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1 Introduction 

The problem presented at the workshop by Ning Li of Los Alamos concerned a par- • 
ticular process which forms part of a wider nuclear waste treatment strategy. One 
of the primary goals of the ADTT ( Accelerator Driven Transmutation Technologies) 
programme at Los Alamos is to reduce the impact of nuclear waste. Accelerator­
driven Transmutation of Waste (ATW) offers the possibility of sustainable nuclear 
future to countries that have a long history of nuclear power. The potential ad­
vantages of power generation with no accompanying problems of how to deal with 
spent fuel and plutonium are enormous. For countries starting nuclear energy pro­
grammes, it can also prove cheaper, safer and cleaner than conventional systems. 
The ATW waste treatment cycle involves reductive extraction, electrowinning and 
electrorefining, but in this study we shall concern ourselves solely with electrowin­
ning. The process of electrowinning is best thought of as a generalisation of the 
familiar electro-plating process. In its simplest form, a potential difference is main­
tained across a pair of parallel conducting plates. A fluid flows between the plates 
and chemical reactions at the anode and the cathode deposit solids at the relevant 
sites. The 'fluid' may take any one of many forms; in cases analysed in the literature 
a popular choice for theoretical calculations has been to consider, for example, the 
electrowinning of copper from a sulphuric acid medium. In the particular applica­
tion that interests Los Alamos, it is normally short half-life nuclear products that 
need to be extracted. 

The main purpose of the current study is to indicate: 

(1) How the existing theory fits into a coherent asymptotic and modelling framework. 

(2) How existing models may be extended to multicomponent systems. 

A further matter of interest concerns the order in which components are deposited. 
Electrowinning cells are usually controlled either by a set bias voltage or a set cur­
rent. When the voltage is set, elements with oxidation potential lower than the 
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Figure 1: Schematic diagram of electrowinning cell 

cell potential in the electrolyte solutions will deposit onto the cathode. \Vhen the 
current is set, it is less clear which elements will deposit, and the model that is 
developed should also be capable of addressing this problem. 

2 The Basics of Electrowinning 

Since some understanding of the _rudiments of electrochemistry is required before 
a multicomponent model can be proposed, we begin by considering exactly what 
happens for a one-species electrowinning cell and what form of model we might 
expect to be appropriate for such a process. Single-species configurations have been 
considered previously by, for example, Lapique & Storck ( 198.S ). 

Fig. 1 shows a schematic diagram of an electrowinning cell. We shall assume for 
the moment that the process is fully three-dimensional and that the applied voltage 
or current is simply 'sufficiently large' ( see later discussion) to ensure that solid 
copper may be deposited at the cathode. For definiteness, let us assume that we 
wish to electrowin copper from an acid copper sulphate solution. The corresponding 
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reactions are then 

(1) Cu2+ + 2e- - Cu 

and 

Reaction ( 1) takes pla.ce at the cathode; as two electrons combine with the copper 
ions in solution, solid copper is created in a. thin layer on the surface of the cathode. 
Reaction (2) expresses the fact tha.t oxidation also takes place at the a.node, typically 
manifesting itself in the form of gas bubbles. 

To model this process we need to take account of the way in which the fluid moves, 
how mass is conserved for the solution, and how the electric field ch~nges along a.nd 
across the cell. Denoting the concentrations Ci of the species Cu2+, ff+ and so~­
in the solution respectively using subscripts 1,2 and 3 and the relevant mass fluxes 
by Ni, conservation of mass for each species dictates that 

( 1) 

Assuming further that the whole process is isothermal, gas generation effects at the 
anode are ignored, and the physical properties of the solution are constant, we may 
write for the fluid motion of the solution 

(2) 

and 
"v.q = 0. (3) 

Here p denotes pressure, whilst the kinematic viscosity and density are denoted 
by II and p respectively. It has been assumed that the fluid motion effectively 
decouples from the rest of the problem and is not influenced by the electric field. 
Electrical effects in the system are governed ultimately by Ma.xwell's equations. In 
this relatively simple configuration however, the electrostatic equations 

curl E = 0, divE = Po/£0 (4) 

where E is the electric field and p0 and £a represent the charge density and vacuum 
permittivity respectively are all that are required. The first equation of (-!) implies 
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the existence of an scalar electric potential ¢. The second, under the standard 
assumption that the left hand side may be neglected, gives a local equation more 
familiarly known as charge neutrality, which states that 

3 

p = L ZjCj = 0 
i=l 

where Zi is the charge number (number of electrons) of species i. 

