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1 Introduction 
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An optical fiber is a cylindrical waveguide of visible ( or near visible) light 
composed of silica doped with germanium oxide (Ge02) .. The guiding is 
accomplished by varying the level of Ge02 in the fiber to create an index 
of refraction in the fiber that varies with the radius of the fiber. The fiber 
is manufactured by creating a large cane with a radius on the order of 
centimeters that goes through a sequence of heatings and extrusions until it 
reaches the finished size, which has a radius on the order of microns. 

To assess the quality of optical fibers during their manufacture, it is 
common to measure the index of refraction of a cane during an intermediate 
step of the process. The index of refraction varies with the radius of the 
cane, and is written n(r). The desired profile varies depending on the future 
use of the optical fiber, but a standard profile is a simple parabola 

where a is the radius of the cane. Typical values for n1 and n2 are 1.47 and 
1.45 respectively. Such a profile is shown in Figure 1. The actual profile in 
an optical fiber does not match the desired profile due to the way in which 
optical fibers are manufactured. A glass blank is spun on a lathe while a 
flame that is fed an appropriate level of silica and Ge02 moves rapidly back 
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Figure 1: A desired parabolic profile for the finished fiber. 

and forth along the cane. Soot from the flame is deposited on the spinning 
blank. Naturally the deposition will create spiral patterns of doping on 
the cane. This creates oscillations in the level of GeO2, and therefore in 
the desired refractive index. Because soot is being deposited at a constant 
volumetric rate, the wavelength of the oscillation decreases as the radius of 
the cane increases. The flame travels up and back along the cane in each 
layer, so the layer structure has two local maxima in each full oscillation. A 
typical layer structure at three different radial locations inside the cane is 
shown in Figure 2. 

This oscillatory structure inside the fiber is unimportant to the behavior 
of the fiber, because the wavelength of the oscillation in a fiber of finished size 
is much smaller than the wavelength of light used in the fiber. However, the 
oscillations do cause problems when measuring the base index of refraction. 
The index profile in a cane is typically measured by probing it with a laser 
[1]. The entering light ray is refracted by the cane and exits with a deflection 
angle </> that varies with the offset of the beam from the centerline of the cane. 
In a cane without oscillatory layers, all changes in the index of refraction 
are gradual, and geometrical optics can be used to predict the deflection 
angle </>. The deflection angle of a real fiber with the oscillatory structure 
described above has a much more complex behavior than the idealized case 
because the structure within the layers can cause visible effects on the input 
beam. The deflection within a single input beam will produce an exit beam 
with a broad structure that makes it difficult to determine the underlying 
profile. 
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Figure 2: The layer structure in a fiber. This figure shows the oscillatory 
behavior in the doping (and therefore the index of refraction) at three differ­
ent radii in a fiber. Plot 31 is near the center of the fiber, and 32 and 33 are 
progressively further out towards the edge. Notice that both the amplitude 
and wavelength of the fiber decrease as the radius increases. 
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2 IMPROVEMENTS TO THE MODEL EQUATIONS 

Because the oscillatory behavior of n( r) is unimportant in the final prod­
uct, Corning asked MP! '95 to determine a way to remove the noise in the 
measurements of n(r) caused by the oscillations, and determine the back­
ground profile, np(r). 

2 Improvements to the Model Equations 

It was suggested that a simple model for the perturbed index of refraction 
could be given by the equation: 

Two improvements were suggested for this model. {1) Since the each layer 
has two local maxima, the frequency of the perturbation should be doubled 
( or the first two terms of a representative Fourier series should be used). ( 2) 
The deposition of a layer occurs with respect to a constant volume, thus a 
more appropriate variable for the variation is (r/a) 2. Then our model would 
be given by: 

(2) 

This model gives reasonable agreement with the basic features shown in 
Figure 2. 
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3 GEOMETRICAL OPTICS 

