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1. Problem Statement 

A log in the oil industry is a record of measurements taken by instruments in an 
attempt to determine the geology through which a drill is passing or has passed. 
Typically an instrument package, called a sonde, is lowered by a cable attached 
to a truck in which readings are recorded and analyzed. In the case of the nuclear 
sonde, a source of neutrons or photons is included in the instrument package, as 
is a collection of sensitive detectors that are used to measure radiation in and 
around the borehole. Interpretations of these measurements are then required to 
assess the properties of the surrounding material. 

Because of the complex geometries, the relatively low probabilities associated 
with the detection of scattered radiation, and the extreme accuracies required, 
nuclear well logging problems pose severe challenges for any numerical method 
used to solve the governing transport equations. These same difficulties lead 
naturally to the use of Monte Carlo methods for their solution since the three 
dimensional, irregular geometries, the accurate representatio·n of the source, and 
the need for extensive nuclear and atomic cross section data. pose no particular 
problems for such simulations. However, the Monte Carlo solutions often entail 
the processing of several million particle histories, at substantial computing costs, 
even when only steady-state problems are to be solved. And when pulsed neutron 
sources are employed, the resulting time-dependence of the solution drives these 
computing costs even higher. 

For these reasons, the Chevron Petroleum Technology Company has for the 
past two years sponsored a research program at The Claremont Graduate School 



whose objective has been to accelerate the convergence of the Monte Carlo solu­
tions. The research, which is being carried out partly by student-faculty teams 
in the Graduate School's Mathematics Clinic, has involved both the development 
of generic improvements in the basic methodology - methods designed to be ap­
plicable to a broad class of transport problems - and techniques that attempt to 
take a~count of the special features of the well logging applications [1]. 

In the first category, promising new hybrid Monte Carlo methods [2] have been 
developed with the potential for order of magnitude acceleration of the conver­
gence of the Monte Carlo solution. Hybrid methods combine conventional pseu­
dorandom implementations (i.e., simulations in which pseudorandom numbers.are 
used to make all of the random walk decisions) with quasirandom implementa­
tions (i.e., simulations in which low-discrepancy sequences are used to make the 
decisions) in an attempt to capture the best features of both methods. This is pos­
sible because the pseudorandom rate of convergence is independent of the average 
number of collisions made by random walking particles, while the quasirandom 
convergence rates are asymptotically (i.e., for large numbers of histories) better, 
except in problems requiring many collisions per particle. Two new hybrid meth­
ods, a mixed method and a scrambled method, have been studied in a series of 
model transport calculations and show promise of substantial reduction in error 
per unit computing cost. While the research program at The Claremont Gradu­
ate School continues, the work performed so far has posed a number of interesting 
theoretical and practical questions, and help in dealing with these was solicited 
at the MPI Workshop. A few of these questions are mentioned below. 

1. Optimization of the implementation of the mixed and the scrambled meth­
ods pose somewhat different challenges and require somewhat different consid­
erations. In the case of the mixed method, the idea is simply to switch from a 
low-dimensional quasirandom sequence to a pseudorandom sequence when an op­
timum number of collisions has been reached for each random walk history. This 
optimum number will be problem-dependent, in general. How can this optimum 
number be estimated in each problem? 

2. In the case of the scrambled method, there is the issue of finding the the­
oretically most precise, yet still practical, implementation strategy. This involves 
finding the best way to generate independent random permutations of the integers 
1, ... ,N, where N is the number of histories to be simulated. Methods tested so far 
have relied on the use of linear congruential pseudorandom algorithms to achieve 
this, but are flawed theoretically. Can improvements in this implementation strat­
egy be found? 
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3. Research performed so far has concentrated on developing and testing 
strategies capable of order of magnitude gains in rate of convergence. Only limited 
timing comparisons have been made to date. It is desirable now to optimize the 
coding associated with the new strategies and conduct accurate timing tests of the 
new methods and conventional methods. What will detailed timing comparisons 
reveal about the relative efficiencies of the new and the old methods? 