(5) 

The equations (1), (2), (3) and (5) now constitute a closed system provided that a 
relationship is available to determine the mass fluxes Ni in terms of the Ci, q and </>. 
There are a number of ways in which this can be done, and the formulation of this 
constitutive law will be considered further below. The only features missing from 
the model are suitable initial and boundary conditions. In this case, these conditions 
are complicated by the fact that they must include details of the chemical reactions 
occurring at the anode and the cathode. Once again, many partly experimental 
and semi-empirical formulae are available to describe these reactions. For single 
species electrowinning cells the relations of Tafel and Butler-Volmer have gained 
wide acceptance. In essence they relate variables at the walls through a sequence 
of transcendental equations. By convention it is assumed that all reactions are 
occurring at each electrode: typically however the Tafel and Butler-Volmer equations 
give rise to reactions that are order one at one wall and exponentially small at the 
other . 

.-\s well as the conditions that determine the reactions, the standard boundary con­
ditions for the Na vier-Stokes equations ( no-slip at a solid boundary) and for the 
electric potential ( <I> given at each electrode, for example) must be imposed, along 
with suitable initial conditions. Details of all such conditions will be given in a later 
section. 

We have thus outlined how it is possible to propose a model for single-species elec­
trowinning. Of course, the problem posed by (1)-(3), (5) along with all of the 
required boundary conditions is a formidable one. In the above formulation no sim­
plifications arising from the geometrical properties of the electrowinning cell or the 
relative sizes of various- terms in the equations have been exploited. It has also been 
assumed that the full Na vier-Stokes equations have to be solved to determine the 
fluid motion. In its full form, the problem would therefore require numerical solu­
tion and it would probably constitute a long and difficult exercise to analyse cells 
for practical use in this way. 
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3 A Model for Multicomponent Electrowinning 

Although the simple electrowinning process described above is well understood, com­
plications arise if more than one species is to be electrowon from the solution. The 
purpose of the work presented below is to indicate how simple models may be gen­
eralised to cope with multiple component electrowinning, and how modelling sim­
plifications may be made using asymptotic analysis. 

First, the electrochernistry must be dealt with. In the multicomponent case a num­
ber of reactions may occur at both the anode and the cathode. It is also necessary to 
determine which substances will be electrowon and in what order. The electrochem­
ical series ranks reactions according to their tendency to gain electrons as compared 
to hydrogen. By common ·consent, the reduction of hydrogen ion to hydrogen gas 
(2H+ + 2 e- .- H2) is assigned a zero reference position in the table. The elec­
trochemical series therefore allows us to determine which substances are electrowon 
for a given applied voltage. Relative to hydrogen, the voltage required to electrowin 
copper is 1.26 V. If the solution also contains other substances appearing lower in the 
electrochemical series, these will also be electrowon with this voltage. For example, 
if a given solution contained copper, lead (-0.13V), iron (-0.44V) and zinc (-0.76V) 
an applied voltage of greater than 1.26V would be enough to recover all of these 
substances. Alternatively, the process could be started with a voltage of -0.5V, in 
which case only zinc would be recovered, and then continued with successive poten­
tial differences of say -0.3V, 0.5V and 2V whereupon the zinc, iron, lead and copper 
would be recovered in order. 

For a multicomponent case, we assume that we haven species each at a concentration 
c; (measured in mol/m 3). The mass conservation equation (1) becomes 

Cit+ 'v.Nj = 0 (6) 

and we are faced with the problem of how to specify Ni in terms of the other 
variables. There are three effects that contribute to the mass flux: diffusion down 
concentration gradients, drift due to the electric field effects, and convection due to 
the moving fluid. Allowing for each of these in turn, we thus write 

(7) 

where D; denotes the diffusion coefficient of species -i, Ui is the mobility of species 
i ( a measure of the speed to which the molecules will accelerate in a given electric 
field) and F is the Faraday constant. To complete this formulation, it is necessary 

55 



to state how the species mobility depends upon the other system properties. To do 
this we employ the classical Nernst-Einstein law which states that 

Di 
u·--,- RT 

where Di is the diffusion coefficient of species i, R is the gas law constant and T is 
the temperature. There is a reason for writing Di in this relationship and bi in(,): 
for laminar flow Di = bi and there is no need to distinguish between the two terms. 
For turbulent flow, however, we will lump the effects of turbulent diffusion into bi. 
Strictly speaking, this is not correct as turbulence effects should be modelled by the 
convection term. However, because turbulent diffusion is typically a much stronger 
effect than molecular diffusion, when the fl.ow is turbulent such effects are dominant 
in the first term of (7). 