3 Geometrical Optics 

3.1 Basic Theory 

When the variation of the index of refraction is small compared to the wave­
length of light, geometrical optics is a well-known technique that may be 
used to find the path traced by an incoming beam [2]. The basic equation 
for the ray is given by the Eikonal equation 

(3) 

where u(r) is a function whose contours represent the wave fronts, and r is 
the usual position vector. The light rays will follow paths orthogonal to the 
wavefronts (characteristic paths). The paths are given by 

d ( dr) - n(r)- =v'n, 
ds ds 

(4) 

where s is the arclength along the path. An equivalent form of the ray equa­
tion may be derived using calculus of variations and the least-time principle 
for the ray path. The ray equation (4) is the Euler-Lagrange form of the 
least-time path. 

The ray equation (4) is a system of second-order equations for the coor­
dinates of the ray path. It must also be coupled with the algebraic equation 

1::1 = 1 (5) 

to determine the ray path. 
We make the assumption that the index of refraction depends only on 

the radial coordinate, n = n(r) so that (4) becomes 

(!:)2 - (6) 

d8 c 
ds - r 2n(r) 

(7) 

after an integration and an application of (5). The constant c is determined 
by the initial slope of the ray path. For a horizontal ray entering the cylinder 
at r = a a at a distance t from the theta= 1r axis, then c = -t * n(a). The 
problem of interest is to determine the index of refraction from experimental 
data about the ray paths. Typical data is the deflection of a horizontal beam 
by the fiber as a function of the offset Yobs (see Figure 3). A common method 
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3 GEOMETRJCAL OPTICS 3.1 Basic Theory 
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Figure 3: The basic setup for the refraction angle method. 

based on the ray paths is called the refraction angle method as described 
in (1]. It is based on the fact that deflections of the ray are small for weak 
refractive-index gradients and short path lengths. When the slope of the 
ray paths is not large, y'(x) « 1 where y(x) is the ray path, thens~ x and 
n(r) ~ n2. Under these assumptions, the ray equations (6) and (7) reduce 
to 

d2y n'(r)y 
-=--
dx2 n2r 

{8) 

This approximation is usually referred to as the paraxial approximation. We 
consider horizontal rays that enter the fiber at an offset t from the centerline 
of the fiber, so we may integrate (8) over the fiber to obtain 

1 1:z:l n'(r)y tan</,=- --dx. 
n2 :z:1 r 

(9) 

In (9) x1 and x2 are the x-coordinates of the points where the ray enters 
and exits the fiber and the deflection angle ¢, is the ray angle at the exit 
point. Now the integral is transformed to an integral over r 

tan<f,=__!__(-1tn'(r)ydxdr+lrn'(r)ydxdr). (10) 
n2 a r dr t r dr 

A second approximation must be made to get {10} into a tractable form. 
We note that y is approximately constant during its transit of the fiber, so 
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3 GEOMETRICAL OPTICS 3.2 Numerical Experiments 

we may use y = t and x = J r 2 - t 2 and get 

</> 2t fa dn dr 
tan = n2 it dr (r2 _ t2)1/2 • (11) 

Note that the two integrals in (10) become equal under this second assump­
tion to produce the factor of 2 in (11). If an observation screen is placed a 
distance L from the centerline of the fiber and y(L) = Yobs(t) is the mea­
sured deflection of the the ray at the observation screen as a function of the 
input displacement, then 

tan</>= Yobs(t) - t + O(</>) 
L 

(12) 

where CJ(</>) has the usual meaning that the omitted terms are no larger 
than </>. Under the paraxial assumptions used above, </> is small so we can 
use (12) and rewrite (11) as an Abel integral equation 

(
00 d dr n2 

it dr [n(r) - n2] (r2 - t2)1/2 = 2Lt [Yobs(t) - t] (13) 

The extension of the integral in (11) to [t, oo) is possible since n(r) = n2 for 
r ~ a. Abel integral equations such as (13) have a well-known inversion and 
we may solve (13) for n(r) - n2 in terms of the data Yobs(t) 

n2 100 Yobs(t) - t n(r) - n2 = --L 112 dt. 
Tr r (t2 _ r2) 

