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1. Introduction 

The problem presented to the workshop by David Edwards and Darton Strayer of the 

Knolls Atomic Power Laboratory (K.A.P.L.) concerned annular two-phase flow. It is ob­

served experimentally that when large volumes of high speed vapor and smaller volumes _of 

slower moving liquid flow in many situations (e.g., between horizontal or vertical parallel 

plates, or in horizontal or vertical tubes), the liquid forms a thin layer along the walls with 

the vapor flowing in the core. We wish to understand the dynamics of this flow, in particular, 

why this density stratification, which should be unstable, persists under a wide variety of 

flow conditions. This is summarized succinctly by the question, "Why doesn't the liquid 

rain?" 

At present a code is used to solve averaged equations for the void fraction o:, the averaged 

velocities v 9 and v t and the pressures p9 and Pt of the gas and liquid respectively. The 

equations take the usual form 

[o:p9]t + 'v • o:p9v 9 = 0 

[(1 - o:)ptvt]t + 'v • (1 - o:)ptVtVl = 'v • '(l - o:)(-ptI +Tl+ rfe) + (1 - o:)ptg + M lg 

[o:p9v 9]t + 'v • o:p9v 9v 9 = V • o:(-p 91 + r 9 + r;w) + o:p9g + M gl 
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where the term M lg (= -M gl) is important, as it may be thought of as representing all 

the interface interaction terms that have been formally left out as a result of the averaging 

process. To close the model so that numerical solutions may be carried out, constitutive 

assumptions must be made for the term M lg' T k' and T re. The specific modelling that is 

involved must faithfully reflect the nature of the flow, and in particular must be appropriate 

to the two-phase flow regime that pertains. 

For some two-phase flow regimes, suitable forms of M lg are fairly well-known. For 

example, for bubbly flow where the total bubble fraction is not too high satisfactory models 

are available. (For this and other examples see Drew & Wallis (1996).) For annular flow, 

however, the position is much less clear. One way to do this is to include a somewhat 

artificial 'lift force' whose function is to allow a liquid film to exist stably on the top surface 

of a horizontal duct. Unfortunately, it is difficult to justify the large value of the lift coefficient 

that must be used to maintain the film, and there are cases where the code predicts that 

the film will not remain attached to the wall if only small changes in geometry are made. 

Evidently, a better understanding of the flow is required. The main questions that K.A.P.L. 

wanted to address in the MPI workshop were therefore 

(1) What ate the mechanisms that maintain the annular film? 

(2) What are the mathematical descriptions of such mechanisms? 

(3) Can such mechanisms be used to demonstrate the stability of annular flows? 

2. Annular Two-Phase Flow 

Space does not permit anything more than a cursory discussion of the annular two-phase 

flow regime, but it may be thought of as being the predominant flow pattern for evaporators, 

many different types of boiler, natural gas pipelines and general steam heating systems. The 

annular flow regime is characterised by a fast-flowing central gas core surrounded by a liquid 

film attached to the walls of the tube or duct in which flow takes place. The gas core may 

or may not contain droplets and mass exchange in the form of droplet entrainment and 

redeposition is frequently present. Throughout the following discussion, unless otherwise 

indicated, two-dimensional cartesian duct flow ( either vertical or horizontal) is examined ( so 

that the added complications of cylindrical flow may be ignored) and, for simplicity, the 

flow is assumed to be adiabatic. Naturally, in most boilers and steam systems the heat 

transfer is the very point at issue; nevertheless annular two-phase flows are readily observed 
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in adiabatic systems. It is also worth making the point that, although secondary flows in 

the gas core are observed in boiler tubes, there is good experimental evidence that swirl and 

a consequent 'hydrocyclone' effect is not the mechanism that ensures that the fluid remains 

close to the tube walk 

Because annular flows arise in such a range of applications, it is hard to give any general 

rules for the conditions under which this regime pertains. In subsequent sections, however, 

'typical' parameter values will be required, so it is as well to have some idea of the velocities 

involved. A two-phase flow regime map is presented on p. 316 of Wallis (1969) in which 

typical values for horizontal adiabatic annular flow are given as 

Gt>.¢ ~ 20 Gu ~ 104 

G ' >. u 
where 

[( Pu ) ( Pt )]
1
1

2 

>. = 0.075 62.3 ' 