As well as mass conservation, the charge neutrality relationship 

n 

'°".,.·c· -0 L..J ~1 I -

i=l 

applies and we must additionally specify how the fluid moves. As noted above, the 
general problem with arbitrary fluid motion is likely to prove to be suitable only 
for a numerical attack: we therefore simplify by assuming that the fluid motion has 
already been determined and takes the particularly simple form 

q = v(y)ex 

where v(y) is ·known'. 

For simplicity we consider a two-dimensional version of the electrowinning cell shown 
in Fig. 1. The separation of the electrodes is given by S and the length of the 
electrowinning cell is L. We non-dimensionalise using x = Li. y = Sy, t = L / U t 
(since the time scale of interest involves the time that the fluid stays in the cell), 
Ci = CieCi, <!> = V ~ and q = U q where V is a typical potential difference across the 
electrode, Cie is the equilibrium concentration of species i (say at the start of the 
process) and U is a. typical fluid velocity. For two dimensional operation, ( dropping 
the bars for convenience of notation) the equations become 

62 Rei(Cit + v(y)Cix) = 62
ci.rr + Ciyy + 62 zi[j(ci¢xh + Zifi(c;<,by)y 

n 

L =iCieCi = 0 
i:1 
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where the key non-dimensional parameters have been defined to be 

Let us now consider some typical sizes for the physical parameters. Most electrowin­
ning cells are of small aspect ratio so that 6 «: 1. Dimensions such as L ~ lm, 
S ~ 1cm are not unusual. As far as the other parameters are concerned, we have 
F ~ 105 Coulomb/mol and R ~ 8 J/mol/K and, assuming that operation is at room 
temperature so that T ~ 300K and using a typical potential difference of V = 1 Volt, 
we find that u 

Rei~ -.-, 
Di 

A number of asymptotic limits may now be discussed: 

'No fl.ow': v(y) = 0, U «: 1, Di= D;. 

now f; ~ -!2, 62Rei ~ 105U (using a typical diffusion coefficient of 10- 9 m2 /s. say) 
and the equations become 

rt 

L ZjCjeCi = 0. 
i=l 

(8) 

(9) 

Examining the right hand side of the first of these equations, we see that the first 
term may be ignored except in an 'entry region' boundary layer near to the start 
of the cell. These will henceforth be ignored, but it is evident from the scalings in 
( 8) that these boundary layers will be 0( S) in length. The second and third terms 
are both order 1 or smaller, and the final term is dominant. A simple but helpful 
idea is to seek a steady-state solution. We assume that this represents the final 
state arising from some initial distribution of dissolved substances. For purposes 
of illustration, we consider a solution containing three species. We shall take these 
to be (1) Copper: Cu2+ (charge number 2, electrowon at 1.26V), (2) Zinc: Zn2+ 
(charge number 2, electrowon.at -0.76V) and (3) Chlorine: c1- (charge number -1). 
Then with an applied voltage of O volts, say, the equilibrium ('outer', i.e. bulk) 
solution. to the equations is that the concentrations are constant with c2 = 0 ( no 
zinc remains in the bulk as it has all been electrowon) c1 '= c1e (no copper can be 
electrowon at this voltage) and c3 = 2c1e. The potential </> is linear in y. If the 
applied voltage had been say 1..jV then both the zinc and the copper would have 
been electrowon. In this case, therefore, the bulk equilibrium solution would simply 
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be c 1 = c2 = c3 = 0. The solution would thus be an insulator and the potential 
would not be defined. 

It is worth making the poin_t that for this case the equations (8) and ( 9) cannot 
possess non-constant solutions. This may easily be confirmed by using the fact that 
if one of the concentrations is zero, then using charge neutrality and adding the 
mass conservation equations it may be shown that the derivatives of the other two 
concentrations are constant. Symmetry may then be used to show that this constant 
is zero. In this case the Tafel or Butler-Volmer relationships are also irrelevant since 
all the reactions have already taken place. 

We note in passing that if the time dependence was put back in for this case a fairly 
straightforward numerical problem would result. 

Laminar Flow : Di = ih 

In this case there is still no turbulent diffusion, but the flow velocity is now important 
and effectively controls the performance of the device. The equations become 

n 

L ZjCieCi = 0, 
i=l 

indicating that the x-boundary layer is likely to be O(S) in length. The 'entry region' 
to such devices may therefore be ignored to a large degree and we may approximate 
by solving the convection-diffusion system 

Some other estimates for general device properties follow from this equation: for 
62 Rei ~ ri the time derivative terms are only important at the beginning of the 
process, whilst for 62 Rei ~ ri the flow is too quick to allow much to happen. Fsing 
the parameter values given above, this indicates that velocities of only a few mm/sec 
are required for the device to operate successfully. 
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4 The Butler-Volmer Relationships 

.--\.s we shall presently see, reaction conditions are necessary to close the equations 
and predict how much of any given substance is electrowon at a given time. .-\. 
number of different schemes have been proposed to model such reactions, which in 
reality may involve secondary and other reactions and be extremely complicated; in 
this study, for simplicity, we use the Butler & Volmer relationships, which may be 
thought of as a generalisation of the Tafel law. A large and sophisticated literature 
exists related to such laws, which have been discussed by, for example, Heyrovska 
( 1986 ), Drazic & Vascic ( 198,5) and Bartels et al. ( 1997). 