(14) 

3.2 Numerical Experiments 

To better understand the problems associated with the inversion of the de­
flection data, several numerical experiments were performed. The first set of 
experiments focussed on the primary system of equations from geometrical 
optics, (6) and (7). These equations were integrated numerically using a 
simple Runge-Kutta integration scheme to find the paths of the rays. The 
integration is straightforward, except that care must be exercised with re­
gard to the square root that occurs in (6). Each time the right-hand-side of 
{6) goes through zero, the sign of the square root is reversed. This change 
results when a ray stops entering the fiber, dr/ds < 0, and begins to exit 
the fiber, dr/ds > 0. Several runs were conducted with different oscilla­
tion profiles and at different offsets of the input beam. An input beam of 
light was approximated with a number of rays spread over the approximate 

7 



3 GEOMETRlCAL OPTICS 
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3.2 Numerical Experiments 

Figure 4: Ray paths for a typical input beam. The center of the beam is at 
1/2 the radius of the cane, and the perturbation has the sinusoidal form of 
(1). 
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3 GEOMETRICAL OPTICS 3.2 Numerical Experiments 
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Figure 5: Exit angles for a typical input beam. The center of the beam is 
at 1/2 the radius of the cane, and the perturbation has the sinusoidal form 
of (1). 

physical width of the beam and the ray paths were computed. One of the 
programs (written in C) used to compute the paths is given in appendix B. 
A representative plot is shown in Figure 4. 

We can also determine the exit angles as a function of offset using this 
approach. For the rays in Figure 4, we found the plot of q,(t) given in Figure 
5. Interestingly, we found that the form of <j,(t) varied little across the cane. 
The layer structure itself dominated the function. 

To see how the form of the perturbation affected the data, we also plotted 
exit angles as a function of t for various forms of the perturbation. The 
results are shown in Figure 6. The plot labeled sine was a simple sine 
function as in (1). The plot labeled sawtooth was created from a sawtooth 
curve with unit amplitude and the same wavelength as the sine in (1). The 
curve labeled physical was a piecewise linear approximation to the data 
shown in Figure 2, and the plot labeled Fourier was a four term Fourier 
approximation to the the piecewise linear function. Although the form of 
the perturbation can affect the output data, we see that the overall structure 
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Figure 6: Plots of </>(t) for different forms of perturbation. All had the same 
amplitude and wavelength, but differed in functional form. 

of the perturbation is most relevant, i.e. how many local extrema are present 
in an oscillation and the wavelength of the oscillation. The smoothness of 
the perturbation also played a minor role. We saw that smooth functions 
could cause arbitrarily large exit angles, but these occurred for a very small 
number of initial conditions (ray paths), and so would be less likely to be 
observed in a measurement. 

Another series of experiments was performed using the paraxial approx­
imation given in (8). These simulations showed good agreement to those 
using the full equations. One result of these simulations was an "intensity" 
plot which was obtained by finding the concentrations of ray paths. This is 
shown in Figure 7. To generate this plot 100 values of the deflection were 
calculated in an interval of one wavelength of the perturbation (0.02 in this 
case). The tan(</>) axis was partitioned and the number of samples falling 
in each bin was counted. This was repeated for t values increasing from 
t = .Ola to a in increments of a/50. The intensity is greatest where the 
slope of tan( <I>) is smallest. Although the layer structure causes a compli­
cated pattern for each layer, it may be possible to invert the data based on 
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Figure 7: An "inteDBity'' plot found by looking at the densities of the exit 
angles. 

the envelope, but this has not been investigated. 
From these and other similar experiments, we were able to conclude the 

following: 

• There is a pronounced focusing effect in each layer near the vertical 
centerline, since this.where the rays are parallel to the contour lines of 
n( r) and sensitive glancing incidence occurs. In fact, it can be shown 
using the ray equations, (6) and (7), that a caustic is formed inside 
each oscillatory band. 