4. Use of quasirandom sequences is inherently incompatible with the use of 
rejection sampling methods, which are extensively employed in production Monte 
Carlo codes, especially for the generation of angular scattering distributions. 
There are many ways to eliminate rejection sampling, such as determination of 
the functional inverse (when easily possible), through transformation of the un­
derlying random variables, or through (brute force) direct table lookup. Which 
of the many techniques available should be employed in connection with the new 
methods? 

5. Can the adjoint Monte Carlo solution be employed to any advantage in 
well logging problems? More generally, is it advantageous to work back and 
forth between direct and adjoint simulations, perhaps using tallies from one to 
approximate an importance function for the other? 

6. It would seem useful to employ artificial detectors in well logging problems: 
these would be used for the purpose of generating tallies of particles fairly far from 
the sonde to record the energy spectrum associated with particles that had already 
suffered a number of collisions from the source. Especially when used in concert 
with focused estimation techniques - for example - with expected value estimators 
found by calculating the expected contribution to the physical detectors from 
particles still relatively removed from the sonde - such techniques would appear 
to provide for further reductions in run times per unit accuracy for this difficult 
class of problems. What will it take to incorporate such estimators in existing 
Monte Carlo codes? 

Efforts at the Workshop concentrated mainly on Question 2 above. 

2. Improvements in Implementation of the Scrambled Se­
quence Algorithm 

Use of the scrambled hybrid sequence requires the generation of the elements of 
the (M + 1) • N - dimensional matrix of d- dimensional quasirandom vectors 
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q1 q2 q3 0 0 0 qN 

qN+P1(1) qN+Pi(2) qN+P1(3) 0 0 0 qN+Pi(N) 

q2N+P2(l) q2N+P2(2) q2N+P2(3) 0 0 0 q2N+P2(N) 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

qMN+PM(l) qMN+PM(2) qM N +PM(3) 0 0 0 qMN+PM(N) 

where Pi, P2, ... , PM are M permutations chosen "at random" from the total num­
ber of N! permutations of {1, ... , N} available. That is, we require one-to-one 
functions 

Pi : {1, ... , N} --+ {1, ... , N}, i = 1, ... , M 

randomly chosen from among the full set of permutations. In all that follows, 
we shall interpret the phrase "at random" to mean, at least in terms of computer 
implementation, "chosen pseudorandomly". Thus, a standard way of defining such 
permutations would be to generate pseudorandomly N variables X 1 , X 2, ... ,XN in 
the interval [0,1) and sort them into ascending order XP(l) < Xp( 2) < ... < 
XP(N)· Such a reordering of the numbers defines a permutation P of {l, ... N} and 
repetition of this process, using independent N-tuples chosen from [0,1 ), will 
produce independent pseudorandom permutations of {1, ... , N}. 

However, this essentially exact method of generating independent permuta­
tions selected uniformly from among the N! available suffers from a number of 
practical disadvantages, especially when the magnitude of N (220 or more in typ­
ical transport applications) is large: 

1. For each permutation, storage of all N Xi 's is required. 
2. Sorting a large number of numbers is computationally complex and time­

consummg. 
3. While the permutations are needed to define the rows of the matrix above, 

the vectors themselves are utilized columnwise in the simulation. Thus, storage 
of the entire matrix of (M + l)N vectors seems unavoidable. 

In the ideal case, it might be more convenient to have a parametrization, 
Pa, ac:I, of all possible permutations that lends itself to a pseudorandom selec­
tion of a. However, unless such a parametrization could be implemented more 
efficiently than the sorting algorithm, it could not be used in practical transport 
simulations. 

There are, however, relatively simple algorithms that produce permutations. 
One very effective such algorithm is based on the use of linear congruential pseu-
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dorandom number generators modulo N. Consider the congruence 

P(n + 1) = aP(n) + b (mod N), n = l, ... ,N 

where N = 2k , the seed P( 1) = n0 is arbitrary, the multiplier a = 4i + 1, 
the additive constant b = 2j + 1, and the integers i,j are arbitrary. From the 
theory of such linear congruential algorithms it is known that the integers P(n) 
do not repeat before the full cycle of N integers is generated. This assures that 
the function P does, indeed, define a permutation. Quite clearly, these linear 
congruential algorithms have three constants - n0 , a and b - that can be chosen 
"at random" in order to accomplish random selections of permutations. 