In essence, the Butler & Volmer equations give the normal component of the current 
density under the assumption that reactions are one-step and proceed according to 
an Arrhenius-type law. The activation energy is effectively modified, however, to 
take into account the fact that a jump in voltage is required for the reaction to 
proceed. In general, we characterise the effects of the reactions occurring by writing 

m . '°' Sjjlnj N L- -- = - i,n 
j=l n1F 

( 10) 

where n is the unit normal to the surface being considered, inj is the normal com­
ponent of the current density due to reaction j, mis the total number of reactions 
taking place, Sij is the stoichiometric coefficient of species i in reaction j and n J 
is the number of electrons taking part in reaction j. The Butler-Volmer laws ex­
press how the current densities inj depend upon the species and the overpotentials. 
Specifically they assert that (for the anode, for example; expressions for the cathode 
follow similarly) 

[ 
n ( ) PiJ ( FE ) n ( ) q;, ( FE ) l . . Ci,0 Oaj A Ci,O . . -Ctcj .-! 

lnj = lQj,ref IT -c-- exp RT - IT -c-- exp RT 
•=l 1,ref •=l i,ref 

( 11) 

where 
E,,1 = V:-t - <PoA - Uj,ref • 

Here ioj,ref and Ci,re/ are respectively the exchange current density of reaction j 
and the concentration of species i at reference conditions, Ci.a is the concentration 
of species i at the electrode surface, Pii and % denote respectively the anodic and 
cathodic reaction orders of species i in reactant j, O:aj and Ocj denote respectively 
the anodic and cathodic transfer coefficients for species j. V-1 is the anode voltage, 
¢o.-1. is the pot~ntial on the anode surface ( which, ( see remarks below) is not the same 
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as V-1.) and U1,ref is the open-circuit potential of reaction j at reference condition_s. 
We shall assume that all ·reference· variables may be regarded as data that can be 
·looked up' (i.e. data that does not depend on specific details of the cell). 

5 Well Mixed Bulk Flow 

One case that may be considered where some helpful simplifications occur is con­
cerns a small aspect ratio electrowinning cell where the bulk flow is 'well-mixed'. 
Specifically we assume that the fluid flow is two-dimensional and, although the ve­
locity itself is non-zero, its average may be neglected. Whilst the flow continually 
mixes the contents of the cell, it therefore makes no contribution to net convection 
of the species. Under these assumptions q no longer appears in the problem and the 
( dimensional) equations are therefore 

- ~-D·F 
N· = -D·'vc· - --1- 1 -c·'v,;, 

I l I RT I '+' 

11 '°' ~-c· - 0 L__ ... , z-. 

i=l 

(12) 

(13) 

( 1-!) 

\Ve seek to determine the deposition rates of the species present as functions of time, 
the initial conditions, and the applied voltage or current under the assumption that 
there is no .r-dependence. 

For simplicity, we will illustrate how the theory proceeds by examining the special 
multicomponent case considered in section 3 involving copper, zinc and chlorine; 
other cases may be treated similarly. Fig. 2 shows a schematic diagram of the flow. 
The cathode is assumed to be at a potential v'c( t) and the anode at a potential 
V.1.(t). We shall consider two distinct problems, namely a cell where the total current 
is prescribed ( and thus one of VA ( t) and Ve( t) is unknown - usually we take one 
of the two voltages to be zero without loss of generality) and a cell where the 
potential difference between the electrodes is prescribed so that, in effect, both 
voltages are known. We distinguish between three regions in the flow: the cathodic 
boundary layer, the bulk, and the anodic boundary layer. The width h of each 
of these boundary layers (in which D; = Di since no turbulent mixing occurs) is 
assumed known, since the structure of these regions is determined by hydrodynamic 
considerations only and does not depend on the species concentrations. The electric 
potential <I> is assumed to take the values ¢·4 (0) on the surface of the anode and 
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------ CATHODE (Zinc. Copper produc1ion1 

s I CATHODIC BOUNDARY LAYER .. 