Here Pt and Pu are the densities of the liquid and gas respectively (measured in lbs/ft 3 ), µl is 

the dynamic viscosity of the fluid (measured in lb/hr/ft) 1 is the surface tension (measured in 

dynes/cm) and Gt and Gu are the respective mass fluxes (lbs/hr/ft 2). Using values for water 

and air at room temperature (, = 60 dyne/cm, Pu = 0.062 lbs/ft3, Pt - 62.3 lbs/ft 3 and 

µl = 2.5 lb/hr/ft) gives>.~ 0.909 and 1/J ~ 1.449, and thus Uu ~ 146613 ft/hr= 12.41m/sec 

and Ut ~ 2216 ft/hr = 0.188 m/sec. 

In contrast to this, conditions for vertical cocurrent annular flow in a 1.25 inch diameter 

pipe atmospheric pressure are given on p. 10 of Wallis (1969). These suggest the onset 

of annular flow at a gas velocity of approximately 17.65 m/sec. Various values are also 

suggested for the existence of particular forms of disturbance to the flow. Roughly speaking, 

for a constant gas flow rate an increase in the liquid flow rate creates pulses, followed by 

disturbance waves with small ripple waves. 

As a final example of annular two-phase flow, we consider vertical (non-adiabatic) flow 

in a vertical liquid metal fast breeder reactor boiler tube as discussed by Kane (1994}. Here 

typical test section tubes have length 30m (of which 10m is occupied by two-phase flow) and 

diameter 12mm. Gas velocities of around 6 m/sec are normal, and liquid films of 0.5-1 mm 

are observed. 

To summarise, therefore, we consider annular two-phase flows where the gas velocity is 

of the order of 10 m/sec and the fluid velocity is typically one or two orders of magnitude 

smaller. We assume that the annular flow regime persists so long as (a) the gas velocity is 

sufficiently high and (b) the fluid film does not become too thick. 
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3. Models for Annular Two-Phase Flow Disturbances 

Before proposing a model for disturbances to annular two-phase flow, it is worth noting 

that we assume throughout that annular two-phase flow is the existing flow regime, and 

give no attention to the mechanisms that led to its establishment. Typically, annular flow 

is set up from a combination of slug/plug and churn turbulent flows, but the details of the 

establishment of the liquid film on the walls of the duct or tube are extremely complicated. 

(For tentative descriptions, see Wallis (1969).) 

To set up a framework for a model, we assume that flow takes place in a two layers, a 

liquid layer 0 ~ y ~ h(x, t) which lies beneath a gas layer L 2:: y 2:: h(x, t). 

We non-dimensionalise according to x = Lx, y = Ly, t = L/(U)f, h = Lh, Ut = Uut, 

Vt= Ufh and Pt= µtU / Lfit• The Navier-Stokes equations in two dimensions become (having 
dropped the bars for convenience) 

in the liquid, and 

cos(} 
Re[vlt + UtVl:r; + VtVty] =-Ply+ (vt:r;:r; + Vtyy) + Fr 2 

Ut:r; + Vty = 0, 

. ~o 
Rep[v9 t + u9 v9:r; + v9 v9y] = -p 9 y + µ (v9:r;:r; + Vgyy) + P Fr 2 

Ug:r; + Vgy = 0, 

in the gas. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Here the Reynolds number is taken to be Re = LU/ Vt where Vt is the kinematic viscosity 

of the liquid, and the Froude number is Fr = J VtU / gL2 . In order to apply these equations 

to both 'the gas and liquid, we have introduced the viscosity ratioµ = µ 9/ µt and the density 

ratio p = p9 / Pt• The angle(} has been introduced for simplicity to distinguish between three 

cases, namely (} = 0 ( the liquid layer on the top surface of a horizontal duct, hereinafter 

called "liquid on top"), (} = 1r (the liquid layer on the bottom surface of a horizontal duct, 

called "liquid on bottom") and (} = 1r /2 ( the iiquid layer on a side wall of a vertical duct, 

called "liquid on side"). 
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The boundary conditions at the interface between the gas and liquid are given by conti­

nuity of the velocity (the so-called "no-slip" condition), 

u(x, h(x, t)+) = u(x, h(x, t)-) 

v(x, h(x, t)+) = v(x, h(x, t)-) 

and a jump condition for stress, 

(7) 

(8) 

where 1 is the dimensionless surface tension coefficient, which is equal to 1 / µtU, and fl is 

the dimensionless curvature. 