Use of the linear congruential algorithm also enables a contraction of the total 
storage required for the implementation of the scrambled hybrid method inasmuch 
as the integers P( n) are calculated by means of a function evaluation one at a 
time as needed. Experimentation in Claremont with pseudorandom choices of the 
seed no have provided good results. However, such an algorithm may be visualized 
as the selection of numbers on a circle, and pseudorandom selection of the seed 
only affects the choice of the starting point on the circle. The sequencing of the 
points along the circle is not affected at all by changing the seed. Based on this 
observation, it was suggested at the Workshop that improved results might be 
obtained by selecting the multiplier a pseudorandomly. 

This suggestion was tried by recoding programs available at Claremont to 
accomodate the new strategy. This was then tested on a "model" transport prob­
lem (i.e., a transport problem whose exact solution is known) that had also been 
studied at CGS. The results are displayed graphically in Figure 1. 

Figure 1 displays the absolute value of the error as a function of the number 
of random walks generated. A total of 8192 histories were attempted in this 
initial test. The heavy solid line represents the er.ror in a simulation in which 
the seed, n0 , is varied pseudorandomly, while the lighter solid line graphs the 
error when the multiplier, a, is varied pseudorandomly. The improvement after 
8192 histories is nearly an order of magnitude: the errors are 0.00697803 !nd 
0.0008344 7, respectively. For comparative purposes, Figure 1 also exhibits the 
results when a conventional pseudorandom simulation is used; this is displayed as 
the dashed line in the fiugure. The error after 8192 pseudorandomly generated 
histories is 0.01845~4. This impressive gain in accuracy with the new scrambled 
implementation certainly warrants further study. 

It should be pointed out that only a fraction of the total number of possible 
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Figure 2.1: Comparison of Errors vs. Number of Histories: Model Problem 

permutations can be generated in these ways using linear congruential algorithms. 
It is not difficult to see that selecting different integers n0 , a, and b (mod N) pro­
duces different permutations P. Thus, there are altogether N 3 /8( = N • '~ · f) 
permutations accessible through such choices. \.Vhile this is but a small fraction 
of the total number N! of possible different permutations, it is hoped (and there is 
some evidence to support this) that the distributional properties of the permuta­
tions selected through the use of the linear congruential algorithm are quite good. 
This is especially important in problems for which 1.vl ~ N, which is typical in 
the transport applications of interest. 

3. Ideas for Classifying Transport Problems 

'While the hybrid sequences were created to provide reductions generally in asymp­
totic rates of convergence, it is important to understand more fully the class of 
problems for which these methods are certain to provide substantial improve­
ments, and by how much. The usual standard against which such comparisons 
would be made would be conventional pseudorandom Monte Carlo simulation. 
The key, then, would seem to be a deeper understanding of comparable error anal-
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yses and estimates for the rates of convergence of the scrambled hybrid method and 
the pseudorandom method ( which presumably would go beyond the asymptotic 
(log N)! / N versus 1 / '\/M estimates), as well as practical methods for estimating 
the needed parameters ( e.g., an "effective" dimensions to associate with the rate 
of convergence of the Neuma·nn series of the transport equation, the probabilities 
Pk = exact probability that the Markov chain terminates after exactly k collisions), 
etc. as functions of sample size N). 

A. Observation: The usual error analysis for quasirandom Monte Carlo meth­
ods is based on the Koksma-Hlawka inequality [3], which provides a worst-cas~ er­
ror analysis. By contrast, the usual error analysis for pseudorandom Monte Carlo 
is statistical, and leads to average-case error estimates. However, the scrambled 
-algorithm lends itself to conventional statistical analysis of error that could then 
be directly compared to the statistical analysis used for pseudorandom implemen­
tations. One need only factor the total number of histories, N = nm, and view 
the N-history experiment as consisting of m repetitions of a basic experiment 
of size n. That is, each subset of n histories is regarded as producing one sample 
from an approximately normal ( for sufficiently large n) distribution with unknown 
mean µ and standard deviation u. One can then compute the sample mean and 
sample standard deviation for each scrambled experiment and do the same for 
each pseudorandom experiment. These estimates would then provide an effective 
way of comparing estimates of the errors from the two implementations. Work of 
this sort, already begun at CGS, will continue. 

