traveling in a thin layer down 

the steep direction of the corrugated plates. As the fluid travels down it reaches points where 

corrugations of adjacent plates touch and at these points the fluid may be diverted in one 

direction or another. 

There is some question regarding the form of the flow of the liquid. The main forces 

acting on the liquid within the layer are due to gravity and viscous drag, and as a result it is 

determined that the Reynolds number of the flow is a few hundred. Hence the flow remains 

laminar but inertial effects are important. Analysis of such behavior gives a relationship 

between the average downward velocity of the fluid u and the local thickness h of the fluid. 

In the slow flow case, when the Reynolds number is small, the velocity is proportional to the 

square of the thickness of the layer. Experimental evidence indicates that a linear relation 

might be appropriate but there is no further analysis available based on the discussion at 

the workshop. 

The main modeling done for this aspect of the problem involves the spread of the fluid 

across a corrugated plate. This spreading is due mainly to the fluid impinging on the 

contact points between corrugations on adjacent plates. The intersection points are taken 

to be equally spaced with vertical separation tiz and horizontal separation !ix as indicated 

in figure 1. The intersection points xi = itix and Zm = mtiz are staggered so that i only 
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takes odd values when m is odd and only takes even values when m is even. The main 

problem is to determine the behavior of the volume flow rate (per unit length) given by uh 

within the lattice of intersection points. For simplicity of notation we introduce the variable 

q = uh and use qf to denote its value at the lattice point xi, Zm- It is assumed that the 

flow arrives at each intersection point and then splits equally into streams that travel to the 

adjacent intersection points down the plate. This assumption together with conservation of 

mass gives 

m+ 1 _ l ( m + m ) ( 1) 
qi - 2 Qi-1 Qi+l 

for the flow about the point xi, Zm+i· The macroscopic behavior of the packed column 

depends on a large number of interactions so that the appropriate limit to consider is ~x ➔ O 

and ~z ➔ 0. The relative size of the two limiting parameters will be considered shortly. 

Expanding (1) as a Taylor series about the central point xi, Zm gives 

(2) 

Retaining the dominant terms in both ~x and ~z gives 

(3) 

This equation indicates that the volume flow, or momentum, q = uh is governed by the 

steady-state, advection-diffusion equation 

where the diffusion coefficient is 

8q = Da2q' 
az 8x 2 

~x2 

D = 2~z' 

which, unusually, has the units of length. 

(4) 

(5) 

The basic model as described by ( 4) does not include transient effects or any motion of 

the liquid normal to the plates, which occurs due to small holes drilled in the plates. The 

analysis given above can be extended to include these effects. The extended equation takes 

the form 

(6) 

where y measures distance normal to the plates and Dy is the coefficient of diffusion in that 

direction. The value of Dy depends on the density of holes and could be found experimentally. 

The transient behavior is of little physical interest as the packed columns are typically 
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running for very long periods of time and hence in steady state. Of greater interest is the 

extension to more dimensions and the value of Dy. ·while no specific modeling is given to 

determine its value, some of the ideas described later in the section on gas flow may be 

relevant to estimating this coefficient from the geometry of the corrugations and the drilled 

holes. 

2.2 Methods of Solution 

The problem to be solved involves the behavior of the liquid subject to a given number and 

location of point sources at z = 0 representing the drip points and subject to an impermeable 

outer cylinder of radius R representing the outer surface of the packed column. In practice, 

the drip points are arranged on a regular rectangular array at the top of the cylinder. 

Engineers at BOC are interested in finding out whether a few additional drip points should 

be added or existing drip points blocked in order to create a uniform distribution of liquid 

at the bottom of the column. For simplicity it is assumed that the packing in the cylinder 

extends to the outer boundary and that there is no special streaming of fluid down the 

outer boundary. In a typical column, the packing is oriented in one of two perpendicular 

directions with a change of direction at vertical intervals of approximately 20 cm. Hence 

there is a periodic variation in the z direction of the diffusion coefficients. There are three 

other important length scales within the problem; these are: 

1. d '.:::'. 10 cm, the typical horizontal distance between drip points, 

2. d2 / D '.:::'. 2.5 m, the typical vertical distance down the packed column for the diffusion 

to get each drip point to spread to near its neighbor, and 

3. R2 
/ D ::: 1000 m, the typical vertical distance for a drip point near the middle to spread 

to the outer cylinder. 

The height of the packed column, H, is around 10 m which gives a distance over which the 

required transfer processes can occur. 

Two methods of solution are discussed below. First, because the change in the packing 

direction occurs on a relatively small scale, the diffusion can be averaged to give an effective 

isotropic spread of the fluid governed by the equation 

(7) 
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where an effective diffusity, De, is found by averaging the horizontal diffusion lengths in both 

directions. These are proportional to v'f] and jrS;, respectively, so that 

(8) 

The problem can now be solved using analytical methods. The second approach is to attack 

the problem directly using numerical methods. 