The evolution of interface waves is described by using the kinematic condition that, on 

y = h(x, t), 
D 
Dt (y - h(x, t)) = 0 

and thus 

ht+ Ut(x, h(x, t))hx = Vt(x, h(x, t)). (10) 

In subsequent sections, several different modeling aspects of annular flow will be exam­

ined. In the first several models, the liquid layer is assumed to be thin and the gas is treated 

as inviscid, with the possibility of a (turbulent) boundary layer at the gas-liquid interface. 

The two-layer Poiseuille model studies the stability of a flow generated by viscous effects 

to a perturbation_ where viscous effects are ignored. 

3.1 Thin liquid layer model 

In this section, we assume that the liquid layer adjoining the wall y = 0 is much thinner than 

the duct height, a small parameter f being defined by the ratio of a typical h to L. In the 

liquid layer we non-dimensionalise and rescale according to x = x, jj = fY, l = l/ft, h = fh, 
ilt = fUt, Vt = f2Vt and fit = 1/(f)Pt· These scalings not only take account of the relative 

thinness of the liquid layer, but also express the fact that, as discussed above, velocities in 

this layer are an order of magnitude smaller than in the gas core flow. The Navier-Stokes 

equations in two dimensions become (having again dropped the bars for convenience) 
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3 .· ] 1 2 gL 2 cosO 
Ru. [vlt + UtVix + VtVty = - 2 piy + t Vtxx + Vtyy + lJ. 

t lit 00 

U(x + Vty = 0. 

Here Re = LU00 / lit where lit is the kinematic viscosity of the liquid, and the angle () has 

been introduced for simplicity to distinguish between three cases, namely () = 0 ( the liquid 

layer on the top surface of a horizontal duct, hereinafter called liquid on top), () = ,r (the 

liquid layer on the bottom surface of a horizontal duct, called liquid on bottom) and() = 1r /2 

(the liquid layer on a side wall of a vertical duct, called liquid on side). 

We now consider these equations in the limit of small t. They become, to lowest order 

( in redimensionalised form) 

For horizontal flow (sin() 

equations are that 

Ply = PL9 cos () 

Ufx + Vty = 0. 

(11) 

(12) 

(13) 

0), the conditions that these are the correct leading order 

Using the representative values lit = 10-6 m2 /sec, llg = 1.5 x 10- 5 m2 /sec, this requires that 

U00 ~ 10915L115 , so that for U00 ~ 10 m/sec (as suggested above), the tube width must 

exceed 10- 4m for the analysis to be valid; an eminently reasonable requirement. 

For vertical flow, the conditions under which the leading order equations are as given 

above are slightly changed to 

but once again it may easily be confirmed that these conditions--dcr allow typical annular 

two-phase flows to be considered. 

The equations (11)-(13) may easily be solved in terms of two arbitrary functions P(x, t) 
and A(x, t) which are to be determined, giving 

Pt= Pt9Y cos O + P(x, t) 

y2 
Ut = -

2 
(Px + Pt9 sin 0) + yA(x, t) 

µl 
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Note that P is the pressure in the liquid over the hydrostatic, and that A is related the the 

stress at the interface by 

we find that 

The evolution equation for h is then 

ht= [ h
3 

(P:i: + Plgsin0)-
2
h

2 

Ti] . 
3µl µl :i: 

The model must now be closed' by making suitable assumptions to obtain P and Ti to couple 

the flow in the gas core to the problem. 