• The. oscillatory structure is unimportant away from the vertical cen­
terline of the cane. This is supported by the asymptotic analysis of 
the next section. 

• The paraxial approximations and the resulting Abel equation seem to 
give reasonable agreement to the full ray equations of (6) and (7). 

• The layer structure plays a dominant role in the final data. The pat­
terns produced by a layer are fairly independent of the offset of the 
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3 GEOMETRICAL OPTICS 3.2 Numerical Experiments 

incoming beam. However, it may be possible to determine the desired 
profile from some envelope of the data. 

• The basic form of the layer structure is important, but the finer details 
may not be. 
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4 ASYMPTOTIC ANALYSES 

4 Asymptotic Analyses 

4.1 Matched Asymptotic Expansions 

We again consider (6) and (7) for an incoming horizontal ray at r = a 
with vertical offset t, which corresponds to 9 = 1r - sin- 1(t/a) . This gives 
c = -tn 2 since n(a) = n2 . Dividing the equations gives 

(15) 

where we choose the negative sign for an incoming ray and the positive sign 
for an outgoing ray. A ray changes from incoming to outgoing at rmm(t) 
which occurs when dr/ds = 0 so from (6) rmm(t) is the largest root of 

rn(r) = tn2. (16) 

We integrate (15) from r = a , () = 1r - sin- 1(t/a) to 8mm(t) (which is 
not a minimum of 9) at rmm(t) using the minus sign to find 

(17) 

By symmetry, the ray will exit at r = a with 9 = sin- 1 (t/a) +2(9mm -1r/2). 
The deflection angle <J,(t) is the amount that the exiting value of 9 is below 
the input value in the positive direction sin- 1(t/a), so 

We can model a cane with no oscillations with n(r) = n2(l + .6.n(r)) 
where 6. « 1. If we substitute this into (18) and take care with some near 
singular behavior in the integral, we find that rmm(t) = t + 0(6.) and <t, is 
given by {11), and the Abel approximation of (13) is valid. 

For the full problem, we write 

n(r) = n2 [1 + .6.n(r) + Ell.n(r)) . 
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4 ASYMPTOTIC ANALYSES 4.1 Matched Asymptotic Expansions 

Now the problem is divided into two regions, an outer region, away from 
r = Tmin(t) where the rapid fluctuations cancel and an inner region near 
r = Tmin(t). In the outer region, the leading order contirbution is identical 
to that found above 

la Afi.'(r) 
</>outer = -2 J 2 2 dr • 

t r -t 
(19) 

The inner region is more complicated. First we introduce the quantity 
fmin as the solution of 

(1 + .6n(rmin)] rmin = t , 

i.e. the minimum radius for the problem without oscillations. Since A « 1 
this can easily be solved as 

(20) 

The true value of rmin is found by solving 

There is an interesting response when rmin is a layer or more larger than 
Tmin-This occurs when the spatial scale of the fluctuations is the same size 
as its magnitude, EA. Thus, the rescaling for the inner problem is given by 

r = Tmin + EAp (21) 

The closest approach to the origin by the ray will be given by p = Pmin 
where Pmin satisfies 

Pmin + tn(t - An(t) + EApmin) = 0 , 

where an O(A) term has been ignored since A« 1. Now we can compute 
the deflection in the inner region as 

From this analysis, we can make the following conclusions: 

• The deflection away from the vertical centerline of the blank is 0(6) = 
ocn2~n, ). 
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4 ASYMPTOTIC ANALYSES 4.2 Is geometrical optics valid? 

• The deflection that occurs near the center of the blank is upwards and 
has size 0( a). 

• There are no inner deflections for small t because r n( r) is monotonic 
there. 

• There are no inner deflections near the outer edge because n ➔ 0 
there. 

All of these conclusions are corroborated by the numerical experiments. 

4.2 Is geometrical optics valid? 

The question arises as to whether it is appropriate to use geometrical optics 
in this probelm because of the fine structure of the layers. The following 
analysis gives a criterion to determine the validity of the use of geometrical 
optics for this problem. 