S-h ~--t--------------------------

BULK 

ANODIC BOUNDARY LA YER h I 
0 ---------------------------- ---ANODE (Chlorine production) 

Figure 2: Multicomponent electrowinning from a well-mixed cell 

¢·4 ( h) at the edge of the anodic boundary layer. Similar notation will be used at the 
cathode. It is worth pointing out that there is a jump in potential from the electrode 
itself to its surface. This simply reflects the fact that as a substance is electrowon 
at a surface, electrons must pass from the electrode to make solid metal. In reality, 
the voltage does not of course jump; instead it varies smoothly through the 'double 
layer' which is typically only a few Angstroms thick and is therefore ignored. We 
now propose equations in each of the three regions separately. 

IN THE BULK: we scale as usual according to t = ,f, y = Sy, Ci = CieCi and 
i:p = V¢ where, denotes a time scale which is ~o be determined. We have ( dropping 
the bars for convenience) 

Cit - ( ~i;) Ciyy - (T~~~v) (ci¢y)y = 0 

3 

L ZiCieCi = O. 
i=l 

In this case the mixing of the bulk means that it is appropriate to use different 
diffusivities as discussed earlier. The precise sizes of these quantities will depend 
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on the particular application, but values of Di ~ 10- 9 and Di ~ 10- 6 are typical. 
( :\" ormally for each species the diffusion coefficients would be different, but to sim­
plify the subsequent computations we assume here that they are at least all the same 
order of magnitude.) Using the same parameters as section 3, this identifies the key 
non-dimensional parameters as 

,DiFV r ---~--RTS2 2400' 

This suggests that on any time scale of order greater than a few minutes, say, the 
time derivative terms in the mass conservation equations are negligible and the 
equations are simply 

( 1.5) 

We therefore assume that, provided we do not wish to consider the initial stages of 
the process in detail, the concentrations in the bulk are functions time alone. 

To completely specify the properties in the bulk we must characterise how the dis­
solved substances are consumed by the anode and cathode. This essentially amounts 
to a current balance. We have 

(Scdt = (Ii4(t) - If(t))/(z1FAe) 

(Sc2)t = (If(t) - If(t))/(z2FAe) 

(Sc3)t = (If(t) - If (t))/(z3F Ae) 

( 16) 

(1 T) 

(18) 

where l;(t) is the current due to species i, the superscripts A. and C indicate the 
anode and cathode respectively and Ae is the electrode area. \Ve shall assume 
initially that the cell current I(t) is known, so that (in the most general case where 
three reactions occur at each electrode) 

J('• + I24 (t) + I3'\t) = I(t) 
If+ If (t) + If (t) = I(t). 

The specification of the problem in the bulk region must be completed by the 
addition of a solvability condition so that the potential may be determined; the 
simplest way to derive this equation is to multiply each of the equations ( 12) by 
zi/ Di and add. Using charge neutrality, we then find that 

~ ZiCit _ ~ z? FD;( _,1... .) 
~ - - ~ - c, '+'y y. 
i=l D; i=l D;RT 

(19) 

62 

() 



The need to include this equation may be easily explained if a formal asymptotic pro­
cess is undertaken; essentially the limit that we are examining is the drift-dominated 
one, and if ( 16 )-( 18) are to be used then since ( 19) enters at the same order of mag­
nitude it must be retained. 

IN THE HYDRODYNAMIC BOUNDARY LAYERS: close to the elec­
trodes, it is assumed that the hydrodynamic boundary layers prevent turbulent 
mixing and thus in these regions we take bi = D;. We also need to consider exactly 
which substances are being produced on each electrode: at the anode only chlorine 
gas is manufactured and thus 

Conversely, both zinc and copper are being electrowon at the cathode, so that 

If= 0. 

As far as the diffusion equations are concerned, although now D; = Di, the relevant 
length scale is h ~ S. To leading order, therefore, the concentrations are still 
governed by ( 15 ). Conservation of mass in the anode boundary layer therefore gives 
(having integrated the equations once and determined the constants by considering 
the currents) 

- ,! =1D1F .4 A 
-D1c 1y - RT c 1 ¢11 = 0 

- A =2D2F .4 A 0 
-D2c2y - RT c2 <Py = 

- .4 Z3D3F A .·' • 
-D3c3y - RT C3 <t>; = lf(t)/(z3F Ae) 

whilst charge neutrality gives 

- c·4 + - cA + ,. c·4 - 0 "'1 1 "'2 2 -3 3 - • 

. ..\t the cathode, similar equations apply giving 

-If ( t)/( z1F Ae) 

-If (t)/( z2F Ae) 
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and charge neutrality 
- cc + - cc + - cc - 0 --1 1 --2 2 .:.3 3 - • (27) 