3.2 A simple annular flow model 

We begin by considering the simplest possible coupling model for the flow. Assuming that 

Pl= 0 and Ti= T(h, h:i:) on y = h(x, t) where Tis a "known" function that characterises the 

influence of the gas stream on the liquid layer, we find that 

T hp,.g . 
A(x) = - + -[hx cos0- sm0] 

mu,. µ,. 

and thus 

Pt= Pt9 cos O(y - h) 

u,. = 
2
y

2 

(-Pl9h:i: cos 0 + Pl9 sin 0) + y (~ + hp,.g [h:i: cos 0 - sin 0]) 
. µ,. mu,. µe 

y3 y2 [ T p,.gh . l 
Vi= -

6 
Pl9h:i::i: cos0 - - -- + --(hx cos0- sm0) . 

µ,. 2 mue µe x 

The evolution equation for h(x, t) is thus 

h2h2 T h2 

__ :i: pegcos0 + hhx--+ -
2 

(8hTh:i:) = 
µe mue µe 
h3 h2 h2h 

--
3 

Pt9h:i::i:cos0- -
2 

h:i:~(8h%T) + __ :i: Plgsin0 
µl µl µe 

(14) 

Three separate cases may be identified: (i) 0 = 0 (liquid on top). Here the first term on the 

right hand side of (14) is of the nature of a backward diffusion term. As expected therefore, 
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gravity destabilises the film. The only hope of changing the sign of this term would be if 

ah,, T was sufficiently negative. (ii) () = 1r (liquid on bottom). Here gravity stabilises the 

interface; for ahx T positive and sufficiently large, however, instability could still be created. 

(iii)()= 1r/2 (liquid on side). The stability now depends solely upon the sign of ahxT. This 

qualitative argument suggests that the dynamics of the gas flow must be included in any 

model that will be capable of predicting a "stable" liquid film in most cases. This was carried 

out in two parts, first, by including a pressure fluctuation term, and second, by including a 

boundary layer drag between the gas and the liquid. 

3.2.1 Effects of gas core flow 

In order to try to quantify more clearly the effects of the gas core flow, we consider the gas 

flow to be inviscid and irrotational; the pressure is assumed to jump in proportion to the 

surface tension times curvature at the gas/fluid interface, whilst the shear stress resulting 

from the viscous forces exerted by the gas on the fluid is incorporated into the model by 

specifying µluly = Ti at y = h(x, t). 

Thin aerofoil theory Because there was some confusion over the signs of various quanti­

ties during the discussion that took place at the workshop, we derive the thin aerofoil pressure 

relationship from first principles. In the gas fl.ow, we have, from Bernoulli's equation, 

1 2 
Pg+ 

2
pgvg = Poo, 

where p00 is a constant. Assuming that a boundary perturbation of O(t) produces an O(t:) 
change to the gas flow, we seek an expression for the stream function of the disturbance 

potential in the gas flow of the form 

where g is to be determined. We note that, according to the definition of this stream function, 

and 
t:Ug loo y 

Vg=- g(e,t)( t)2 2de~fUgg(x) 
7r -oo X - i,. + y 

(y ~ 0), 
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where Ug is the streaming velocity of the gas. The kinematic boundary condition in the 

outer fl.ow is 

ht+ ug(x, h(x, t))hx = vg(x, h(x, t)). (15) 

Using the obvious scalings x = Lx, t = L/(U 00 f.)t, h = f.Lh, Ug = Ugflg and Vg = f.Ugvg 

shows that the first term of (15) is negligible, and therefore to lowest order flgh:i: = fig on 

y = h(x, l). Thus g(x) = h:i: and, upon using 

1 [ 2 2] pg = Poo - 2pg ug + vg 

we find that (in dimensional variables) 

= . - ! u2 + pgU; 1-· oo hx(!, t) dt: 
Pg Poo 2Pg g 1: 1,,-

1r -oo <,, - X 
(16) 

For simplicity, we choose p00 = ½pgU;. Then we have 

- pgU; too hx(!, t)dl: 
pg- --- <,,• 

7r -oo e - X 
(17) 

Boundary layer drag The interfacial stress represents the force per unit area on the 

liquid exerted by the gas. The model for the gas fl.ow assumes that the gas is moving at 

speed Ug in the x-direction. A "standard" interfacial drag model gives 

(18) 

where Ui = ul(x, h), and Ji is a friction factor. Wallis (1969) suggests a value of 

Ji= 0.0025(1 + 300f.) 

which gives a value of about 0.025 for f. = 1/30, a representative value. 

The stress is coupled to the motion through the condition that 

h2 h 
u; = ul(x, h) = -(Px + Pl9 sin0) - -Ti. 

