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1 Introduction 

The mechanics of computer hard disk drives is an important industrial prob­
lem which favors simple designs that can be optimized within a mathematical 
framework. Hard drives must perform in a very efficient manner; with max­
imum speed in accessing data, high accuracy in operation and low power 
consumption. Additionally, all components must be designed to maintain 
these conditions over thousands or millions of repetitions for a product lifes­
pan of several years. These considerations have produced current designs 
with a minimum of moving mechanical parts, and each of those parts are 
themselves relatively simple and reliable. A support arm positions the read­
write head over the rotating disk to access data. To access all of the tracks 
on the disk, the arm can be rotated quickly through a 30° range of angles 
by a very accurate actuator motor. Connected to this rotating structure is a. 
flexible computer ribbon cable that carries data to and from fixed electronic 
components in the rest of the computer. If this cable were very stiff it would 
impair the motion of the actuator slowing track-to-track data access speeds 
and might produce errors in track positioning. If this cable were very loose 
then the resulting long cable Would not easily fit into small disk drive design 
geometries. \Ve now present a mathematical formulation for determining the 
shape of the flexible cable and describe the design optimization problem. 

1 Proposed by Roger Wood, Storage Systems Division, IBM Research, San Jose CA 
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Figure 1: A photograph of a flex cable in a hard disk drive. 
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2 Formulation 

The equation for the equilibrium shape of the inextensible flex cable is de­
rived from the general equation for the bending of rods by end-point forces 
given in Landau and Lifshitz [4], 

dR d3R dR 
EI dS x d5'3 = F x dS' (1) 

where R(S) is the shape of the bent rod in terms of the arclength, and E • I 
is the bending stiffness, Young's modulus times the moment of inertia. F is 
the vector for the pair of equal and opposite forces applied at the endpoints 
of the rod or cable. The flex cable· is constrained to bend in one plane, 
consequently we can write the tangent to the cable and the force as 

F = ( - F cos 1P, - F sin 1P, 0) T, (2) 

where 0 = 0( s) is the angle of inclination of the cable and 1P is the angle of 
the force. Thus, equation (1) reduces to a nonlinear pendulum equation for 
the angle of inclination of the cable [5], 

d20 
EI dS2 + Fsin(0 - ,J;) = 0, (3) 

along with the parametric equations for the shape of the cable 

d.X 
dS = cos 0, 

dY . 
0 dS = sm • (4) 

To complete the description of the cable, we must specify the positions and 
orientations of the endpoints. One end is clamped at a fixed position, taken 
to be the origin, without loss of generality, 

0(0) = o, X(O) = 0, Y(O) = 0. 

The other end of the cable is clamped to the actuator, modeled as a rotating 
cylinder with center (.Y,Y), radius R, and the rotation angle o, 

0(L) = o - rr/2, X ( L) = _.y-+ R cos o, Y ( L) = Y + R sin o, ( 6) 

where the boundary condition on 0 specifies tangential attachment to the 
cylinder. Equations ( 3-6) describe a one-parameter family of nonlinear two­
point eigenvalue problems; for a continuous range of rotation angles o there 
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is a family of solutions with force ( F, 1j:) that satisfy the geometric constraints 
given by (.~,'.r'.R,L). 

We non-dimensionalize the problem by the length of the cable, 

X = Lx, y = Ly, R = Lr, S = Ls, ( i) 

and get a nondimensional parameter for the ratio of the applied force to the 
bending stiffness, 

FL 2 

,\ = EI • 

This yields the boundary value problem, 

dx 
- = cosB 
ds 

dy . fJ - =sm ds 

0(0) = 0 
x(O) = 0 
y(O) = 0 

0( 1) = o - rr /2 = 8t 
x(l) = x + rcoso = xe 
y( 1) = y + r sin o = Yt 

(8) 

(9) 

(11) 

Given the length of the cable, the radius and position of the actuator 
( r, x, y), and the desired attachment angle o, we can solve this system to 
yield the shape of the cable (0(s), x(s), y(s)) and the necessary applied force, 
the eigenvalues (,\, ~,). 

