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Introduction 

Problems involving thin elastic plates/shells arise in the life sciences [1], aerospace [2], the paper 

industry [3], and with semiconductor wafers/ceramic sheets/glass sheets [4].  From an applied math 

perspective the problems are interesting for both their relevance and the distinct but not unfamiliar 

equations which arise.  In this problem we are concerned with thin rectangular plates which are thin 

enough to be affected by thermal stresses due to a temperature distribution T(x,y), but thick enough 

that the initial non-flat shape z1(x,y), though small, provides a resistance to both bending and 

stretching.   

 We are also going to be interested in properly formulating and solving inverse problems, for example 

what thermal expansion distribution  T(x,y) might explain an observed non-flat shape z_meas(x,y).   

One direction this can lead is to the ambiguous problem of specifying a surface  Z(x,y) given its Gaussian 

curvature G(x,y), so formulating the problem correctly is important. 

We are going to be working on idealized model problems with simplifying assumptions.  We will assume 

a thin rectangular plate with a uniform thickness, and look at scalings where the problem is interesting 

to the MPI group. The material is linear-elastic and the effect of thermal strain is idealized as a ‘frozen’ 

strain. 
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Other Background: 

We’d like to apply spectral methods using Matlab [5] if feasible for at least model examples, and to 

understand the cases where such methods aren’t appropriate. 

References on thin plates, shell theory, and the role of Gaussian curvature are given in references [6], 

[7], [8]. A reference to thermal stresses in thin plates is [9] 

Objective/Sub-Problems : connect the final shape z_tot(x,y) of a thin rectangular plate to the 

contributions of an initial non-flat shape z1(x,y)  and the effect of thermal stress due to a temperature 

variation T(x,y) .  We are interested in the scalings where the deflections are ‘large enough’ that large-

deflection corrections to the governing equation are needed.  In this case there is coupling between two 

4th order non-linear PDEs. 

The Sub-Problems below organize the questions but experience with MPI has shown that a lot of the 

benefit comes from a review of the formulation of the problem. 

1. Solve for or estimate  z_tot(x,y) with a known  z1(x,y)   and known T(x,y) 

2. Given a known z_tot(x,y) and a known T(x,y),  can we solve for or estimate   z1(x,y)   ? 

3. Given a known  z_tot(x,y) and a known    z1(x,y), can we solve for or estimate T(x,y)? 

4. If we only know z_tot(x,y),  what additional information  might be used to estimate both          

z1(x,y) and T(x,y)? 

5. A typical way of measuring  z1(x,y) and T(x,y) will give a single function F(x,y) proportional to the 

total strain in the sheet when pressed flat – it is the sum of two terms, one proportional to the 

Gaussian curvature of z1 and a second proportional to the Laplacian of T(x,y).   The most realistic 

problem in this model problem set is to take the total shape z_tot(x,y) and the measured 

function F(x,y) and ask how one might estimate the components z1(x,y), T(x,y).  (This is similar to 

the classical Dirichlet problem of figuring out the shape given only the Gaussian curvature) 

6. Sag Problem :  A related sub-problem is to calculate the sag of a thin plate with frozen shape 

z1(x,y) when resting on 3 or more pins, using the Matlab spectral methods suggested in [5] if 

feasible or another Matlab implementation.  Most examples of sagging plates assume that all 

points on the boundary are either fixed or simply supported,  which dramatically simplifies the 

problem. Is there a good way to handle the problem with the edges free.  In this case we can 

first look at (6a) the small deflection problem (sheet is stiffer because it is thicker or smaller in 

size) and then worry about ‘large deflection effects’ as (6b)   

Governing Equations for a ‘frozen but flexible’ sheet 
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The governing equation for a thin elastic plate with no embedded thermal strains,  deformed under 

pressure (like gravity) is a standard linear PDE involving a biharmonic equation [6 p.42]  

 

This basic equation is really only valid when the deformation is well  less than the thickness of the plate.  

We are interested in including the effect of a ‘frozen in’ thermal strain as well as the effect of modest 

deformations requiring the ‘stretching’ of the sheet.  We are also interested in the initial shape being 

non-flat – technically this makes it a ‘shell’ and not a ‘plate’ in the literature.   

The equation for the ‘large deflection’ of a thin plate includes a second equation for the stress which 

develops from stretching the sheet, and  the effect of this stress on the deflection[6, p.52-53]. These are 

2nd order if the deflection is small enough. The term “g(x,y)”  is the Gaussian curvature of the deformed 

sheet: 

 

 

 

 

 

The equations for a thin elastic plate which has some thermal strain (x,y) requires  the same 

additional equation for the in-plane stresses,  now including the effect of thermal strain. The stresses 

satisfy a compatibility condition so that they can be derived from a scalar field  (x,y)  , the Airy stress 

function. If the deflection were small the equations would be: 

 

 

 

The problem we are interested in has 

a. the thermal strain from (3a) 

b.  The ‘large deflection’ effect from (2a).  Both effects are important to   and equation (2b).  

c. We want to assume the initial shape is non-flat . 
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Definitions 

1. h = Thickness 

2. D = Eh^3 / (1-v^2) = plate stiffness. E = Young’s Module, v = Poisson’s Ratio 

3. = coefficient of thermal expansion 

4.  = Airy Stress function 

5. P = pressure, T = temperature, w = deflection 
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