2µl µl 

This equation, together with (18), give the interface velocity implicitly. This quadratic 

equation can be solved ( assuming that J; is constant) to get 
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Note that the interfacial stress is given by 

(19) 

Note further that if we assume that 

(20) 

we have 

(21) 

3.2.2 Lubrication/Thin Aerofoil Model 

We may now proceed to solve the governing equations with the further assumption that the 

flow does not interact with the interfacial stress, viz., 

(22) 

To determine P we have 

Pt= p1,gycos0 + P 

and, on y = h(x, t), 

Using (17), we finally find that the system to be solved for h(x, t) is 

(23) 

(24) 

Some discussion of (23) and {24) is apposite. The equations may be thought of as a 

marriage between lubrication and thin aerofoil theory. Such equations have been studied 

before; King & Tuck (1993) consider the support against gravity of a thin liquid layer on a 

plane wall in an upward flow of air, citing the example of rain drops on the windscreen of a 

car travelling at high speed. They considered steady flows only, and the drops were of finite 

extent. The dislodging by dynamic pressure forces of a drop against surface tension was 

studied by Durbin (1988). Once again, only steady flows were considered but downstream 
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of the (finite extent) drop a wake with an unknown separation point was assumed to exist. 

In both these cases numerical solutions to a steady version of (23) and (24) were computed. 

Equations similar to (23) and (24) were derived by Fitt et al. (1995) in a study of crack 

propagation in a geothermal energy reservoir. In this case, the point at issue was the crack 

spreading mechanism and similarity and crack tip boundary layer solutions were determined. 

Finally, the study of King, Tuck & Vandenbroeck (1993) concerned steady solutions to a 

model closely related to that presented above for waves on a wind-blown thin inclined layer· 

of viscous fluid. They found that steady periodic waves existed and that there was a long­

wave limit of a solitary waveform. 

Steady Solutions Before considering the full unsteady model, we discuss some steady 

solutions of (23) and (24). When time-dependence is ignored, (23) may immediately be 

integrated. Identifying the constant of integration with the fluid flux -Q in the liquid layer 

we find that 
h2 h3 

Q = -
4 

fip 9 U; - -
3

. (Px + Pt9 sin 0), 
µt µt 

Px = -',hxxx - Pt9hx COS 0 + Pgx• 

With ht = 0, the flux Q is constant, and the final equations for h is 

3fip 9 U'; 3Qµt . 
-7 hxxx ~ 9 (Jlhx COS (J + Pgx = 4h - ~ - 9 Pt Slll (J, 

This is essentially a generalisation of the equation studied by King et al. (1993), and similar 

methods to those examined in that paper could be used for analysis; as usual, for a given Q 

constant height solutions are determined by 

Linear stability To investigate the stability of interface waves in annular flow, we first 

carry out a standard linear stability analysis upon (23) and (24). Setting 

where h0 is a constant and h1 ~ 1, and using the fact that 
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we find that the dispersion relation for (23) and (24) is 

h3 k2 ikho . 
-iw = -0

-[- 1k2 + ptgcos0+ I k I pgU;] + -(ho9Ptsm0- fipgU;) (25) 
3~ ~ 

and we may now consider the three obvious cases: 

(i) 0 = 0 (liquid on top). Here both gravity and the dynamic pressure forces are destabilizing. 

For stability we require 

,k 2 > Pt9+ I k I pgU; 

and, taking k > 0 without loss of generality, the critical wavenumber kc is therefore given by 

Using the typical parameter values quoted above, this gives critical wave numbers and cor­

responding wavelengths .\ of kc= 417, .A = 15mm (Ug = 1); kc = 667, .\ = 9.4mm (Ug = 5) 

and kc= 1761, .\ = 3.6mm (Ug = 10). The most unstable wave has wavenumber pgU;/(2 1) 

and hence a wavelength of about 8.33U;. The wave speed is given by 

and waves are therefore not dispersive, waves of different wave number travelling at identical 

speeds. For practical purposes, c may be tentatively estimated as follows: Assuming from 

our earlier analysis that gLt 2 ~ VtUg, we have, with the usual parameter values, 

Thus for Ug ~ 10 the wave speed is likely to be between 3 and 4 m/ sec. It must be emphasised 

that thes~ rough calculations should be repeated with other correlations available in the 

literature until some sort of consensus is achieved. 