CLOSING THE PROBLEM: to close the problem the variables in the hydro­
dynamic boundary layers must be coupled with those in the bulk. We do this by 
insisting that the Ci, ¢; and <Py are continuous at the boundaries between the anodic 
and cathodic boundary layers and the bulk. It should be emphasized that in doing 
this we have actually carried out a 'patching' rather than a formal matching process; 
it does not seem possible to carry out proper matching mainly on account of the 
discontinuous (order of magnitude) change that has been assumed in the diffusivities 
bi from the bulk to the boundary layers. We therefore impose the conditions 

ct'{h) = c1(h), ct(h) = c2(h), ¢/\h) = 4>(h), <t>;(h) = </>11(h) (28) 

cf (S - h) = c1(S - h), cf (S - h) = c2(S - h), <tF(S - h) = <l>(S - h), 

4{ ( S - h) = ¢11( S - h) ( 29) 

to patch the species concentrations and the potential. ( Only two concentration 
conditions need to be used; the third will automatically be continuous by charge 
neutrality. See also later remarks concerning the last condition of (29).) To deal 
with the reactions we employ the Butler-Volmer laws: at the anode where species 3 
is involved in a single reaction, we have 

S33in3 N 
Fn3 = - 3.ey, 

Taking n3 = -1, assuming that the cathodic part of ( 11) is exponentially small and 
that p33 = 1 is the only non-zero reaction order, we find that 

833
i;,ref (::.:~;)exp ( a~: (VA(t) - 4>.-t(O)-U3,ret)) = 

- 4 D3F 4 4 - D3c3y(0) + RT cj (0)</>y (0) (30) 

.-\.t the cathode, there are two reactions. Again, for simplicity we shall assume 
that 3ij, Pii and % are diagonal and that the terms associated with Pii term are 
exponentially small. Assuming that the reactions are first order and taking n1 = 
n2 = 2, we find that 

s11io1,re/ (cf(S)) (cf(S)) exp(-' ac1F(Vc(S)- ¢F(S) - U1,re1)) = 
2F C1,ref C2,ref RT 
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The formal specification of the problem is now complete: the equations (16)-(19), 
(20)-( 23) and (24)-(27) must be solved subject to the boundary conditions (28), 
(29) and (30)-(32) with the current I(t) and any two of the concentrations (the 
other may be calculated from charge neutrality) specified at some initial time. To 
check that the problem is correctly specified, it is necessary to carry out an 'equation 
count': the solution of (19) will require 2 arbitrary functions oftime, whilst equations 
( 16)-( 18) involve only one arbitrary function (Three of the currents are zero; of the 
remainder, one is effectively known since the current I( t) is known and the other 
two sum to the total current. Thus one is unknown.) Each of the systems (20)-(23) 
and (24)-(27) (which consist of 3 first order differential equations and one algebraic 
equation) will require three arbitrary functions of time. Finally, we will need to 
determine one of the electrode voltages VA(t) and Vc(t) (the other may clearly be 
taken to be zero without loss of generality since the process can depend only on the 
potential difference). This totals to 10. Each of (28) and (29) provides us with four 
boundary conditions, and the Butler-Volmer laws (30)-(32) give another 3 to total 
11. However, amongst the four anode and cathode boundary conditions there will 
be one redundant condition because the total current is prescribed (it seems easiest 
to ignore the final condition of (29)). The number of arbitrary functions required 
(10) is thus equal to the total number of boundary conditions (10) and we may be 
confident that the problem is properly specified. 

A CELL WITH A PRESCRIBED POTENTIAL DIFFERENCE: Having 
solved the problem above where the current is prescribed, it is now simple matter 
to treat the case where the electrowinning process is driven instead by a prescribed 
potential difference. The only difference between this case and the model described 
above is that one of the anode and cathode voltages VA(t) and Vc(t) is now known 
( assuming that the other is set to zero), and the total current /( t) is unknown. 
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6 A· Simple Illustrative Example 

To check that the formulation described above does lead to a closed problem, it is 
worth briefly considering a simple example of the zinc/ copper/ chlorine system with 
some felicitously chosen constants. Specifically, we set 

These assumptions lead to some helpful simplifications, though it would be possible 
to solve the problem in closed form even without them. Physically, it does not 
seem out of the question that the diffusion coefficients could be similar. We also 
assume that the applied current I( t) = I where I is a constant. On introducing the 
constants 

a= FSAe, 
F 

d= RT' 
1 

9 = FAeb' 

and rearranging slightly, the equations become 

BULK: 

2aclt = -If (t) 

2ac2t = -If (t) = If (t) - I 

-aC3t I:}(t) =: I 

0 = z?(c1¢11) 11 + z?(ci¢ 11)y + z5(c3cp11) 11 

which may be solved after the introduction of say dJf(t)/dt =: If (t) to give 

Jf ( t) Jf ( 0) ' 
C1 =: --- + ClQ + --

2a 2a 
.Jf ( 0) .Jf ( t) It 

C2 = -~ + C20 + 2a - 2a 

It 
C3 =: -- + C30 

a 

A,_ yB1(t) + B2(t) 
If' - 3ft 

..J,(c10 + C20) + C3Q - a 
where the initial concentrations c10, c 2o and c30 satisfy 

2c 1o + 2c20 - c30 = 0 
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C 

and Bi(t), B 2(t) and Jf (t) are to be determined. 