B. Parameter Estimation: One might use output from each computer simula­
tion to provide estimates of the key needed parameters. For instance, the numbers 
Pk could be estimated by simply counting the fraction, Pk, of random walks that 
terminate in exactly k collisions. Then one could compute an effective dimension 
s as 

00 

s = LPkSk, 
k=l 

and an average second moment 

where Skis the euclidean dimension associated with the kth term in the Neumann 
series for the transport problem. This information might then be used to see how 
to adjust (logN)i / N ( which is much too conservative) downward to produce com­
parability with 1/./N. This should help understand the potential for improving 
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on pseudorandom Monte Carlo by using hybrid Monte Carlo methods such as the 
scrambled method. 

4. Exploration of Preconditioning for Transport Simula­
tions 

Analogous to the preconditioning of direct and iterative methods for solving the 
linear algebraic system 

x = Bx+ b 
we want, effectively, to replace this problem by one in which IIB/11 is reduced 
(since 

(I - B)- 1 =I+ B + B2 + · · · 
is a slowly convergent Neumann series when IIBll1 is close to 1). In the physical 
system, we think this might amount to introduction of artificial "absorption" with 
compensation through increased weight factors when particles survive absorption. 
The result would be a tradeoff between speed per history ( which is lowered when 
absorption is increased) and accuracy per history (since the variance should in­
crease when nonunit weights must be used to compensate for the increased ab­
sorption). This suggests studying idealized (model) problems in which the overall 
efficiency 

E=RV 

where R = run time, V = variance, provides the standard for comparison of 
methods with different R, V. 

One idea would be to study this issue in the context of solving linear algebraic 
equations by Monte Carlo methods (see Chapter 2 of [4]). In a very simplified 
version of the general problem, consider 

x = Bx+ b 

and assume that the problem is to estimate 

I=< d, X >= Xi 0 , i.e., d = Diio• 

Then Xio is subject to interpretation as the discrete collision density in energy 
state i0 • Assume for simplicity that the source b is normalized so that bi > 0 
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and Li=t bi = 1 and that bii ~ 0, Li=t bii = 1 - Pi, where Pi = probability of 
absorption is state j, bii = probability of scattering from state j to i. Let !1 be the 
space of all random walk histories and define the random variable 

0:D.-+R 

by 

Then 

Therefore, 

E[0] = Piobio + Pio Li 1 bioi1 bi1 + Pio Li 2 bioi2 Li 1 bi2i 1 bi1 + · 
= Piobio + Pio(Bb)io + Pi0 (B 2b)io + · · · 

= Pio(b + Bb + B 2b + · · ·)io 

e = 0/Pio 

is an unbiased estimator of Xio (see [4]). 
To do importance sampling (see· [41) in which, for example, the transition 

matrix B is replaced by B but the source vector b is unchanged, one would simply 
replace the element bii by bii in order to determine the transition from j to i and 
multiply the particle weight W (initially set to 1) by the factor bii/hii· Similarly, 
when absorption in state k actually occurs, the weight must be multiplied by Pk/Pk 
, where 

Pk = 1 - Li=t bik as before, and 
Pk = 1 - Li=l bik· 

This weight multiplication results in a modified random variable W whose value 
on the Markov cha.in (ii, ... , ik) is 

It is easy to see that 
E[W] = Xi0 

where here the expectation is taken with respect to the probability measure in­
duced on n by using the matrix B, instead of B, to produce transitions from state 
to state. 
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All of the above can be generalized to include changes in the source distribu­
tion, b, as well as more general "detector" vectors, d, and more general random 
variables than simple binomial ones. Choosing model problems that are suffi­
ciently simple should enable an exact calculation of the errors associated with the 
use of the random variables 9 and W. 

Finally, one would like to impose a parametric description of the matrix iJ 
(hence of the Pi) and study the behavior of the efficiency E = RV of the method 
as a function of variation in this parametrization. Such a study would undoubtedly 
relate back to the questions encountered in Section 3 above. 
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