(ii) 0 = 1r (liquid on bottom). Here the gravity stabilises the fl.ow and for stability we require 

Although we have stability for large and small k, the maximum value of w is realised when 

k = pgU;/(2 1). At this values of k we have 

1 ( 2 4 ) w = 4, pgUg - 4,Pt.9 
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and for typical values this is likely to exceed zero, so that it is likely that there will still 

be unstable wave numbers. Waves still travel at a constant speed identical to case (i). 
Investigations are still continuing in this case. 

(iii) 0 = 1r /2 (liquid on side). Here the stability criterion is simply that ,k > p9 U';, so long 

waves are always unstable. Further analysis is also possible in this case, but has not been 

considered yet. 

Effect of Gas Boundary Layer The condition for the model presented in eq {20) 1s 

difficult to meet for the parameters discussed in this report, with 

4hfip 9 U9 = O(l) 
µt 

(26) 

for the values presented here. However, if we assume that the liquid layer is turbulent, we 

cna use values of the eddy viscosity to ascertain the validity of the inequality {20). If the 

eddy viscosity is more than an order of magnitude bigger than the laminar viscosity, then 

the conditions are met. 

Next, We proceed to analyze the governing equations, accounting for the interaction of 

the flow with the interfacial stress·. We assume 

(27) 

Again, we have 

Pl= Pl9YCOS0 + P 

and, on y = h(x, t); 

Pl = Po - ,hxx 

Using ( 17), we finally find that the system to be solved for h( x, t) is 

(28) 

[
p9 U'; f_oo hx({, t) l 

Px = -,hxxx - Pl9hx cos 0 + -'Tr- -oo e _ x de x • (29) 

Note that the constant height solution is unchanged. 
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Linear stability The dispersion relation becomes 

(30) 

The effect of the boundary layer drag is to decrease the growth rate when the gas velocity 

increases. Indeed, when the gas velocity reaches 

the growth rate changes sign, and for larger gas velocities, the flat interface is stable. This 

criterion implies that if annular flow occurs at 17.65 m/sec, and the laminar viscosity is used, 

a stable film of thickness ho = 0.157 cm can exist at the top of the duct. However, we see 

that this contradicts the assumptions used to arrive at this model. If we instead assume that 

the viscosity represents a turbulent viscosity, of an order of magnitude bigger than laminar, 

the maximum thickness of the stable film increases by an order of magnitude. 

3.3 Stability of Poiseuille Flow 

Consider flow in three layers as depicted in figure 1. For this analysis, we shall use a different 

coordinate system, and take()= 1r /2. For plane Poiseuille flow with interfaces at y = ±H, 
v = 0, Px is constant and uo(Y) is given by 

uo(Y) = Ut = a1(l -y2) 

and the pressure is given by 

{
cx+Fr- 2 (1-y) for h0 $ y $1 

Po= ex+ Fr- 2 (1 - ho)+ pFr- 2 (h0 - y) for 0 $ y $ ho. 

(31) 

(32) 

(33) 

Without loss of generality, we choose the velocity scale so that u0 (h0 ) = 1. This requires 

c = - 1!h~, so that a 1 = 2(t~h~) and a2 = 2,./-h~). 

Introduce small waves along the upper interface such that 

u(x,y,t) = uo(Y) + u1(x,y,t) 

v(x, y, t) = v1(x, y, t) 
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Figure 1: Layered Poiseuille flow between horizontal plates. 

p(x, y, t) =Po+ P1(x, y, t) 

h(x, t) =ho+ h1ei(kz-wt) 

The kinematic condition (10) implies 

v1(x, Y, t) = v(y)ei(kx-wt) 

with 

v(ho) = ih1(-w + k). 

The continuity equation (3) implies 

U (
x y t) __ v'(y) ei(kx-wt) 

1 ' ' - ik • 

Let 
P1(x, Y, t) = Pi(y)ei(kx-wt) 

(36) 

(37) 

(38) 

(39) 

(40) 

( 41) 

Assume that viscous effects in the perturbed flow can be ignored. Then, equations ( 1) 

and ( 4) become respectively 

Re(; - uo) 11' +vu~= -ikPi(y) + (1- p) F~2 ih1k (42) 
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for O ~ y ~ h0 , and 

Rep(: - uo) v' +vu~= -ikPi(y) 

for h0 ~ y ~ 1. Furthermore, equations (2) and (5) become 

Re (-iwv + uoikv) = -Pi'. 