The form of problem ( 9-11) can be clarified by re-casting it as an initial 
value shooting problem. Using the trigonometric identity for sin( fJ - ip) in 
(9) yields 

el
2
9 ( , dy . elx) -. + >. COS1P- - sm'I/J- = 0, 

ds2 . els ds 
(12) 

with the use of equation (10). Integrating (12) from s to s = 1 yields a. 
first order equation that explicitly incorporates the boundary conditions at 
.5 = 1, 

dB 
,\ ([x - .re] sin Ii,' - [y- yt] cos lj}) + 0e, (13) = els 

dx 
cos()' ( 14) = ds 

dy 
sin fJ, (15) = ds 
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Figure 2: The geometry of the basic problem. 

where Be= 0'(1), 

x(0) = 0, y(O) = 0, 0(0) = 0. (16) 

Equations ( 13-15) form a third order nonlinear system with zero initial val­
ues (16). If we denote a solution of this system as u( s) = ( 0( s ), x( s ); y( s) /, 
then we are seeking a solution of 

( 

0(1) - 81. ) 
G(u,A;a): x(l)-xe =O, 

y(l) - Y1. 

(17) 

where the endpoint value of the solution u(l) depends on the vector of 
parameters, A = ( ,\, ¢, Ot) T. This form of the problem can be solved nu­
merically using Newton's method. Starting from a reasonable initial guess 
for the parameter values, A :::;: Ao, define the residual 

(18) 

and the discrete (finite-difference) approximation of the Frechet derivative 
or Jacobian as 

Jn = 6GI , (19) 
CA (Un,An) 
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Figure 3: The shape of the flexible cable as the actuator is rotated through 
a range of angles. 

then iterates of the parameters are given by 

(20) 

The sequence {An} will converge to a solution quadratically if the initial 
guess Ao is sufficiently close to the final solution. 

Of primary interest in this problem is the effect of the cable on the 
functioning of the actuator. It is desired that the torque or moment on the 
actuator due to the cable be minimized over a typical angular range of 1r /6 
for ct. This applied torque is 

M = - (0~ + >.rsin(a - if;)). (21) 

Once a solution o( (13-16) has been obtained, we can calculate its applied 
torque. 

3 Phase plane formuiation and elliptic functions 

Briefly returning to equation (9), we note that the change of variables 

¢(.s) = 0(s) - 0, (22) 
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yields the pendulum equation for ¢(.s), 

(23) 

The first integral of this equation is the energy 

1 
E = 2<t/2 

- cos ¢, (24) 

which yields the integral curves for the (¢,<fl) phase plane. The solutions of 
( 9, 10, 11) with fixed design geometry ( x, i}, r) at a given value of a will be 
finite segments of these curves. The endpoints of the segment are determined 
by the details of the boundary value problem and generally do not have a 
clear interpretation in the phase plane. Nor does the separatrix, the solution 
that separates two different classes of solutions in the phase plane, seem to 
have a clear significance for the boundary value problem. As the actuator 
angle a is varied over a finite range, the solution changes integral curves in 
a continuous manner, sweeping out a region in the phase plane. It should 
be noted that this region will have define bounds corresponding to ·physical 
limitations on the minimum and maximum realizable values of a. This a­
family of solutions is not necessarily locally invertible, as the region covered 
in the phase plane can fold back onto itself. Physically this means that given 
a sub-segment of a solution in the phase plane may not uniquely define the 
entire cable configuration since that portion of the integral curve might be 
contained in several distinct solutions that have different endpoints. 

One class of solutions that have a simple geometric description is the 
set of inflexional and non-inflexional solutions described by Love (5]. These 
are symmetric segments in the phase plane corresponding to cables with 
endpoint forces that act on a single line of force. While--it is true that 
all solutions of the pendulum equation (23) can be expressed analytically in 
terms of elliptic functions [1, 3, 2], the resulting expressions can be somewhat 
cumbersome to deal with. However the inflexional solutions yield relatively 
simple solutions that prove to be useful. 