CATHODE: 

cc + 2dccoc ly 1 . y = glf (t)/2 

cc + 2dcc<fp 2y 2 . y = glf (t)/2 
C d C ·C C3y - C3 <i>y = 0 

2cf + 2cf - cf = 0 

which may be solved ( the process is made easier of the equations are first added and 
a single expression for ¢P is derived) to give 

¢F 
1 = d log(ygl + 2C1(t)) + C2(t) 

cf = If (t) . C3(t) 
6l(ygl + 2C1(t)) - (ygl + 2C1(t))2 

cf = If (t) . . C3(t) 
6l(ygl + 2C1(t)) + (ygl + 2C1(t))2 

cf 
1 

= 3(ygl + 2C1(t)) 

where C1(t), C2 (t) and C3(t) must be determined. 

A~ODE: 

CA + 2dcA¢A ly 1 y = 0 

c·4 + 2dcA¢·4 
2y 2 y = 0 

c'1 - dcA<P· A 3y 3 y = -gl 

2cj4 + 2cf - cf = 0 

with solution 

</)A = -
2
~ log(-gly + A.1(t)) + A 2(t) 

c? = rb(t)(-gly + .41(t)) 

c·4 1 
2 = ( 3 - .43 ( t ) ) ( - g I y + Al ( t)) 

cf 
2 = 3(-gly + .-h(t)) 
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where A1(t). A2(t) and A3(t) are yet to be found. 

BOl':'-iDARY CONDITIONS: 

We may now impose the boundary conditions. Insisting that c1 and c3 are continuous 
at y = handy = S-h ( as usual, only two such conditions need to be imposed at each 
boundary layer edge as the third will be true automatically by charge neutrality) 
and also that ¢ and </>y ( though one of these will be redundant) are continuous at 
these locations gives in turn 

.Jf ( t) .Jf ( 0 ) 
A.3(t)(-glh + A1(t)) ( 3;3) ---+c10+-- = 

2a 2a 
It 2 

-- + C30 = 3(-glh + .-l1(t)) (:34) 
Q 

hBi(t) + B2(t) 1 

-l:(c10 + c20) + c30 - 3!t 
= -

2
d log(-gih + A1(t)) + .42(t) ( ;35) 

B1(t) gI 
(:36) 

-l:(c10 + c20) + c30 - 31t 
= 2d((-gih + A1(t)) 

.Jf ( t) Jf ( 0 ) If (t) . C3(t) . _ 
---+c10+-- = ---rr-((S - h)gI + 2C1(t)) - ((S' _ h)gI + 2Ci(th¼') 2a 2a 

It 1 
-- + C30 = 3((5 - h)gI + 2C1(t)) (:38) 

Q 

(S - h)Bi(t) + B2(t) 1 
(:39) 

--l(c10 + c20) + c30 - 3!t 
= d log((S - h)gl + 2Ci(t)) + C2(t) 

B1( t) gI 
(-l:O) 

-l:( c10 + c20) + c30 - 3!t 
= d((S - h)gI + 2C1(tl) 

whilst the Butler-Volmer conditions at the anode and the cathode respectively give 
(setting Vc(t) = 0 without loss of generality) 

2s33io3 ref ( O.a3F , ( 1 l .. , (T ) 
3Fc3,;ef A1(t)exp RT (v.-1.(t) - A2 t) + 2d og .'i1(t) - 3,refl = 

gl ('2b FD3) 
3 3 + RT 

(-l:l) 
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It is worth examining the conditions (33)-(-10) to confirm that, as asserted earlier, 
there is a redundancy. Equating the right hand sides of ( 36) and ( 40 J gives 

2(-glh + A1(t)) = (S - h)gl + 2C1(t). 

Since subtracting (38) from (34) gives exactly this equation the expected redundancy 
is indeed confirmed. 

Omitting the equation ( 40), ( 33)-( 43) may be further manipulated until all of the 
unknown functions of time have been identified, thus completing the solution of this 
illustrative problem. The details are involved and not particularly illuminating and 
so have not been included here, but the main point is that predictions can be made. 