Eliminating Pi' from above yields Rayleigh's equation 

(: - u0 ) v" + ( u0" - k2 
(: - u0)) v = 0. 

(43) 

(44) 

(45) 

The problem then reduces to solving equation ( 45) for v in both layers with the boundary 

conditions that v vanishes at the upper wall, y = 1, and somewhere in the lower layer (away 

from the interface). In addition, the vertical velocity, v, and pressure, Pi, must match at 

the interface. Since the perturbed flow is assumed to be inviscid, the horizontal velocity is 

allowed to slip at the interface. 

3.3.1 Stability Analysis 

Since the top layer is thin relative to the bottom layer, define 

a= 1 - ho where a~ 1. (46) 

Equation ( 45) is a linear equation in the unknown function v with nonconstant coefficients. 

It can be solved simply for the two cases lu~I :::.}> lk2(w/k - uo)I or lu~I ~ lk2(w/k - uo)I. 

Case lu~I :::.}> lk2(f - uo)I : This limit corresponds to k ~ 1 or waves which are long 

relative to the height of the lower layer. Then, equation ( 45) can be approximated by 

(; - uo)v" + u~v = 0 

which can be integrated once by parts to yield 

(
W ) I I k - u0 v + u0 v = A. 

(47) 

(48) 

Equation ( 48) is a first order linear equation in the unknown f and can be evaluated using 

an integrating factor when (w/k - u0 ) =/ 0. Since u0 is zero on the upper boundary and 

very large at y = 0, the real part of (w/k- u0 ) is expected to vanish somewhere in between. 

Proceeding naively, v is found in the upper layer to be 

( 
2 2 Lt 2aA1 -

v = a - y ) - ( 2 -2)2 dy 
y=y a -y 

(49) 

40 



for 

(50) 

Note v vanishes at the upper boundary by construction. However, the integral in ( 49) does 

not exist if the denominator vanishes within the interval of integration. Since 1 ::; y ::; 1 +a in 

the upper layer, the denominator will vanish for some y if w / k is real and positive. Evaluating 

(49) asymptotically for y > Re(a)+ and u ~ 1 gives the alternate expression 

(W-y) 
Vt ~ -A1u (W _ o:) as u-+ 0. (51) 

Expression (51) exists for ally in the top layer and satisfies ( 48) asymptotically for small u 

(with A= At), unless w/k = u~ in the upper layer. 

The solution for v in the bottom layer is 

where 

2 2 111 -2µuA 2 ~ 
V2 = (/3 - y ) _ (f32 -2)2 dy 

y=L . - y 

/32 = (1 - w/k)(2u + u 2) + 1 
D 

(52) 

(53) 

and Lis some arbitrary lower limit where v2 vanishes. To leading order, the exact location 

of L is not important as long as it is away from the interface at y = 1 - h0 • 

In nondimensional form, the kinematic condition (39) is equivalent to 

letting 

w=(l-~), 
and substituting equations (51) and (52) into (54) yields 

and 

ih1k 
A1 ~ --w( w - 1) as u -+ 0, 

u 

Matching the pressure at the interface implies 
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(54) 

(55) 

(56) 

(57) 

(58) 



Substituting for A1 and A2 from (56) and (57) yields 

w(w - 1) = _fw - (1 - p)u-
1
-. 

µ Fr 2 
(59) 

Solving for w from (59) gives 

(60) 

The wave does not grow if the discriminant in (60) is nonnegative. Thus, the flat interface 

is stable to waves of short wavenumber (lu~I ~ lk2 (r - uo) I: ) if 

( vg)2 ( pg) (W - H) gH 
1 - v,_ ~ 4 1 - P'- H U2(H)' (61) 

where H is the undisturbed height of the gas layer. Note that in this approximation, to 

leading order, the waves are not dispersive; i.e., w / k is constant. Note also that for all other 

parameters held fixed, the growth rate decreases as the velocity at the interface increases or 

the ratio of the top layer height to the bottom layer height decreases. 