Suppose the index of refraction in a dielectric is given by 

n = 1 + €n(r/€), 

where O < € « 1 represents the wavelength of the perturbation to the base 
index. The reduced wave equation (Helmholtz equation) for the light waves 

~u+ k2n 2u= 0 

becomes 

~u + k 2(1 + 2di(r/€))u = 0. (23) 

Now, we assume that waves are propagating primarily in the x direction, so 
u = t/J(x, y)eik:z:. Upon substitution into (23), we get 

(24) 

Now we rescale the independent variables near the vertical centerline of the 
fiber, x = 0, y ~ t, the offset of the beam initially, since that is where the 
most refraction takes place. 

y=t+€'y, X=€ 1
/

2x, r=t+€(1J+!:) (25) 

When these are substituted into (24), we find 

et/J:z::z: + ¢1111 + e312 k2it/J:z: + 2e + 2e3 k2n ( y + ;; ) t/J = o( e4) , 
{26) 
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4 • ASYMPTOTIC ANALYSES 4.2 Is geometrical optics valid? 

where we have multiplied by e2 and dropped the tildes from the new vari­
ables. The "Pxx term is always o(l), but a key balance for the other terms 
occurs when t:3 k2 = 1, for then the leading order terms of (26) give 

1/)1111 + 2it/J:i: + 2n (Y + ;:) 1/J = o. (27) 

If t:3 k2 « 1 then the layers are too small to be seen by the waves and the 
only result is their net effect (which is very small). If t:3k2 » 1 then the 
wavelength of the input beam is much smaller than the oscillations of the 
index of refraction and standard geometrical optics is valid. For a typical 
cane measurement, typical data is 

radius - a = 10mm = 10, 000µm 

wavelength - A = 633nm = .633µm 

perturbation = n( r) = A sin ( 
2~r) 

where L varies between 46 and 71. Thus, we have t: = 60/20, 00G,r ~ 10- 2 

and k = 10, 000/.633 :;::;:i 1.5 x 104 so t:3k2 ~ 2.5 x 103 which suggests that 
geometrical optics may be valid for this problem. If geometrical optics is 
not valid, then the analysis of the previous section is still valid, but now 
(27) must be used for the inner problem. 
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6 WORKING GROUP 

5 Conclusions 

The following conclusions and comments were obtained by the MPI '95 study 
group for this problem. 

• Information about the layer structure will be needed before an accurate 
inversion of the data can be obtained. It is not known at this time 
how much detail about the structure is necessary. 

• Most of the refraction occurs near the vertical centerline of the core 
being probed. This is where the incoming rays are nearly tangent to 
the lines of constant n(r). 

• The problem is in some sense ill-conditioned since the noise swamps 
the desired data. However, if the noise can be removed, it may still 
be possible to recover the background profile. It may be possible to 
exploit the work on waves through random media, but this will take 
more work. 

• Reflections inside the cane have been ignored. The data. in Figure 2 
suggests that sharp interfaces may be present in the canes that will 
ca.use reflections. According to some calculations, the key angle is 
approximately 3°, which also figures prominently in experimental data. 

• An alternate measuring technique examining the reflections from the 
end of the cane was also suggested, but its implementation looked to 
be too expensive. 

• (added during the report write up) It may be possible to exploit some 
global characteristics of the data to determine the background profile. 
Unfortunately, time did not exist to explore this possibility during 
MPI '95, but it should be examined. 