The term "inflexional" refers to the fact that the endpoints of the cable 
for these solutions are inflection points where 8'(s) = 0 and the curvature 
changes sign. There is a continuous one-parameter family of these solutions, 
described by the angle 'r/J between the cable and the line of force. In terms 
of if;, the modulus for the Jacobian elliptic functions is k = sin(½ it,). As 
described by Love (5], in terms of the magnitude ). and angle ,;,, of the 
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applied force, the length of the cable for an inflectional solution is 

2 
£ = ./>.K(k) = 1, (25) 

where l{(k) = F(rr/2lk) is the complete elliptic integral of the first type. 
Similarly, the end-to-end distance of the cable is 

d - r = 5x (2E(k) - K(k)), (26) 

where E(k) = E(1r/2lk) is the complete elliptic integral of the second type. 
Observe that we can determine the angle iµ given the ratio of these two 
lengths, 

2E(k) 
0 < d - r = A"(k) - 1 < 1, (27) 

and consequently we can obtain the magnitude of the force, 

(28) 

where n = 1 is the basic solution of the problem and other "higher order 
harmonic" solutions exist for all n = 2, 3, 4, .... From a geometric construc­
tion it can be shown that for these symmetric solutions the actuator angle 
is given by o = 21/;. Similarly from geometry, we can determine the actuator 
position, 

x = ( d - r) cos ,µ, y = ( d - r) sin ~•. (29) 

Therefore, if we are given the force ( .X, ·,j;) and the fact that the cable is 
an inflectional shape, then we can uniquely determine all of the remaining 
parameters. 

In general for a given actuator and cable, these solutions cannot be 
achieved; they occur only for a very restricted (one-parameter) set of prob­
lems. However, they are very helpful as initial conditions for using :Newton's 
method to solve system ( 13-16) to converge to solutions defined by sets of 
parameters that are close to the inflectional values. 

Another consideration that we mention now, is that for real hard drives, 
the attachment boundary condition at s = 1 given in (11) is somewhat 
simplified. It assumed that the cable is clamped to the actuator motor 
tangent to a circle. In reality, the cable is clamped to the arm of the actuator, 
a structure connected to the motor. The point of attachment still moves on 
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Figure 4: The cable at various angles a in the phase plane. 

a circle as the motor turns, but its angle of attachment is generally an extra. 
degree of freedom. Consequently, we introduce the defect angle /3, in the 
boundary condition, 

0(1) =a+ ;3 - 1r/2. (30) 

4 Design optimization 

In this section we begin the discussion of a rational design process to select 
a ,:best" cable and actuator configuration. As was described above, the 
primarily criterion in defining a. best design is reducing the torque applied 
by the cable on the actuator, 

}vl(a) = - (Bt + .Xrsin(a - l/;)). (31) 

Any discussion of an optimization problem must be prefaced by a very clear 
statement of how the optimization process is to be carried out, i.e. which 
design parameters are prescribed and which parameters can be varied to 
seek the best design. In operation, to access all tracks on the hard disk, the 
actuator must turn through a range of 30 degrees. As a. first problem, our 
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goal is to find the optimal 30° range of angles for the design shown in figure 
1. with the parameters 

i = 67 mm, y = 49 mm, £ = 84 mm, f3 = 17°, r = 1 imm 

are given and fixed. This optimization problem has a clear interpretation 
- the actuator, cable length and fixed endpoint are pre-defined, solutions 
for the fl.ex cable satisfying these constraints exist for a range of rotation 
angles a - what is the 30° sub-interval in a that minimizes some measure 
of the moment, like the average or some other norm of 1'11( a), on the 30° 
range? The solution of this problem will define an optimal operating angle 
o:0 which determines the best orientation of the actuator arm and fixed end­
point relative to the position of the hard disk2 . This is the most restricted 
optimization problem; more general problems can be addressed by relaxing 
constraints on the position of the fixed endpoint. 
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