Case lu~I ~ lk2(f - uo)I: This limit corresponds to k ~ 1 or waves short compared to 

the height of the bottom. Then equation ( 45) can be approximated by 

which has solutions 

v1 = A1 sinh k(l - y) 

v2 = A 2 sinh k(y - L) 

(62) 

(63) 

(64) 

where again to leading order L does not enter into the problem as long as L is away from 

1 - ho The kinematic condition (54) implies 

A _ ih 1 kw 
1 

- sinhku 
(65) 

A _ ih 1kw 
2 

- sinh k( ho - L) 
(66) 

Matching the pressure at the interface yields 

_ 2 ( cosh ku ) _ ( ; - 1 ) ( ) 1 
w k sinh ku + pk + w -u- + 1 - P Fr 2 = O (67) 
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or 
1-.e .e 2 hk 

w = l _ w = _( .::.._a_u_)_±__,'--(_;-_)_-_4....,.(k....,.~_f~_k;_+_P_k_)_(_l_-_P_)_-F_~-=_2 
k 2(k:r:::z; + pk) 

(68) 

Thus, the flat interface is stable to waves of wavenumber k if 

( l vg)2 4kH(cosh k(W - H) pg) ( pg) H (W - H)2 
- vi ~ sinhk(W-H) + Pi l- Pi gU 2 (H) H • 

(69) 

Note that short waves are dispersive. Moreover, the fl.at interface is unstable to waves that 

are sufficiently short. 

4. Discussion and Conclusions 

Several different modeling aspects of annular flow have been examined. The situation 

with liquid above the gas ( unstable density stratification) is unstable for the simplest sorts 

of models; the analysis focussed on the stability of a flat interface to small disturbances. 

In the first several models, the liquid layer was assumed to be thin and the gas was treated 

as inviscid, with the possibility of a (turbulent) boundary layer at the gas-liquid interface. 

This model predicts that the stability depends on the model taken for the boundary layer 

stress. The range of parameters where stability was found was not satisfying-the liquid layer 

was assumed to be turbulent, so that the eddy viscosity could be used to justify the model 

that predicted stability of the film. These assumptions seem to contradict each other. 

Although it seems that a fully nonlinear stability analysis would be required to determine 

the fate of long waves, the fact that, according to linear theory, the fastest growing wave has 

such a long wave length suggests that for tubes of modest sizes it might not be observed. A 

tentative explanation for the persistence of a film on the top wall of a horizontal duct may 

therefore be simply that unstable modes simply leave the boiler t11be before they have had 

a chance to grow very much. 

One of the results of this analysis is that surface tension plays a role in stabilizing short 

waves. Consequently, the wavenumbe_r where stability changes is a function of surface ten­

sion. Its influence and the fact that instabilities may pass out of the annular fl.ow region too 

quickly to manifest themselves in any noticeable way seem to be the only mechanisms that 

have been identified for the maintenance of a true annular fl.ow regime in a horizontal tube. 

The two-layer Poiseuille model studies the stability of a fl.ow generated by viscous effects 

to an inviscid perturbation. This model also predicts that the flat interface is always unstable, 

since for given flow parameters, there is always a wave number range for which the linear 
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stability calculation shows that the waves grow. It predicts that sufficiently short waves 

grow, and that the shorter waves grow faster. Long waves do not grow. Moreover, long 

waves are only weakly dispersive. If all other parameters are held fixed, the growth rate 

decreases as the velocity at the interface increases or the ratio of the top layer height to 

the bottom layer height decreases. Therefore, if we postulate an equilibration of the short 

waves ( this cannot be predicted by linear theory) this analysis predicts that the interface 

will appear to be wavy, with an equilibrated short wave pattern on it, which is not unstable 

to long waves. The model does not incorporate the effects due to the difference in molecular 

viscosity when two fluids, for example, are of the same density. It is expected that these 

effects must be accounted for by using a viscous perturbed wave. 

In the work presented above, no account has been taken of drop entrainment or depo­

sition. Although much work has been carried out to investigate the role of drop formation 

by undercutting of interface waves and subsequent redeposition in annular two-phase flows 

(see, for example Wallis (1969)) it seems rather unlikely that the drops are solely responsible 

for the maintenance of the liquid layer. 

The implications on the constitutive equations for the average fields is far from clear. As 

so often in the field of multiphase flow, trying to use a single two-phase flow equipped with 

a variety of added terms to model a wide range of flow regimes is fraught with problems. 
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