7 Conclusions 

Obviously much work remains if a useful predictive model is to be developed for 
the process of multicomponent electrowinning. A number of potentially valuable 
conclusions may however be drawn from this initial study: 

• A consistent asymptotic approach to the theory has been developed where the 
status of any approximations that may be made is clear. In some studies that 
have appeared in the open literature the assumptions that were made were 
either unclear or not supported by numerical data. 

• The multicomponent model may be derived as a straightforward generalisation 
of the single component model. There seems to be no reason why it should not 
predict successive electrowinning of various different substances in response to 
varying applied currents and voltages. 
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• Various special cases exist where the multicomponent model may be reduced 
to a manageable ordinary differential equation boundary -value problem. Al­
t hough the simplifying assumptions required are probably not representative 
of practically important circumstances, they may serve as useful test cases for 
the validation of numerical codes. 

• The ultimate success or failure of a model for multicomponent electrowinning 
seems to depend upon the accuracy of the reaction model that is used. The 
Butler-Volmer model seems to have gained wide acceptance but is of an empir­
ical nature. It is also necessary that accurate values are known for the many 
constants appearing in the Butler-Volmer laws, and this may in itself be a 
highly non-trivial matter. 

• Other asymptotic limits that have not been examined here may also lead to 
interesting special cases. Their relevance to practical applications will depend 
on the range of parameters that may be encountered during the operation of 
electrowinning devices. 

• The models developed are equally applicable to electrowinning cells where 
either the current or the potential difference is prescribed. 

• Some of the literature that was examined during the week seemed to be in 
error. The errors were not major, but it is worth noting that some caution is 
required when the current literature is studied. 

Participating : Jon Chapman, Don Drew, Alistair Fitt, John King, .Ning Li, Oleg 
Rhyzhov. 

Report written by: Alistair Fitt 
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Nomenclature Table 

Ci 

Cie 

Ci,ref 

Di 
jji 
E 
E.4 
e.r,ey,e~ 
F 
L 
lnj 

lOj,ref 

I 
JA. 
' JC 
' m 

n 
ni 
n 
Ni 
p 

Pij 

% 
q 
R 
Rei 
Sij 

s 
T 
u 
Uj,ref 

1li 

u(y) 
V 

Electrode area (m 2 } 

Concentration of species i ( mol/ m3 ) 

Equilibrium concentration of species i (mol/m 3 ) 

Reference concentration of species i ( mol/ m3 } 

Diffusion coefficient of species i ( m 2 / s) 
Diffusion (possibly turbulent) coefficient of species i ( m 2 / s) 
Electric field ( V / m) 
. ..\nodic activation energy overpotential term (V) 
Unit vectors in the x, y and z directions respectively 
Faraday's constant ( = 9.64846 x 104 Cou/mol) 
Typical length of electrowinning cell (m) 
:formal component of current density from reaction j (A/m 2 ) 

Reference exchange current density of reaction j (A/m 2 ) 

Total current across electrowinning cell ( A.) 
Current at anode due to species i (A) 
Current at cathode due to species i (A) 
Total number of reactions (-) 
Number of species in solution {-) 
Number of electrons taking part in reaction j ( ·) 
Unit normal to reaction surface 
:\fass flux of species i (mol/s/m 2 ) 

Fluid pressure (N /m 2
) 

Anodic reaction order of species i in reactant j (-) 
Cathodic reaction order of species i in reactant j (-) 
Fluid velocity (m/s) 
Gas law constant (8.31441 J/mol/K) 
Reynolds number type parameter LU/ Di for ith species (-) 
Stoichiometric coefficient of species ·i in reaction j (-) 
Typical width (electrode spacing) of electrowinning cell (m) 
Temperature (K) 
Typical flow speed in cell ( m/ s) 
Reference open-circuit potential of reaction j (V) 
Mobility of species i (m2mol/J/s) 
Velocity profile in cell (m/s) 
Potential difference across electrodes (V) 
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V4. Anode voltage ( V) 
Ve• Cathode voltage ( V) 
Zi Charge number of species i ( - ) 
C'iaj Anodic transfer coefficient for species j (-) 
O:cj Cathodic transfer coefficient for species j ( - ) 
6 Electrowinning cell aspect ratio ( -) 
Eo Vacuum permittivity (farad/m) 
r i Non-dimensional parameter F Di V / RT bi (-) 
v Fluid kinematic viscosity (m2 /s) 
cp .Electric potential ( V) 
p Fluid density (kg/m 3 ) 

Po Charge density ( cou/m 3) 

r Time scale ( s) 
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