6 Working Group 

The following participants contributed to this problem: John Abbott, Jay 
Bourland, Jon Chapman, Ellis Cumberbatch, Bill Dold, Steven Epstein, 
Alistair Fitt, Donald French, John Hinch, John King, Colin Please, Jorge 
Sobehart, Warren Weckesser, Tom Witelski, Va.dim Zharnitsky. If you have 
questions or comments about this report, please contact Jay Bourland, 
jayb@MATH.ColoState.EDU. 
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A NOTATION 

A Notation 

r Position vector for a point in space. 

r, 0 Polar Coordinate variables. r is measured from the centerline of the 
cane and O = 0 is parallel to the incoming light ray pointing at the 
exit side. (n(r)] Index of refraction of the cane. 

n1 Index of refraction at the center of the cane. (n2] Index of refraction 
at the outer edge of the cane. Generally, n1 > n2. 

np(r) The unperturbed (desired) index profile. 

¢ Deflection angle of the light ray measured with the same orientation 
as the polar angle variable O. 

Angle between and incoming ray and a tangent line to circle centered 
at r = 0. 

s Arclength parameter of a light ray. 

c Constant of integration for the ray paths determined by the initial 
slope of the ray. 

a Radius of the cane. 

t Offset of incoming light ray from the centerline of the cane. 

f. Amplitude (relative to np(r) - n2) of the perturbations to the index 
of refraction for the cane. 

N Number of oscillatory layers within the cane. 

L Distance from the observation screen to the center of the cane. 

Yobs(t) Offset of the light ray at the observation screen. 
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B PROGRAM LISTING 

B Program Listing 

#include<stdio.h> 
#include< math.h> 

#define sqr(x) ((x)*(x)) 
#define fabs(x) ((x)>O.0 ? (x) : -(x)) 
#define max(a,b) ((a)>(b)? (a):(b)) 
#define sgn(x) ((x)>=0.0 ? 1.0 : -1.0) 
#define pi M_PI 

double s,R[2]; /*full axi-symmetric cylindrical *f 
double work[6); 
double s1, Y[2]; / * paraxial approx *I 
double n(); 
double np(); 
double t,a,c; 
double n2, n1 ; 
double eps,N; 
double sign= -1.0; /• !!!!!!!!!!!!!!! •/ 
double sign1 =-1.0; 
double R1 [1]; 
double s2; 
void getparams(double *, double *,double *); 
double variation(double); 

double h; 

int F(); 

/ •,-- parameters --◄/ 
FILE •out; 
FILE •out2; 

main() 
{ 

int i; 

double uu; 
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B PROGRAM LISTING 

double rp,xx,yy; 
double xx1,yy1; 
double ang1, npaths, beam width, beamcenter; 

getparams(&npaths, &beamwidth, &beamcenter); 
/ * actually the universal parameters are set as well * / 

t= beamcenter - beamwidth/2.0; 
out=/open("paths", "w"); 
out2 = fopen("angles", "w"); 
while( t< beamcenter+beamwidth/2) 
{ 

sign= -1.0; 
xx= -sqrt(sqr(a)-sqr(t)); 
yy=t; 
rp= -a•xx/yy; 
c= -t.n2 

/ •-- initial conditions --• / 
R[O]=a; /• r •/ 
R[l]=atan2(yy,xx); /• phi •/ 
s=0.0; 
fprintf( out, "¼f ¼f\n", R[OJ•cos(R[l]),R[O]uin(R[l])); 
h=le-4; 

do 
{ 

rk(R,s,h,2,F, work); 
s+=h: 
i++; 
if(!( i%100)) 
{ 

i=O: 
fprintf( out, 11¼£ ¼£\n", 
R[O]• cos( R[l]), R[0]•sin( R[l]) ); 

} 
}while(R[0]<1.1*a); 
print!(" ••• ¼£ \n" ,t); 

fprintf (out," \n"); 
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B PROGRAM LISTING 

xx=R[0)*cos(R[l]); 
yy=R[0)*sin(R[l]); so 
rk( R,s,h,2,F, work); 
xx1=R[0)*cos(R[l]); 
yyl =R[0]*Bin( R[l]); 
/print/( out2, "¼g "I. .16g \n" ,t,atan2(yy1 ~yy,xx1-xx)*180.0/pi); 