2.2.1 Analytical Methods 

The method of solution presented at the workshop initially was an analytical one involving 

the solution of (7) for a single point source which takes the form of an infinite sum of Bessel 

functions. The solution to the problem is the sum of point-source solutions for each drip 

point. While this solution is available, it is not useful for practical computations because 

the number of drip points is large (approximately 1000) and the number of terms in each 

series needed for an accurate approximation is moderately large ( around 20 depending on the 

position of the drip point relative to the cylindrical boundary). An alternate representation 

of the solution for practical computations is desired or some sufficiently accurate approximate 

solution. 

The length scales within the problem indicate that, because the cylinder is only ten me­

ters high, the majority of drip points will induce flows that do not interact with the outer 

cylinder to any significant degree. Hence these points can be taken as producing a simple 

cylindrical Gaussian distributed flow. The more difficult points are those near the outer 

surface, specifically those within O(H 2 / De), which do interact with the outer cylinder. To 

a first approximation these points see the outer cylinder as flat and hence an approximate 

solution can be found simply by solving the diffusion equation in all space but including an 

image source outside the cylinder for each of these "near boundary" sources. Such an ap­

proximation has been considered already by BOC and is not sufficiently accurate. Evidently, 

a next correction to this approximation is needed which would include the curvature of the 

boundary. This could be handled by an analysis of the rescaled problem 

aq a2q a2q 
-=-+-, 
az 8x2 8y2 (9) 

with a drip point source at x = -1, y = 0 so that 

q = 6(x + 1, y) on z = 0, 
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and with a zero flux condition on the impermeable boundary so that 

( 
1)

2 
1 on x + ; + y2 = €2 • 

Here n is the normal to the surface and the goal is to find an asymptotic solution in the 

limit H 2 / De = t ➔ 0. The first· term in this solution would involve the point source and an 

image. The next term, which is yet to be found, may provide a correction which would yield 

the desired accuracy with a reduced computational effort. 

There are other possible approaches to finding suitable approximate solutions for drip 

points near the boundary. One approach would be to consider the exact solution involving 

the infinite sum of Bessel functions and expanding the terms asymptotically for the case 

when the drip point source is near the boundary. An approximate solution would result by 

truncating this asymptotic expansion at some desired order of accuracy. Another possible 

approach is to use approximations for the higher terms in the Bessel series expansion and 

hence approximating the sum of these higher order terms. Finally it may be possible to 

analytically "re-sum" the series into an alternative form with better convergence properties. 

2.2.2 Numerical Methods 

The most computationally efficient method of obtaining an approximate solution to the 

problem is thought to be by direct solution of the underlying problem using a finite difference 

or finite volume technique. Such a procedure allows such approximations as the effective 

diffusion, De rather than the periodic vertical variations in diffusion to be removed and gives 

the distribution of liquid throughout the packed bed not just at the required z position. 

The main discussion at the workshop centered on ensuring that the solution is sufficiently 

accurate. 

There are three main aspects of the problem that must be considered when consider­

ing accuracy. First, there is the accuracy of the numerical discretization of the diffusion 

equation and with central differences in the horizontal direction and Crank-Nicholson in the 

vertical this should not pose a problem. Second, the method must accurately describe the 

position of the drip points. It is known that the fluid will spread from each drip point to a 

distance of order J H De and so the drip point position must be at least this accurate. This 

distance is in fact very large and a grid with around 10000 points in the horizontal plane 

will give significantly greater accuracy that required by this criteria and actually allows ac­

curate posit~oning of the drip points to within a few cm which is more than necessary while 

allowing computations to be performed in a reasonable time on a PC. For faster calculations 
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a horizontal grid involving 1000 points is believed to still be sufficiently accurate. The third 

accuracy consideration involves the description of the outer cylindrical boundary. If a single 

grid is used than a radial grid will provide a good definition of the boundary but there will 

be computational problems associated with the close packing of grid points near the center 

of the cylinder. The alternative of a Cartesian grid will not allow the outer boundary to be 

described with sufficient accuracy. The alternatives of using a hybrid mesh with a cylindrical 

outer region and a Cartesian inner region with either overlapping or mesh interpolation is 

possible and expected to give good results. These suggestions were not attempted during 

the workshop. 

3 The Gas Phase 

In generating a model for the motion of the gas recall that we are considering it to act in 

complete isolation to the liquid flow. The gas flow is significantly different from the liquid 

flow, particularly because if fills the space within the packed bed. In addition the density 

is so small that gravity has a negligible effect on the flow and hence the gas density is 

nearly constant throughout the packed bed. The Reynolds number of the flow is typically 

several thousand so that the flow is dominated by inertia and the flow tends to follow the 

corrugated channels formed in each plate and only have a small interaction with the gas flow 

in the adjacent channels. The work presented here centers around a development of a model 

of the gas flow and a model for the movement of a dilute species within the gas phase. These 

two aspects of the gas phase are discussed separately below. 