[ff:u.sh( out); 
[ff,ush( out2); 

t+=beamwidth/ npaths; 
} 

} 

/close( out); 
/close( out2); 

rk( x, tt, h, n, F, work) 
/* fourth order general Runge-Kutta for a system of ODEs *I 
double *X; 
double *Work; I* array of 3*n doubles *I 
double tt,h; 
int (*F)(); 
int n; 
{ 

int i; 
double t; 
double h2=h/2.0; 
double h6=h/6.0; 

double *k1,*k0; 
double *X1; 
k0=work; 
k1=k0+n; 
x1=k0+2*n; 

t=tt; 
F(x,k1,t); 

for(i=0;i<n;++i) 
{ 
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B PROGRAM LISTING 

} 

} 

x1 [i]=x[i]+h2•k1 [i]; 
k0(i]=k1 [i]; 

t=tt+h2; 
F(x1,k1,t); 

for( i=0;i<n;++i) 
{ 

} 

x1 [i]=x[i]+h2•k1 [i); 
k0[i]+=2.0•k1 [i); 

t=tt+h2; 
F(x1,k1, t); 

for( i=0;i<n;++i) 
{ 

} 

x1 [i)=x[i)+h•k1 [i); 
k0 [ i)+=2.0•k1 [ i]; 

t=tt+h; 
F(x1,k1,t); 

for( i=0;i<n;++i) 
x[i)+=h6•(k0[i)+k1 [i]); 

/• don't update time•/ 

F(X,KK,t) 
double •X.•KK,t; 
{ 

double r,phi; 
double rp,phip; 
double root; 

r=X[O]; 
phi=X[l); 
root=sqr( n( r))-sqr( c/r); 
if(root<0.0) sign•= -1.0; 

/• a ray with rp<O •/ 
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} 

rp= signuqrt(fabs(root))/n(r); 
phip=e/( n( r )•sqr( r )); 

KK[0)=rp; 
KK[l)=phip; 

double n(r) 
double r; 
{ 

if(r>a) return(n2); 

160 

return( n2 +( nl -n2 )•(1.0-sqr( r /a)) •(1.0+ eps•variation( r) )); 110 

} 

double np(r) 
double r; 

{ 
return{-2.0•r / sqr( a)•( n1-n2)); 

} 

void getparams( double •np, double •bw, double •be) 
{ 180 

} 

a= 1.0; 
N = 500; 
n1 = 1.47; 
n2 = 1.45; 
eps = 0.0; 

printf("Enter width of beam (as a fraction of radius) » "); 
seanf("¼lf", bw); 
printf("\nEnter center of beam (as a fraction of radius) » 11

); 

sean/("¼lf", be); 190 

print/( 11\nEnter the number of ray paths to compute » "); 
sean/( 11¼1£11

, np); 

double variation ( double r) 
{ 
/ * sin plus extra 
return( (2.0 /pi)•sin(2.0•pi•N•r/a) - (1.0/pi)•sin( 4.0•pi*N*r /a) 
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I••/ 

+ (2.0 / (3.0•pi)) •sin( 6.0•pi•N •r / a) 
- (1.0/(2.0•pi))•sin(S.0•pi•N•r/a)); 

/ * double hump sawtooth * / 

double A,B,C,yB,yC, x; 

A= .l; 
B = .5; 
C = .7; 
yB = .5; 
yC = .3; 

x = r•N - ftoor(r•N); 

if (x < A) 
return(2.0•((1.0 - x/ a) - .5)); 

else if ( x < B) 
return(2.0•(((x - A)/(B-A) * yB) - .5)); 
else if (x < C) 

200 

210 

return(2.0•(( yB - (x-B)/( C-B)*(yB-yC)) - .5)); 220 

else 
return(2.0*(( yC + (x-C)/(1.0-C)•(l-yC)) - .5)); 

/• •/ 

/ * simple sine wave 
return(sin(2.0,-,:a•N•r/a\); 
•/ 

/ * single sawtooth 

return(asin(sin(2.0•pi•N•r/a))); 

l*•I 
} 
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