3.1 -Gas Flow 

Because the gas flow is effectively high Reynolds number flow in a porous media the equations 

governing the flow are expected to be, from mass conservation, 

V•u=0, 

where u is the average volume flow of the gas within the pores, and from momentum balance, 

-Vp= klulu, (11) 

where k is the permeability tensor. (This form is often ascribed to Ergun [1] who looked at 

flow in porous media over a range of Reynolds numbers and extended Darcy's law for slow 
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flow to the form -'vp = k1u+k2lulu.) An appropriate form fork is related to the geometrv 

of the packed column. It is noted that the packed bed has several symmetries due to the 

repeating planar structure. In particular the corrugations in the plates are at right angles 

and hence there are three principle directions. The first of these is the direction normal to 

the plate and the other two are mutually orthogonal and lie in the plane of the plate. Let us 

define y to be the direction normal to the plate, as before, and let x and z lie in the plane 

of the plate. The permeability in the y direction is expected to be different from that in 

the other two directions, the permeability in the latter two directions being isotropic. Given 

these observations, an appropriate form is given by 

(12) 

where kp and kn are constants. These two constants can be determined by considering 

the packed bed with unidirectional flow in it. For example, the pressure drop created by 

uniform flow across the plates gives kp. Measurements from these flows can be obtained 

experimentally or theoretically using a CFD package on a single "unit cell" of the packed 

material. 

3.2 Species Transport by the Gas 

As a final topic, we consider the movement of a dilute species within the gas phase. Such 

transport is important in determining where the transfer between the liquid and gas occurs. 

The distribution of the species cannot be described simply by a variable representing the 

average concentration. This is because the underlying gas flow is primarily restricted to the 

two sets of orthogonal corrugations. Hence, to describe the distribution we must consider 

the concentration in each of the sets of corrugations. To generate the model of the process, 

we consider the case where the two sets of corrugations are at 45° angles to a uniform gas 

flow u in the vertical z direction (now measuring distance up the column). CFD calculations 

done at BOC on transport within a single unit cell indicate that a certain fraction of the 

incoming flow of species in each set of corrugations transfers to the other set. This transfer 

fraction appears to be independent of the average flow velocity. We therefore assume that 

the fraction transferred is 1 - f where f is constant. In practice the transfer is very small 

(values off near 0.9 are calculated) and thus we take f = l - c, where the smallness of c 

will be exploited in deriving a suitable limiting form of the equations. The lattice of flows 
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Figure 2: Lattice for gas species flow. 

and interactions is shown in figure 2. We take the mass flow of the species in corrugations 

running from right to left up the column as Pt and the mass flow in the corrugations running 

from left to right up the column as Q?. Note that the points Zn, Xi correspond to the places 

where the two flow interact. 

To generate the model we consider a single cell as before. The discrete equations are 

Qf+l = (1 - t:)Qf-1 + t~~l 

This discrete system is expanded in powers of ~x and ~z to give 

oP oP 1 2 o
2 P oQ 

~z oz = -t:P + ~x(l - t;.) ox + 2(1 - t:)~x ox 2 + t:Q - t:~x ox . . . (13) 

oQ oQ 1 2 o2Q aP 
~z az = -t:Q - ~x(l - t:) ax + 2(1 - t:)~x 8x2 + t:P + E~X ax +... (14) 

where we have retained some terms of higher order as there is cancellation of certain terms 

in the subsequent analysis. To get the problem into a usable form we note that there are 

two other natural variables to use to describe the flow, namely 

A=P+Q and D = P-Q, 
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\vhere A is the average mass flow in the system ( equal to uC where C is the average concen­

tration) and D is the difference between the mass flows in the two directions. Adding and 

subtracting (13) and (14) gives the system 

aA . aD 1 2a2A 
flz az = fix ax + 2(l - E).6.x ax 2 + ... (15) 

aD aA 1 a2D 
.6.z az = -2ED - .6.x(l - 2E) ax + 2(1 - E).6.x

2 
ax2 + ... (16) 

This system has numerous limits. The main observation made is that (16) implies that the 

difference, D, must decay relatively quickly up the column. This observation suggests that 

shortly after the species are injected in the flow the mass flows in the two directions will 

become nearly equal. Hence in the limit .6.x ➔ 0 and .6.z ➔ 0, we expect that D ➔ 0 such 

that the lowest order balance in (16) is 

aA 
0 = -2ED - .6.x(l - 2E)­

ax 

This balance can be used in ( 15) to give 

(17) 

(18) 

This is a diffusion equation for the average flow of species in the system and can be written 

in the form 
aA a2A 

(19) 
az = a ax 2 ' 

where 
1 - 2E .6.x2 

(20) a=----
2E .6.z 

This model now allows the diffusion parameter within the species transport model to be es­

timated from information about the distance between intersection points of the corrugations 

and from CFD calculations used to determine the transfer coefficient E at each intersection. 
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